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Abstract— In this paper we give a basic derivation of
smoothing splines and through this derivation we show that
the basic smoothing spline construction can be separated into
a filtering problem on the raw data and an interpolating spline
construction. Both the filtering algorithm and and the inter-
polating spline construction can be effectively implemented.
We allow hard constraints (such as boundary values) on the
dynamics and we allow data that is subject to error. We are
thus constructing smoothing splines with hard constraints.

I. INTRODUCTION

Estimation and smoothing for data sets that contain de-
terministic and random data present difficulties not present
in purely random data sets. Yet such data sets are very
common in practice and if the nature of the data is not
respected conclusions may be drawn that have little relation
to reality. In this paper we will present a unified treatment
of such problems. We will extend the theory of smoothing
splines to cover such situations. Some of the techniques that
we will use have been developed in papers by Egerstedt
and Martin, [11], [6], [3] and their colleagues. The main
technical contribution of this paper will be to show that
many of these problems can be cast as minimum norm
problems in suitable Hilbert spaces. This approach unifies
a series of problems that have been solved by Egerstedt,
Zhou, Sun and Martin, [14], [15], [16]. We will see that
this method rests on the Hilbert space methods developed
by Luenberger in [5].

A very simple problem is to determine the volume of
water contained in a playa lake in West Texas, [9]. These
are transient water supplies that because of their formation
are almost perfectly circular. If a transect is made across the
center of the lake it is possible to obtain a fairly good esti-
mate of the volume. At the boundary of the lake the depth
of the water is 0cm. However the depth is measured by
a graduate student wading through the lake and measuring
the depth at a series of points. These measurement are quite
random. The bottom of the lake is silted and so it is not clear
where the bottom of the probe rests and the measurement is
made by reading the depth of a marked probe. The data set
then consists of two deterministic values at the boundary
and a series of random numbers representing the depth at
a series of predetermined points.

In population studies the census is taken every ten years
and whether correct or not the values of the census are

Y. Zhou is with the Division of Mathematics, Stockholm University,
SE-106 91 Stockholm, Sweden. Email: yishao@math.su.se

M. Egerstedt is with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332, USA. Email:
magnus@ece.gatech.edu

C. Martin is with the Department of Mathematics and Statistics, Texas
Tech University, Lubbock, TX 79409, USA. Email: martin@.math.ttu.edu

considered to be absolute for many purposes. Estimates
are made of populations within a given city at irregular
intervals between the censuses. Thus if it is necessary to
study the growth or decline of a city over a long period of
time deterministic data is available at ten year intervals and
estimated data is available at shorter and often irregular
time periods. Thus the data set consists of deterministic
census data and random estimated data. Estimates such as
the report by the State of California, [8], are a necessary
and critical part of planning for governments.

For most individuals in the United States their home is
the principle component of their financial portfolio. The
question of the value of the portfolio is of interest in
a variety of economic indicators, [7]. When the home
is purchased there is a firm monetary value that can be
measured and when the home is sold there is a firm value.
In between the value is less certain. Almost every individual
can give you an estimate of the value but unless a formal
appraisal is done there may be a very large error in the
estimate. This results in a data set with a few deterministic
values, the purchase price, the selling price and formal
appraisals and many random values that are estimates by
the owner.

These problems all have in common some data that can
be assumed to be exact and some data that is subject to
error. The goal of this paper is to find a common frame
work to treat all such linear problems.

In this paper we will consider the problem of approx-
imating discrete or continuous data using the dynamics
of a linear controlled system. The system may have hard
constraints such as boundary values and/or hard constraints
at internal values. The data will be assume to be noisy with
known statistics. A contribution of this paper is to formulate
these problems as a general class of minimal norm problems
in Hilbert space. Egerstedt, Sun and Martin, [6], [11],
have formulated interpolation problems as minimal norm
problems but the general problems of smoothing spines have
not to this point been so formulated. The advantage is more
than conceptual in that the smoothed data is immediately
available as is the smooth functional approximation. Thus
we will be able to split the problems into an estimation
problem and a problem of finding the interpolating splines.
Both of these problems have fast numerical implementa-
tions.

