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Abstract

A neural network hybrid adaptive control framework
for nonlinear uncertain hybrid dynamical systems is
developed. The proposed hybrid adaptive control
framework is Lyapunov-based and guarantees partial
asymptotic stability of the closed-loop hybrid system;
that is, asymptotic stability with respect to part of the
closed-loop system states associated with the hybrid
plant states. Finally, a numerical example is provided
to demonstrate the efficacy of the proposed hybrid
adaptive stabilization approach.

1. Introduction

Modern complex engineering systems involve multi-
ple modes of operation placing stringent demands on
controller design and implementation of increasing com-
plexity. Such systems typically possess a multiechelon
hierarchical hybrid control architecture characterized by
continuous-time dynamics at the lower levels of the hi-
erarchy and discrete-time dynamics at the higher levels
of the hierarchy (see [1, 2] and the numerous references
therein). The lower-level units directly interact with the
dynamical system to be controlled while the higher-level
units receive information from the lower-level units as in-
puts and provide (possibly discrete) output commands
which serve to coordinate and reconcile the (sometimes
competing) actions of the lower-level units. The hierar-
chical controller organization reduces processor cost and
controller complexity by breaking up the processing task
into relatively small pieces and decomposing the fast and
slow control functions. Typically, the higher-level units
perform logical checks that determine system mode op-
eration, while the lower-level units execute continuous-
variable commands for a given system mode of opera-
tion. The mathematical description of many of these
systems can be characterized by impulsive differential
equations [3–6].

In a recent paper [7], a hybrid adaptive control frame-
work for adaptive stabilization of multivariable nonlin-
ear uncertain impulsive dynamical systems was devel-
oped. In particular, a Lyapunov-based hybrid adaptive
control framework was developed that guarantees partial
asymptotic stability of the closed-loop system; that is,
asymptotic stability with respect to part of the closed-
loop system states associated with the hybrid plant dy-
namics. Furthermore, the remainder of the state associ-
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ated with the adaptive controller gains was shown to be
Lyapunov stable. As is the case in the adaptive control
literature [8–12], the system errors in [7] are captured by
a constant linearly parameterized uncertainty model of
a known structure but unknown variation. This uncer-
tainty characterization allows the system nonlinearities
to be parameterized by a finite linear combination of
basis functions within a class of function approximators
such as rational functions, spline functions, radial basis
functions, sigmoidal functions, and wavelets. However,
this linear parametrization of basis functions in general,
cannot exactly capture the unknown system nonlinear-
ity.

Even though neural network-based adaptive control
algorithms have been extensively developed in the liter-
ature, it is quite common using Lyapunov-like functions
to claim that the neural network controllers can guar-
antee ultimate boundedness of the closed-loop system
states. This implies that the plant states converge to
a neighborhood of the origin (see, for example, [13–15]
for continuous-time cases and [16–18] for discrete-time
cases). The reason why stability in the standard sense
is not guaranteed stems from the fact that uncertainties
in the system dynamics cannot be perfectly captured by
neural networks and the residual approximation error
is characterized via infinity norm over a given compact
set. As one can surmise, however, the ultimate bound-
edness claims are somewhat conservative since standard
Lyapunov-like theorems that are typically used to show
ultimate boundedness of the closed-loop hybrid system
states provide only sufficient conditions, while neural
network controllers may possibly achieve plant state
convergence to an equilibrium point.

In this paper we develop a neural hybrid adaptive
control framework for a class of nonlinear uncertain
impulsive dynamical systems which ensures state con-
vergence as well as boundedness of the neural network
weighting gains. Specifically, the proposed framework
is Lyapunov-based and guarantees partial asymptotic
stability of the closed-loop hybrid system; that is, Lya-
punov stability of the overall closed-loop states and con-
vergence with respect to the plant state. The neuro
adaptive controllers are constructed without requiring
explicit knowledge of the hybrid system dynamics other
than the fact that the plant dynamics are continuously
differentiable and that the approximation error of un-
known nonlinearities lies in a small gain-type norm
bounded conic sector over a compact set. Hence, the
overall neuro adaptive control framework captures the
residual approximation error inherent in linear param-
eterizations of system uncertainty via basis functions.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeIB19.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 5510



Furthermore, the proposed neuro control architecture
is modular in the sense that if a nominal linear design
model is available, the neuro adaptive controller can be
augmented to the nominal design to account for system
nonlinearities and system uncertainty.

