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Abstract— The logarithm of joint spectral radius of a set of
matrices coincides with Lyapunov exponent of corresponding
linear inclusions. Main results about Lyapunov exponents of
discrete time and continuous time linear inclusions are pre-
sented. They include the existence of extremal norm; relations
between Lyapunov indices of dual inclusions; maximum prin-
ciple for linear inclusions; algebraic criteria for stability of
linear inclusions; algorithm to find out the sign of Lyapunov
exponents. The main result is extended to linear inclusions
with delays. The Aizerman problem for three-ordered time-
varying continuous time systems with one nonlinearity is solved.
The Perron-Frobenius theorem is extended for three-ordered
continuous time linear inclusions.

I. INTRODUCTION

Assume A is a bounded set of n×n real matrices. Consider
inclusions in continuous time

dx

dt
∈ { Ax : A ∈ A }, (1)

and in discrete time

xk+1 ∈ { Axk : A ∈ A }. (2)

The problem of stability of inclusions (1), (2) arises in
the theory of absolute stability of feedback systems with
time-varying nonlinearities satisfying sector conditions [1].
In [2], [1], [3] it has been shown that asymptotically stable
inclusions possess Lyapunov functions. In [4], [5], [3] one
can find some approximations to these Lyapunov functions.
The variational approach (based on Pontryagin maximum
principle) to the problem of absolute stability for continuous-
time systems has been derived in [6], where the so-called
dual system appeared for the first time. The discrete-time
counterpart has been published in [2], but the original and the
dual systems were presented in time with opposite directions
(that is usual for Pontryagin maximum principle), which
makes difficult the application of this result.

The problem of the existence of Lyapunov functions on
the boundary of the set of absolute stability in the parameter
space remained open until 1988. In [7], [8]. the Lyapunov
exponents were introduced:

ρ(A) = sup
x(0) �=0

lim
t→∞

ln ‖x(t)‖
t

(3)

for inclusion (1), and
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ρ(A) = sup
x0 �=0

lim
k→∞

ln ‖xk‖
k

(4)

for inclusions (2).
For the case of system (2) with finite set A =

{A1, . . . , Aq} the Lyapunov exponent (4) coincides with
logarithm of the joint spectral radius

ρ̂(A1, . . . , Aq) = lim
m→∞max

σ
‖Aσ(1) . . . Aσ(m)‖1/m,

where σ runs the set of all substitutions σ: {1, . . . , m} →
{1, . . . , q}. This notion was introduced in [9] much earlier
than there appeared papers on absolute stability mentioned
above. Recently it attracts special attention [10], [11], [12]
partly due to its close relation to the regularity exponent of
Daubeshies wavelets.

In the sequel we assume that inclusions (1), (2) are irre-
ducible, that is, the set of matrices A has no common proper
invariant subspace. For the case of inclusions arising in the
theory of absolute stability the property of irreducibility
is equivalent to controllability and observability. Stability
of any inclusion may be reduced to stability of a set of
irreducible inclusions of less dimensions.

For any bounded set of matrices A we have ρ(A) =
ρ(ex conv cl(A)) [7], [8], where ex conv cl(A) is the set of
extreme points of the closure of convex hull of A. Therefore
withou loss of generality in the sequel we assume that the
set A is closed.

In the next two sections we list some of main results on
Lyapunov exponents.

II. DISCRETE TIME

In this section we use definition (4) for Lyapunov exponent
ρ(A). All the results are based on the following fundamental
property of an irreducible set of matrices.

Theorem 2.1: [7] There exists a norm v in R
n such that

maxA∈A v(Ax) = eρ(A)v(x) for all x ∈ R.
Due to this property function v has been called the

extremal norm. For irreducible sets of matrices A any
inclusion (2) on the boundary of the domain of stability (i.e.
when ρ(A) = 0) has Lyapunov functions, and one of such
functions is the extremal norm v(·).