II. STATEMENT OF THE BASIC PROBLEM

In this section we state the basic problem of smoothing
splines and construct the solution. Here we show that
the construction splits into two parts in a very natural
way. Ultimately this will allow the implementation of fast
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Fig. 1. The general process for finding the point on an affine variety
(Vα) in a Hilbert space closest to a given data point (p).

algorithms for smoothing spline constructions. The basic
idea of the construction is to define a linear variety, in
a Hilbert space, that contains all of the constraints. The
data is then defined as a point in the Hilbert space and
the optimization reduces to finding the point on the affine
variety that is closest (in the sense of the norm in the Hilbert
space) to the data point. We know that we can construct
this point by finding the orthogonal complement of the
linear variety that defines the affine variety and constructing
the intersection of the affine variety with the orthogonal
complement, as seen in Figure 1. In this process we follow
Luenberger, [5].

A. The definitions

Let
ẋ = Ax + bu, y = cx

be a controllable and observable linear system with initial
data x(0) = x0. As will be seen later it makes for the
smoothest approximation if we have

cb = cAb = cA2b = · · · = cAn−2b = 0 (II.1)

where n is the dimension of the system. The initial data
will be chosen as part of the algorithm. We will later see
that the use of an initial value problem is unnecessary.

Let a data set be given as

D = {(ti, αi) : i = 1, · · · , N}

and assume that ti > 0 and let Tf = tN . Our goal is to
find a control u(t) that minimizes

J(u, x0) =

∫ Tf

0

u2(t)dt + (ŷ − α̂)T Q(ŷ − α̂) + xT
0 Rx0

where Q and R are positive definite matrices. The vector ŷ

has components

yi = y(ti) = ceAtix0 +

∫ ti

0

ceA(ti−s)bu(s)ds

and the vector α̂ has components αi.
It is convenient to define the functions

�i(s) =

⎧⎨
⎩

ceA(ti−s)b ti > s

0 ti < s

Note that if the assumption on zeros, equation II.1, holds
then �i(s) is n − 1 times differentiable at ti. We can now
write

yi = ceAtix0 +

∫ Tf

0

�i(s)u(s)ds = ceAtix0 + 〈�i, u〉L.

Now let βi = R−1eAT ticT and we have

yi = ceAtix0 +

∫ Tf

0

�i(s)u(s)ds

= 〈βi, x0〉R + 〈�i, u〉L

where we define the inner product

〈x, w〉R = xT Rw.

B. The Hilbert space and the affine variety

Let
H = L2[0, Tf ] ⊕ Rn ⊕ RN

with norm

‖(u; x; d)‖2 =

∫ Tf

0

u2(t)dt + dT Qd + xT Rx.

We define the affine variety of constraints, V , in H as

V = {(u; x; d) : di = 〈βi, x〉R + 〈�i, u〉L}

Note that V is of infinite dimension and finite co-dimension.
We will construct the orthogonal complement of V in H.

V ⊥ = {(u′; x′; d′) :
∀(u; x; d) ∈ V 〈u′, u〉L + 〈d′, d〉Q + 〈x′, x〉R = 0}.

Now we have

〈d′, d〉Q =

N∑
i=1

〈d′, ei〉Qdi

=

N∑
i=1

〈d′, ei〉Q[〈βi, x〉R + 〈�i, u〉L]

=

N∑
i=1

[〈d′, ei〉Q〈βi, x〉R + 〈d′, ei〉Q〈�i, u〉L]

=

N∑
i=1

[〈〈d′, ei〉Qβi, x〉R + 〈〈d′, ei〉Q�i, u〉L]