Finally, we emphasize that we do not impose any lin-
ear growth condition on the system resetting (discrete)
dynamics. Note that in the literature on classical (non-
neural) adaptive control theory for discrete-time sys-
tems, it is typically assumed that the nonlinear system
dynamics have the linear growth rate which is necessary
in proving Lyapunov stability rather than practical sta-
bility (ultimate boundedness). Our novel characteriza-
tion of system uncertainties (the small gain-type bound
on the norm of the modelling error) allows us to prove
asymptotic stability without requiring a linear growth
condition for the system dynamics.

2. Mathematical Preliminaries

In this section we introduce notation, definitions, and
some key results concerning impulsive dynamical sys-
tems [3–6, 19]. Let R denote the set of real numbers,
R

n denote the set of n × 1 real column vectors, (·)T

denote transpose, (·)† denote the Moore-Penrose gen-
eralized inverse, N denote the set of nonnegative inte-
gers, N

n (resp., P
n) denote the set of n × n nonneg-

ative (resp., positive) definite matrices, and In denote
the n × n identity matrix. Furthermore, we write tr(·)
for the trace operator, ln(·) for the natural log operator,
λmin(M) (resp., λmax(M)) for the minimum (resp., max-
imum) eigenvalue of the Hermitian matrix M , σmax(M)
for the maximum singular value of the matrix M , V ′(x)
for the Fréchet derivative of V at x, and dist(p,M) for
the smallest distance from a point p to any point in the
set M.

In this paper, we consider controlled state-dependent
[6] impulsive dynamical systems G of the form

ẋ(t) = fc(x(t)) + Gc(x(t))uc(t), x(0) = x0,

x(t) �∈ Zx, (1)

∆x(t) = fd(x(t)) + Gd(x(t))ud(t), x(t) ∈ Zx, (2)

where t ≥ 0, x(t) ∈ D ⊆ R
n, D is an open set with

0 ∈ D, ∆x(t) � x(t+) − x(t), uc(t) ∈ Uc ⊆ R
mc ,

ud(tk) ∈ Ud ⊆ R
md , tk denotes the kth instant of time

at which x(t) intersects Zx for a particular trajectory
x(t), fc : D → R

n is Lipschitz continuous and satisfies
fc(0) = 0, Gc : D → R

n×mc , fd : Zx → R
n is continu-

ous, Gd : Zx → R
n×md is such that rank Gd(x) = md,

x ∈ Zx, and Zx ⊂ D is the resetting set. Here, we
assume that uc(·) and ud(·) are restricted to the class
of admissible inputs consisting of measurable functions
such that (uc(t), ud(tk)) ∈ Uc × Ud for all t ≥ 0 and

k ∈ N[0,t) � {k : 0 ≤ tk < t}, where the constrained set
Uc×Ud is given with (0, 0) ∈ Uc×Ud. We refer to the dif-
ferential equation (1) as the continuous-time dynamics,
and we refer to the difference equation (2) as the reset-
ting law. In this paper we assume that Assumptions A1
and A2 established in [6] hold for all ud(·) ∈ Ud; that
is, the resetting set is such that resetting removes x(tk)

from the resetting set and no trajectory can intersect
the interior of Zx. Hence, as shown in [6], the resetting
times are well defined and distinct. Since the resetting
times are well defined and distinct and since the solution
to (1) exists and is unique it follows that the solution of
the impulsive dynamical system (1), (2) also exists and
is unique over a forward time interval.