According to theorem 2.1 for any initial value x0 there
exists a solution {xk}∞k=0 of inclusion (2) such that v(xk) =
eρ(A)v(x0) for all k ≥ 0. Consider the sequence yk =
e−ρ(A)xk. Then v(yk) ≡ v(x0). Denote by S the unit sphere
with norm v: S = {x : v(x) = 1}. Denote by Ω the
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set of all ω−limit points of all sequences {yk} with initial
values x(0) ∈ S. Then Ω ⊆ S. It is easy to see that the
set M = conv(Ω) is closed and invariant with respect to
inclusion zk+1 ∈ {e−ρ(A)Azk : A ∈ A}, and moreover,
M = e−ρ(A)conv(AM : A ∈ A). The set M does not
belong to any hyperplane in R

n due to irreducibility of the
set A. Hence, M is a level set of a norm w in R

n. This
norm was introduced and investigated in [11]. It satisfies the
property w(Ax) ≤ eρ(A)w(x) for all A ∈ A and all x ∈ R

n.
As opposite to the norm v there exist points x such that the
last inequality is strict for all A ∈ A.

The problem of the existence of Lyapunov functions of
particular type (piecewise-linear, quadratic, forms of even
degree, polynomials) for asymptotically stable inclusions (2)
has been studied for a long time (see for example [1]).
The following statement shows that for asymptotically stable
inclusions there always exists a Lyapunov function of the
form of even degree.

Corollary 2.1: [7] If inclusion (2) is asymptotically stable
(i.e. ρ(A) < 0) then it has a Lyapunov function, which is a
form of even degree.

Now consider dual inclusions. Denote A∗ = {A∗ : A ∈
A }. The inclusions (2) with the sets of matrices A and A∗

are called dual. Their Lyapunov indices coincide:
Theorem 2.2: [7] ρ(A) = ρ(A∗).
Denote ∂v(x) the subdifferential of convex function v at

point x. Assume det A �= 0 ∀A ∈ A. Denote v∗(l) =
max{(l, x) : v(x) = 1} the dual norm. The following
result is a kind of Pontryagin maximum principle for linear
inclusions (2).

Lemma 2.1: [7] For any x ∈ R
n there exist A ∈

A and l ∈ ∂v(x) such that v(Ax) = eρ(A)v(x) and
max{(l, A−1Bx) : B ∈ A} = v(x)v∗(l).

In fact for all x there exists l ∈ ∂v(x) such that the
matrix A satisfying the last equality is unique. Function v
being a convex function is differentiable almost everywhere.
Moreover, if v is differentiable at x, l = v′(x), and matrix
A = A(x) is defined as in lemma 2.1, then [7] function v is
differentiable at Ax and its derivative is equal to (A(x)∗)−1l.
Hence, if for any vector x0 we know that v is differentiable
at x and we know l = v′(x), then we can easily construct a
sequence {xk} such that v(xk) = eρ(A)kv(x0) for all k ≥ 0.

An application of this result for the problem of absolute
stability of systems with one time-varying nonlinearity is
given below.

Define the set of matrices

Aa = {A + bνc∗ : 0 ≤ ν ≤ µ} (5)

where A is n × n−matrix, b, c are n−vectors, pair (A, b)
is controllable, pair (A, c) is observable and µ is a positive
number.

Note that the Lyapunov indices of the sets of matrices Aa

and {A, A + bµc∗} coincide.
Corollary 2.2: [13] For all y ∈ R

n there exists a vector
l ∈ ∂v(y) such that for the solution of system

xk+1 = Axk + b(c, xk)uk,
lk+1 = A−1 ∗lk − A−1;∗c(A−1b, lk)uk(1 + µ(c, A−1b)−1,

uk = µ
2 (1 + sign[(c, xk)(A−1b, lk)])

k = 0, 1, 2, . . .
(6)

with initial value x0 = y, l0 = l, for some positive constants
C1, C2 and for all k = 0, 1, 2, . . . the following inequalities
are true

e−kρ(Aa)‖xk‖/‖y‖ ∈ [C1, C2],
ekρ(Aa)‖lk‖/‖l‖ ∈ [C1, C2]

.

It is important that both equations in (6) (for x and for l)
are written in the same time direction, which is an essential
improvement as compared with results of [2]. To find out an
extremal solution (i.e. a solution with Lyapunov exponent
ρ(Aa)) it is sufficient to find for any nonzero vector x(0) a
vector l(0) from the conditions of the corollary 2.2. But this
problem is not solved up to now.