= 〈
N∑

i=1

〈d′, ei〉Qβi, x〉R + 〈
N∑

i=1

〈d′, ei〉Q�i, u〉L

Therefore we have

0 = 〈u′, u〉L + 〈x′, x〉R + 〈d′, d〉Q =

= 〈u′, u〉L + 〈x′, x〉R + 〈
N∑

i=1

〈d′, ei〉Qβi, x〉R +

+ 〈
N∑

i=1

〈d′, ei〉Q�i, u〉L =

= 〈x′ +

N∑
i=1

〈d′, ei〉Qβi, x〉R + 〈u′ +

N∑
i=1

〈d′, ei〉Q�i, u〉L
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From this we see that

V ⊥ = {(u′; x′; d′) : x′ +

N∑
i=1

〈d′, ei〉Qβi = 0,

u′ +

N∑
i=1

〈d′, ei〉Q�i = 0}

C. The intersection

Before constructing the intersection two things must be
verified. The first is that V is nonempty and the second is
that V is closed. Both follow from the fact that V is the
graph of a continuous mapping from L2[0, T ]×Rn to RN .
Equating quantities from V and V ⊥ + p (p = (0; 0; α̂) is
the data point) we have from the definition of V and some
rearrangement of terms

di = 〈βi, x〉R + 〈�i, u〉L

= −
N∑

j=1

〈d′, ej〉Q〈βi, βj〉R −
N∑

j=1

〈d′, ej〉Q〈�i, �j〉L

Now, equating d with ŷ and d′ with ŷ − α̂, we get

yi = −
N∑

j=1

〈ŷ − α̂, ej〉Q〈βi, βj〉R −

−
N∑

j=1

〈ŷ − α̂, ej〉Q〈�i, �j〉L

= −eT
i GQ(ŷ − α̂) − eT

i FQ(ŷ − α̂)

where G is the Grammian of the βis and F is the Grammian
of the lis. Note that since the �is are linearly independent
F is invertible. In more compact form we have

ŷ = −(GQ + FQ)(ŷ − α̂)

or finally we have that

(I + GQ + FQ)ŷ = (GQ + FQ)α̂. (II.2)

By rewriting I+GQ+FQ = (Q−1+F +G)Q and since F

and Q are positive definite and G is positive semidefinite
the matrix (I + GQ + FQ) is invertible and we find ŷ

as linear function of the data α̂. This ŷ is the smoothed
estimate of the data α̂. Using ŷ we can then calculate both
the optimal control and the optimal initial condition. We
summarize with the following theorem.

Theorem 2.1: Let

ẋ = Ax + bu, y = cx

be a controllable and observable linear system with initial
data x(0) = x0 and let a data set be given as

D = {(ti, αi) : i = 1, · · · , N}

and assume that ti > 0 and let T = tN . Let the cost function
be given as

J(u, x0) =

∫ Tf

0

u2(t)dt + (ŷ − α̂)T Q(ŷ − α̂) + xT
0 Rx0

where Q and R are positive definite matrices. The vector ŷ

has components

yi = y(ti) = ceAtix0 +

∫ ti

0

ceA(ti−s)bu(s)ds

and the vector α̂ has components αi. Minimizing J over u ∈
L2[0, t] and x0 ∈ Rn we have that the optimal smoothed
data is given by

ŷ = (I + GQ + FQ)−1(GQ + FQ)α̂, (II.3)

the optimal control is given by

u =

N∑
i=1

〈[I + (I + GQ + FQ)−1(GQ + FQ)]α̂, ei〉Q�i

(II.4)
and the optimal initial condition is given by

x0 =
N∑

i=1

〈[I + (I + GQ + FQ)−1(GQ + FQ)]α̂, ei〉Qβi

(II.5)

III. INTERPOLATING SPLINES WITH INITIAL DATA

For interpolating splines we are required to find a control
that drives the output y through the points in the data set
D. This can be expressed in terms of additional constraints
of the form

αi = 〈βi, x0〉R + 〈�i, u〉L.