Next, we provide a key result from [6, 19] involving
an invariant set stability theorem for hybrid dynamical
systems. Specifically, consider the impulsive dynamical
system (1), (2) with hybrid adaptive feedback controllers

uc(·) and ud(·) so that the closed-loop hybrid system G̃
has the form

˙̃x(t) = f̃c(x̃(t)), x̃(0) = x̃0, x̃(t) �∈ Zx̃, (3)

∆x̃(t) = f̃d(x̃(t)), x̃(t) ∈ Zx̃, (4)

where t ≥ 0, x̃(t) ∈ D̃ ⊆ R
ñ, x̃(t) denotes the closed-

loop state involving the system state and the adaptive
gains, f̃c : D̃ → R

ñ and f̃d : D̃ → R
ñ denote the

closed-loop continuous-time and resetting dynamics, re-
spectively, with f̃c(x̃e) = 0, where x̃e ∈ D̃\Zx̃ denotes
the closed-loop equilibrium point, and ñ denotes the di-
mension of the closed-loop system state. For the state-
ment of the next result the following key assumption is
needed.

Assumption 2.1 [6, 19]. Let s(t, x̃0), t ≥ 0, denote

the solution of (3), (4) with initial condition x̃0 ∈ D̃.

Then for every x̃0 ∈ D̃, there exists a dense subset
Tx̃0

⊆ [0,∞) such that [0,∞)\Tx̃0
is (finitely or in-

finitely) countable and for every ε > 0 and t ∈ Tx̃0
, there

exists δ(ε, x̃0, t) > 0 such that if ‖x̃0 − y‖ < δ(ε, x̃0, t),

y ∈ D̃, then ‖s(t, x̃0) − s(t, y)‖ < ε.

Assumption 2.1 is a generalization of the standard
continuous dependence property for dynamical systems
with continuous flows to dynamical systems with left-
continuous flows. Specifically, by letting Tx̃0

= T x̃0
=

[0,∞), where T x̃0
denotes the closure of the set Tx̃0

,
Assumption 2.1 specializes to the classical continuous
dependence of solutions of a given dynamical system
with respect to the system’s initial conditions x̃0 ∈ D̃
[20]. Since solutions of impulsive dynamical systems are
not continuous in time and solutions are not continu-
ous functions of the system initial conditions, Assump-
tion 2.1 is needed to apply the hybrid invariance prin-
ciple developed in [6, 19] to hybrid adaptive systems.
Henceforth, we assume that the hybrid adaptive feed-
back controllers uc(·) and ud(·) are such that closed-loop
hybrid system (3), (4) satisfies Assumption 2.1. Neces-
sary and sufficient conditions that guarantee that the
nonlinear impulsive dynamical system G̃ satisfies As-
sumption 2.1 are given in [19]. A sufficient condition
that guarantees that the trajectories of the closed-loop
nonlinear impulsive dynamical system (3), (4) satisfy

Assumption 2.1 are Lipschitz continuity of f̃c(·) and
the existence of a continuously differentiable function
X : D̃ → R such that the resetting set is given by
Zx̃ = {x̃ ∈ D̃ : X (x̃) = 0}, where X ′(x̃) �= 0, x̃ ∈ Zx̃,
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and X ′(x̃)f̃c(x̃) �= 0, x̃ ∈ Zx̃. The last condition above
insures that the solution of the closed-loop hybrid sys-
tem is not tangent to the resetting set Zx̃ for all initial
conditions x̃0 ∈ D̃. For further discussion on Assump-
tion 2.1 see [6, 19].

The following theorem proven in [6, 19] is needed to
develop the main results of this paper.

Theorem 2.1 [6, 19]. Consider the nonlinear impul-

sive dynamical system G̃ given by (3), (4), assume

D̃c ⊂ D̃ is a compact positively invariant set with re-
spect to (3), (4), and assume that there exists a contin-

uously differentiable function V : D̃c → R such that

V ′(x̃)f̃c(x̃) ≤ 0, x̃ ∈ D̃c, x̃ /∈ Zx̃, (5)

V (x̃ + f̃d(x̃)) ≤ V (x̃), x̃ ∈ D̃c, x̃ ∈ Zx̃. (6)

Let R � {x̃ ∈ D̃c : x̃ /∈ Zx̃, V ′(x̃)f̃c(x̃) = 0} ∪ {x̃ ∈ D̃c :

x̃ ∈ Zx̃, V (x̃ + f̃d(x̃)) = V (x̃)} and let M denote the

largest invariant set contained in R. If x̃0 ∈ D̃c, then
x̃(t) → M as t → ∞. Finally, if D̃ = R

ñ and V (x̃) → ∞
as ‖x̃‖ → ∞, then x̃(t) → M as t → ∞ for all x̃0 ∈ R

ñ.

3. Hybrid Adaptive Stabilization for Nonlin-
ear Hybrid Dynamical Systems using Neural
Networks

In this section we consider the problem of neural hy-
brid adaptive stabilization for nonlinear uncertain hy-
brid systems. Specifically, we consider the controlled
state-dependent impulsive dynamical system (1), (2)
with D = R

n, Uc = R
mc , and Ud = R

md , where
fc : R

n → R
n and fd : R

n → R
n are continuously

differentiable and satisfies fc(0) = 0 and fd(0) = 0,
Gc : R

n → R
n×mc , and Gd : R

n → R
n×md .

In this paper, we assume that fc(·) and fd(·) are un-
known functions, and fc(·), Gc(·), fd(·), and Gd(·) are
given by

fc(x) = Acx + ∆fc(x), Gc(x) = BcGcn(x), (7)

fd(x) = (Ad − In)x + ∆fd(x), Gd(x) = BdGdn(x),
(8)

where Ac ∈ R
n×n, Ad ∈ R

n×n, Bc ∈ R
n×mc , and Bd ∈

R
n×md are known matrices, Gcn : R

n → R
mc×mc and

Gdn : R
n → R

md×md are known matrix functions such
that detGcn(x) �= 0, x ∈ R

n, and detGdn(x) �= 0, x ∈
R

n, and ∆fc : R
n → R

n and ∆fd : R
n → R

n are
unknown functions belonging to the uncertainty sets Fc

and Fd, respectively, given by

Fc = {∆fc : R
n → R

n : ∆fc(0) = 0,

∆fc(x) = Bcδc(x), x ∈ R
n}, (9)

Fd = {∆fd : R
n → R

n : ∆fd(0) = 0,

∆fd(x) = Bdδd(x), x ∈ R
n}, (10)

where δc : R
n → R

mc and δd : R
n → R

md are uncertain
continuously differentiable functions such that δc(0) = 0
and δd(0) = 0. It is important to note that since δc(x)
and δd(x) are continuously differentiable and δc(0) = 0

ϕj(x)

x

Dc

|slope| = γ−1

j

Figure 3.1: Visualization of function ϕj(·), j = c, d

and δd(0) = 0, it follows that there exist continuous ma-
trix functions ∆c : R

n → R
mc×n and ∆d : R

n → R
md×n

such that δc(x) = ∆c(x)x, x ∈ R
n, and δd(x) = ∆d(x)x,

x ∈ R
n. Furthermore, we assume that the continuous

matrix functions ∆c(·) and ∆d(·) can be approximated
over a compact set Dc ⊂ R

n by a linear in the parame-
ters neural network up to a desired accuracy so that

coli(∆c(x)) = WT
ciσc(x) + εci(x), x ∈ Dc,

i = 1, · · · , n, (11)

coli(∆d(x)) = WT
di

σd(x) + εdi(x), x ∈ Dc,

i = 1, · · · , n, (12)

where coli(∆(·)) denotes the ith column of the matrix
∆(·), WT

ci ∈ R
mc×sc and WT

di
∈ R

md×sd , i = 1, · · · , n,
are optimal unknown (constant) weights that minimize
the approximation error over Dc, εci : R

n → R
mc and

εdi : R
n → R

md , i = 1, · · · , n, are modeling errors
such that σmax(Υc(x)) ≤ γ−1

c and σmax(Υd(x)) ≤ γ−1
d ,

x ∈ R
n, where Υc(x) � [εc1(x), · · · , εcn(x)], Υd(x) �

[εd1(x), · · · , εdn(x)] and γc, γd > 0, and σc : R
n → R

sc

and σd : R
n → R

sd are given basis functions.