The goal is thus to find a control and an initial condition
that minimizes

J(u, x0) =

∫ Tf

0

u2(t)dt + xT
0 Rx0

subject to the constraints. Just as for smoothing splines we
define the Hilbert space to be

H = L2[0, Tf ] × Rn.

Now the affine variety of constraints is given by

Vα̂ = {(u; x0) : αi = 〈βi, x0〉R + 〈�i, u〉L}

Here the goal is to find the point in Vα̂ of minimum norm.
The procedure is much the same as for smoothing splines.
We first must verify that Vα is nonempty. This follows from
the hypothesized controllability of the linear system. We
construct the V ⊥

0 and construct the intersection

V ⊥

0 ∩ Vα̂,

which contains a single point.
After some calculation we have

V ⊥

0 = {(u′; x′) : u′ =

N∑
i=1

τi�i, x
′ =

N∑
i=1

τiβi}.

After some more calculation we have that the optimal u is
in fact given by

u =

N∑
i=1

eT
i (F + G)−1α̂�i
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and the optimal initial condition is given by

x0 =
N∑

i=1

eT
i (F + G)−1α̂βi.

This is just a slight generalization of the construction given
in [11] and hence the details are left out.

For cubic splines the classical construction reduces to
solving a system of equations of the form Ax = b where A

is tridiagonal and of course this a much faster procedure. In
[13] the construction of interpolating splines is reduced to
solving banded matrices. However, in both cases additional
constraints are required to make the problem have a unique
solution. With the procedure developed here the additional
constraints are unnecessary because of the optimization.
Neither the classical cubic splines nor the procedure de-
veloped in [13] can easily handle the optimal initial data.

IV. SMOOTHING AND ESTIMATION FOR PROBLEMS WITH

ADDITIONAL HARD CONSTRAINTS

In a series of papers Willsky and coauthors [1], [2]
and Krener [4] considered an estimation problem based on
a stochastic boundary value problem. In this section we
consider a similar problem in which the smoothing spline
is generated by linear system for which there are hard
constraints. The constraints may occurs as boundary values
but they may also occur as fixed internal values or even as
linear operator constraints on the solution. We will show
that many of these problems can be formulated and solved
with the machinery that we have established. The basic idea
is that we have a data set in which each data point is of the
form αi = f(ti) + εi where f(ti) is deterministic and the
εi is the value of random variable. The goal is to produce
a curve (the spline) that better approximates f(t). This is,
of course, a standard statistical assumption, [12].

We begin by considering a general boundary value prob-
lem. Let the boundary condition be given by

Φx(0) + Ψx(T ) = h (IV.1)

where we let h ∈ Rk. This, of course, includes the classical
two point boundary value formulations and other problems
of interest. We note that since

x(Tf ) = eATf x(0) +

∫ Tf

0

eA(Tf−s)bu(s)ds

the specific dependence on x(Tf ) can be removed and the
boundary constraint simply becomes

Px(0) + Ψ

∫ Tf

0

eA(Tf−s)bu(s)ds = h, (IV.2)

where
P = Φ + ΨeATf .

Note that if there is any solution to IV.1 then by the
controllability hypothesis there is a solution to IV.2. We
hypothesize that there is at least one solution of IV.1.

We now define the Hilbert space to be

H = L2[0, Tf ] × Rn × RN

with norm

‖(u; x0; y)‖2 =

∫ Tf

0

u2(t)dt + xT
0 Rx0 + yT RNy.

We define the constraint variety to be

Vh = {(u; x; d) : di = 〈βi, x〉R + 〈�i, u〉L,

Px + Ψ
∫ Tf

0 eA(Tf−s)bu(s)ds = h}.

We first prove the following lemma.
Lemma 4.1: V0 is a closed subspace of H.

Proof: The mapping

(u; x) → Ψ

∫ Tf

0

eA(Tf−s)bu(s)ds + Px

, with domain L2[0, Tf ] × Rn is continuous and hence the
subspace

W = {(u, x) ∈ L2[0, Tf ] × Rn : Px

+ Ψ

∫ Tf

0

eA(Tf−s)bu(s)ds = 0}

is closed. Now the mapping from W to RN defined by

di = 〈βi, x〉R + 〈�i, u〉L

is continuous and hence we appeal to the closed graph
theorem to finish the proof. �

We now construct V ⊥
0 .

Lemma 4.2:

V ⊥

0 = {(u′; x′; d′) :

x′ = −
N∑

i=1

〈d′, ei〉Qβi + R−1PT λ,

u′ = −
N∑

i=1

〈d′, ei〉Q�i + (ΨeA(Tf−t))T λ}

for some λ ∈ Rk.
Proof: The first part of the construction is exactly the same
as in subsection II-B and from there we have

V ⊥

0 = {(u′; x′; d′) : 〈x′ +
N∑

i=1

〈d′, ei〉Qβi, x〉 +

+〈u′ +
N∑

i=1

〈d′, ei〉Q�i, u〉 = 0}.

Now the relationship does not hold for all x and u but only
for those x and u for which equation IV.2 holds. Multiplying
by λT , λ ∈ Rk, we can rewrite equation IV.2 as

〈R−1PT λ, x〉R + 〈(ΨeA(Tf−t))T λ, u〉L = 0. (IV.3)

From this we conclude that

x′ +

N∑
i=1

〈d′, ei〉Qβi = R−1PT λ
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and

u′ +
N∑

i=1

〈d′, ei〉Q�i = (ΨeA(Tf−t))T λ,

and the lemma follows. �

It remains to construct the intersection Vh ∩ (V ⊥
0 + p)

to find the optimal point. This construction is technically
more complicated than the simple smoothing spline but the
technique is identical.

The unique point in the intersection is defined as the
solution of the following system of four equations in the
unknowns u, x0, y and λ, obtained by identifying x and x′

with x0, d with ŷ, and d′ with ŷ − α̂ .

u = −
N∑

i=1

〈ŷ − α̂, ei〉Q�i + bT eAT (Tf−t)ΨT λ (IV.4)

x0 = −
N∑

i=1

〈ŷ − α̂, ei〉Qβi + R−1(Φ + ΨeATf )T λ (IV.5)

h = Px0 +

∫ Tf

0

ΨeA(Tf−s)bu(s)ds (IV.6)

yi = 〈βi, x0〉R + 〈�i, u〉L (IV.7)

We begin by eliminating x0 and u from equation IV.7 by
substituting equations IV.4 and IV.5. After some manipula-
tion we have

yi = eT
i G(ŷ − α̂) − eT

i F (ŷ − α̂) + βT
i PT λ

+

∫ Tf

0

�i(s)b
T eAT (Tf−s)ΨT dsλ

Since βi = R−1eAT ticT let

β = R−1(eAT t1cT , · · · , eAT tN cT ) = R−1E

to obtain

ŷ = −G(ŷ − α̂) − F (ŷ − α̂) + ET R−1PT λ + Λλ,

where

Λ =

∫ Tf

0

l(s)bT eAT (Tf−s)ΨT ds.

We will now use equation IV.6 to obtain a second
equation in λ and ŷ.

h = P
[
−

N∑
i=1

〈ŷ − α̂, ei〉Qβi +

+ R−1PT λ
]

+

+

∫ Tf

0

ΨeA(Tf−s)b
[
−

N∑
i=1

〈ŷ − α̂, ei〉Q�i +

+ bT eAT (Tf−s)ΨT λ
]
ds

We make the following observation:
N∑

i=1

〈ŷ − α̂, ei〉Qβi =

N∑
i=1

βie
T
i Q(ŷ − α̂)

= R−1EQ(ŷ − α̂)

We now define

M =
N∑

i=1

∫ Tf

0

ΨeA(Tf−s)b�i(s)e
T
i dsQ

and hence
N∑

i=1

∫ Tf

0

ΨeA(Tf−s)b〈ŷ − α̂, ei〉Q�i(s)ds = M(ŷ − α̂).