Next, defining

ϕc(x) � δc(x) − WT
c [x ⊗ σc(x)], (13)

ϕd(x) � δd(x) − WT
d [x ⊗ σd(x)], (14)

where WT
c � [WT

c1, · · · , W
T
cn] ∈ R

mc×nsc , WT
d �

[WT
d1, · · · , W

T
dn] ∈ R

md×nsd , and ⊗ denotes Kronecker
product, it follows from (11), (12), and Cauchy-Schwartz
inequality that

ϕT
j (x)ϕj(x) = ‖∆j(x)x − WT

j (x ⊗ σj(x))‖2

= ‖∆j(x)x − Σj(x)x‖2

= ‖Υj(x)x‖2

≤ γ−2
j xTx, x ∈ Dc, j = c, d, (15)

where Σj(x) � [WT
j1σj(x), · · · , WT

jnσj(x)], j = c, d.
This corresponds to a nonlinear small gain-type norm
bounded uncertainty characterization for ϕj(·), j = c, d
(see Figure 3.1).

Theorem 3.1. Consider the nonlinear uncertain hy-
brid dynamical system G given by (1), (2) where fc(·),
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Gc(·), fd(·), and Gd(·) are given by (7), (8), and ∆fc :
R

n → R
n and ∆fd : R

n → R
n belong to the uncertainty

sets Fc and Fd, respectively. For given γc, γd > 0, as-
sume there exists a positive-definite matrix P ∈ R

n×n

such that

0 = AT
csP + PAcs + γ−2

c PBcB
T
c P + In + Rc, (16)

P = AT
d PAd − AT

d PBd(B
T
d PBd)−1BT

d PAd

+ (α + β)In + Rd, (17)

where Acs � Ac + BcKc, Kc ∈ R
mc×n, Rc ∈ R

n×n and
Rd ∈ R

n×n are positive definite, α > 0, β satisfies

β ≥ γ−2
d

(
λmax(B

T
d PBd)

+ a
1 + xTPx

c + [x ⊗ σd(x)]T[x ⊗ σd(x)]

)
, x ∈ Zx, (18)

a = max{c, n/λmin(P )}BT
d PBd

(
Im + 1

αγ2

d

BT
d PBd

)
,

(19)

and c > 0. Finally, let Ads � Ad + BdKd, where Kd �
−(BT

d PBd)
−1BT

d PAd, and let Qc ∈ R
mc and Y ∈ R

sc

be positive definite. Then the neural hybrid adaptive
feedback control law

uc(t) = G−1
cn (x(t))

[
Kcx(t) − ŴT

c (t)[x(t) ⊗ σc(x(t))]
]
,

x(t) �∈ Zx, (20)

ud(t) = G−1
dn (x(t))

[
Kdx(t) − ŴT

d (t)[x(t) ⊗ σd(x(t))]
]
,

x(t) ∈ Zx, (21)

where ŴT
c (t) ∈ R

mc×nsc , t ≥ 0, ŴT
d (t) ∈ R

md×nsd ,
t ≥ 0, and σc : R

n → R
sc and σd : R

n → R
sd are given

basis functions, with update laws

˙̂
WT

c (t) = 1
1+x(t)TPx(t)

QcB
T
c Px(t)[x(t) ⊗ σc(x(t))]TY,

ŴT
c (0) = ŴT

c0, x(t) �∈ Zx, (22)

∆ŴT
c (t) = 0, x(t) ∈ Zx, (23)

˙̂
WT

d (t) = 0, ŴT
d (0) = ŴT

d0, x(t) /∈ Zx, (24)

∆ŴT
d (t) = 1

c+[x(t)⊗σd(x(t))]T[x(t)⊗σd(x(t))]B
†
d[x(t+)

− Adsx(t)][x(t) ⊗ σd(x(t))]T, x(t) ∈ Zx,
(25)

where ∆ŴT
c (t) � ŴT

c (t+) − ŴT
c (t) and ∆ŴT

d (t) �

ŴT
d (t+) − ŴT

d (t), guarantees that there exists a
positively invariant set Dα ⊂ R

n × R
mc×nsc ×

R
md×nsd such that (0, WT

c , WT
d ) ∈ Dα, where WT

c ∈
R

mc×nsc and WT
d ∈ R

md×nsd , and the solution

(x(t), ŴT
c (t), ŴT

d (t)) ≡ (0, WT
c , WT

d ) of the closed-loop
system given by (1), (2), (20)–(25) is Lyapunov stable
and x(t) → 0 as t → ∞ for all ∆fc(·) ∈ Fc, ∆fd(·) ∈ Fd,

and (x0, Ŵ
T
c0, Ŵ

T
d0) ∈ Dα.