Using these two constructions we then have

h = P (−R−1EQ(ŷ − α̂)) + PR−1PT λ−
−M(ŷ − α̂) + ΨΓΨT λ,

(IV.8)

where Γ is the controllability Grammian

Γ =

∫ Tf

0

eA(Tf−s)bbT eAT (Tf−s)ds.

By combining these two expressions linking ŷ and λ

gives the following linear equation system(
I + (G + F )Q −ET R−1PT − Λ
PR−1EQ − M PR−1PT + ΨΓΨT

) (
ŷ

α

)
=

=

(
(G + F )Qα̂

h + (PR−1EQ + M)α̂

)

(IV.9)
where Γ is the controllability Grammian

Γ =

∫ Tf

0

eA(Tf−s)bbT eAT (Tf−s)ds.

Using equation IV.9 we can solve for ŷ and for λ. These
values can be used in equations IV.4 and IV.5 to uniquely
determine the optimal control and the the optimal initial
condition. As before we see that the optimal estimate of
the data is obtained independently of the control.

Remark:The matrix E is a Grammian like matrix that
determine if the intimal data can be recovered from sampled
observational data. There are no known necessary and
sufficient conditions for E to have full rank. This problem
was studied originally by Smith and Martin and was re-
ported in [10]. It is also interesting that the controllability
Grammian arises in the formulation of the equation IV.8.
The reason for the controllability Grammian to appear is
more obvious when one considers the simpler problem of
optimally moving between affine subspaces. This problem is
studied in [17].

A. Multiple Point boundary value problems

In this case we have a hard constraint of the form

Φ1x(r1) + · · · + Φkx(rk) = h

and the data set

D = {(ti, αi) : i = 1, · · · , N}

and we assume without loss of generality that

{ri : i = 1, · · · , k} ∪ {ti : i = 1, · · · , N} = ∅.
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Fig. 2. Periodic splines: Here the boundary value is given by x(0) =
x(Tf ). Depicted are y(t) (solid) and αi, i = 1, . . . , 4 (stars).

We again make the assumption that there exist at least one
set of vectors ai such that

Φ1a1 + · · · + Φkak = h.

We construct the variety of constraints and note that we can
replace x(ri) with

eArix(0) +

∫ ri

0

eA(ri−s)bu(s)ds.

Thus the constraint depends only on u and x0. We use the
Hilbert space

H = L2[0, Tf ] × R
n × R

N .

The constraint variety is

Vh = {(u; x0; ŷ) : yi = 〈βi, x0〉 + 〈�i, u〉L,∑k

i=1 Φie
Arix0 +

∑k

i=1

∫ Tf

0 Φi�ri
(s)u(s)ds = h}.

As before we construct the orthogonal complement to V0

and then determine the intersection

Vh ∩ (V ⊥

0 + (0; 0; α̂)).

We leave this construction to the reader.

V. EXAMPLE

In this section we will present some examples of prob-
lems that fit this generalized boundary value formulation.
We let

A =

(
0 1
0 0

)
, b =

(
0
1

)
, c =

(
1 0

)
, Tf = 1

t1 = 0.2, t2 = 0.3, t3 = 0.5, t4 = 0.7, t5 = 0.8

α̂ =
(

0.8 0.2 0.5 1 0.3
)T

Q = 104I5, R = 104I2, (Ip = p × p identity matrix).

Example 1: Periodic splines
We first study the situation when we insist that x(0) =
x(Tf ). In this case we have that Φ = −Ψ = I2, while
h = 0. The solution is depicted in Figure 2.
Example 2: Two point boundary value problems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. Boundary value problem: (1, 1)x(0) − (1, 1)x(Tf ) = 1.

We now let the boundary constraint be encoded by Φ =(
1 1

)
, Ψ = −Φ, h = 1, which implies that the

boundary values are given by the set

{(x0, xTf
) | (1, 1)x0 − (1, 1)xTf

= 1}.

The solution is given in Figure 3.
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