Proof. The proof is omitted due to space limitations.
�

Remark 3.1. Note that the conditions in Theo-
rem 3.1 imply partial asymptotic stability, that is,
the solution (x(t), ŴT

c (t), ŴT
d (t)) ≡ (0, WT

c , WT
d ) of

the overall closed-loop system is Lyapunov stable and
x(t) → 0 as t → ∞. Hence, it follows from (22), (23)

that
˙̂

WT
c (t) → 0 as t → ∞. Furthermore, if x(t), t ≥ 0,

intersects Zx infinitely many times, then it follows from
(24), (25) that Ŵd(t+k ) − Ŵd(tk) → 0 as k → ∞.

Remark 3.2. Since the Lyapunov function used in
the proof of Theorem 3.1 is a class K∞ function, in the
case where the neural network approximation holds in
R

n, the control law (20), (21) ensures global asymptotic
stability with respect to x. However, the existence of
a global neural network approximator for an uncertain
nonlinear map cannot in general be established. Hence,
as is common in the neural network literature, for a given
arbitrarily large compact set Dc ⊂ R

n, we assume that
there exists an approximator for the unknown nonlinear
map up to a desired accuracy (in the sense of (11) and
(12)). In the case where ∆c(·) and ∆d(·) are continu-
ous on R

n, it follows from the Stone-Weierstrass the-
orem that ∆c(·) and ∆d(·) can be approximated over
an arbitrarily large compact set Dc. In this case, our
neuro adaptive controller guarantees semiglobal partial
asymptotic stability.

Remark 3.3. Note that the neuro adaptive con-
troller (20), (21) can be constructed to guarantee partial
asymptotic stability using standard linear H∞ theory.
Specifically, it follows from standard H∞ theory [21] that
‖Gc(s)‖∞ < γc, where G(s) = Ec(sIn − Acs)

−1Bc and
Ec is such that ET

c Ec = In+R, if and only if there exists
a positive-definite matrix P satisfying the bounded real
Riccati equation (16). It is well known that (16) has a
positive-definite solution if and only if the Hamiltonian
matrix

H =

[
As γ−2

c BBT

−ETE −AT
s

]
, (26)

has no purely imaginary eigenvalues.

It is important to note that the hybrid adaptive con-
trol law (20)–(25) does not require explicit knowledge
of the optimal weighting matrices Wc, Wd, and the pos-
itive constants α and β. Theorem 3.1 simply requires
the existence of Wc, Wd, α, and β such that (16) and
(17) hold. Furthermore, no specific structure on the
nonlinear dynamics fc(x) and fd(x) is required to ap-
ply Theorem 3.1 other than the assumption that fc(x)
and fd(x) are continuously differentiable and that the
approximation error of uncertain system nonlinearities
lie in a small gain-type norm bounded conic sector. Fi-
nally, in the case where the pair (Ad, Bd) is in control-
lable canonical form and Rd in (17) is diagonal, it fol-

lows that Ads =

[
A0

0md×n

]
, where A0 ∈ R

(n−md)×n is

a known matrix of zeros and ones capturing the multi-
variable controllable canonical form representation [22],
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and hence the update law (25) is simplified as

∆ŴT
d (t) = 1

c+[x(t)⊗σd(x(t))]T[x(t)⊗σd(x(t))]B
†
d∆x(t)

· [x(t) ⊗ σd(x(t))]T, x(t) ∈ Zx, (27)

since B†
dAds = 0.

4. Illustrative Numerical Example

In this section we present a numerical example to
demonstrate the utility of the proposed neural hybrid
adaptive control framework for hybrid adaptive stabi-
lization. Specifically, consider the nonlinear uncertain
controlled hybrid system given by (1), (2) with n = 2,
x = [x1, x2]

T,

fc(x) =

[
x2

f̂c(x)

]
, Gc(x) =

[
0
bc

]
, (28)

fd(x) =

[
−x1 + x2

f̂d(x)

]
, Gd(x) =

[
0
bd

]
, (29)

where f̂c : R
2 → R and f̂d : R

2 → R are unknown,
continuously functions. Furthermore, assume that the
resetting set Zx is given by

Zx = {x ∈ R
2 : X (x) = 0, x2 > 0}. (30)

Here, we assume that fc(x) and fd(x) are unknown and
can be written in the form of (7) and (8) with Ac = Ad =[

0 1
0 0

]
, ∆fc(x) = [0, f̂c(x)]T, ∆fd(x) = [0, f̂d(x)]T,

Bc = [0, bc]
T, Bd = [0, bd]

T, Gcn(x) = Gdn(x) = 1.
Here we assume that ∆fc(x) and ∆fd(x) are unknown
and can be written as ∆fc(x) = Bcδc(x) and ∆fd(x) =

Bdδd(x), where δc(x) = 1
bc

f̂c(x) and δd(x) = 1
bd

f̂d(x).

Next, let Kc = 1
bc

[kc1, kc2] and Kd = 1
bd

[kd1, kd2], where

kc1, kc2, kd1, and kd2 are arbitrary scalars, such that

Acs = Ac + BcKc =

[
0 1

kc1 kc2

]
and Ads = Ad +

BdKd =

[
0 1

kd1 kd2

]
. Now, the proper choice of kc1,

kc2, kd1, and kd2, it follows from Theorem 3.1 that if
there exists P > 0 satisfying (16) and (17), then the
neural hybrid adaptive feedback controller (20) and (21)
guarantees x(t) → 0 as t → ∞. Specifically, here we
choose kc1 = −1, kc2 = −1, kd1 = −0.2, kd2 = −0.5,
γc = 10, γd = 20, bc = 3, bd = 1.4, c = 1, α = 1,
σd(x) = [tanh(0.1x2), . . . , tanh(0.6x2)]

T, and

Rc =

[
2.6947 2.4323
2.4323 5.8019

]
,

Rd =

[
8.0196 2.0334
2.0334 1.0569

]
,

so that P satisfying (16) and (17) is given by

P =

[
10.0196 2.0334
2.0334 12.7523

]
.
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Figure 4.2: Phase portraits of uncontrolled and con-
trolled hybrid system

With f̂c(x) = −a1x1 − a2(x
2
1 − a3)x2, f̂d(x) = −x2 −

a4x
2
1 − a5

x3

2

1+x2

2

− a6x
3
2, a1 = 1, a2 = 2, a3 = 1,

a4 = −5, a5 = −2, a6 = 8, Y = 0.02I3, σc(x) =[
1

1+e−λ1x1
, . . . , 1

1+e−3λ1x1
, 1

1+e−λ2x2
, . . . , 1

1+e−3λ2x2

]
, and

initial conditions x(0) = [1, 1]T, ŴT
c (0) = 01×6, and

ŴT
d (0) = 01×6, Figure 4.2 shows the phase portraits

of the uncontrolled and controlled hybrid system. Fig-
ures 4.3 and 4.4 show the state trajectories versus time
and the control signals versus time, respectively. Finally,
Figure 4.5 shows the adaptive gain history versus time.

5. Conclusion

A direct hybrid neuro adaptive nonlinear control
framework for hybrid nonlinear uncertain dynamical
systems was developed. Using Lyapunov methods the
proposed framework was shown to guarantee partial
asymptotic stability of the closed-loop hybrid system;
that is, asymptotic stability with respect to part of
the closed-loop system states associated with the hy-
brid plant dynamics. In the case where the nonlinear
hybrid system is represented in normal form, the nonlin-
ear hybrid adaptive controller was constructed without
knowledge of the system dynamics. Finally, a numer-
ical example was presented to show the utility of the
proposed hybrid adaptive stabilization scheme.
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Figure 4.3: State trajectories versus time
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Figure 4.4: Control signals versus time
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Ŵ4(t)
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Figure 4.5: Adaptive gain history versus time
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