The following result is trivial but important.
Proposition 2.1: [7] The following statements are equiv-

alent.
(i) Inclusion (2) is asymptotically stable.
(ii) Inclusion (2) is exponentially stable.
(iii) Lyapunov index ρ(A) is negative.
There is a nice reformulation of negativeness of the

Lyapunov exponent ρ(A) in terms of pointwise properties
of sequences in time and frequency domains.

Define the sequence wj = c∗Aj−1b if j > 1, w0 = −µ−1.
Theorem 2.3: [13] The Lyapunov exponent ρ(Aa) is non-

negative (positive) if and only if there exist bounded (re-
spectively, exponentially tending to zero at ±∞) nonzero
sequences {f1

k}∞k=−∞, {f1
k}∞k=−∞ such that for all k =

0,±1,±2, . . .

f1
k =

∞∑
j=0

wjf
2
k−j , f1

k · f2
k = 0.

Note that {f2
k} ∈ l2 then {f1

k} ∈ l2 and the first equality
means that the ratio of the Fourier transform of {f1

k} and the
Fourier transform of {f2

k} is given function which is equal
to the Fourier transform of {wj}.

One of the main results of the section is given in the
next theorem, which describes a procedure to compute the
sign of the Lyapunov exponent (4) for the case of finite set
A = Aq = {A1, . . . , Aq}.

Theorem 2.4: [7] Assume Z0 is a set of vertices of a
rectangular in R

n; zero is an interior point of conv(Z0). For
any k = 0, 1, 2, . . . denote Z ′

k = {Ax : A ∈ A, x ∈ Zk},
Zk+1 is the set of extremal points of a convex hull of the
the finite set of points Zk ∪ Z ′

k.
The Lyapunov exponent ρ(Aq) is positive if and only if

Zk ∩ Z0 = ∅ for some k > 0.
If Lyapunov exponent ρ(Aq) is negative, then Zk = Zk+1

for some k > 0. If Zk = Zk+1 for some k > 0 then the
Lyapunov exponent ρ(Aq) is not positive.

If eγZk ⊆ Zk+1 for a number γ and some k ≥ 0, then
ρ(Aq) ≤ γ.
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If ρ(Aq) �= 0 then the procedure gives the sign of ρ(Aq)
in a finite number of steps. If ρ(Aq) = 0 the values γ in
the last statement may be taken arbitrary close to zero for
sufficiently big k. For any given positive number ε in a finite
number of steps we get the answer ρ(Aq) < ε.

The Lyapunov exponent of the set {eβA : A ∈ Aq} is
equal to ρ(Aq) + β. Hence, we can get an estimation of the
number ρ(Aq) more precisely by varying parameter β.

At the end of the section we present a couple of alge-
braic properties of Lyapunov exponent. The first one is an
extension to discrete-time case and generalization of criterion
published in [1]. The second one is based on a new idea.

Theorem 2.5: [7] The Lyapunov exponent ρ(A) is neg-
ative if and only if there exist a number m ≥ n and a
n × m-matrix L of rank n such that for any matrix A ∈ A
there exists a m×m-matrix Γ which satisfies the following
conditions:

(i) A∗L = LΓ;
(ii) all elements of matrix Γ are nonnegative and the sum

of elements of each row is less than one.
The following result allows calculating the Lyapunov

exponent of Aq using tenzor products. Denote by A ⊗ B
the tenzor product of n × n and m × m matrices A and B:
(A ⊗ B)(i−1)m+k,(j−1)m+l = Ai,jBk,l for all 1 ≤ i, j ≤ n,
1 ≤ k, l ≤ m. Note that the dimension of A⊗B is nm×nm.
The power A⊗k is the tenzor product of matrix A by itself
k times.

Theorem 2.6: For any integer p consider matrix

D =
q∑

i=1

A
⊗(2p)
i .

If λ is the maximal eigenvalue of D, α = λ1/(2p), κ =
q1/(2p) then α/κ ≤ eρ(Aq) ≤ α.

The value κ tends to one as p → ∞. Hence, the last
inequality provides an estimate to the Lyapunov exponent
up to any given accuracy for sufficiently large p. Still, the
dimension of matrix D increases so rapidly with increasing
p that even for moderate values of n = 3, 4, p = 5, 6 the
computational burden of calculation the spectral radius of D
becomes too high.

III. CONTINUOUS TIME

In this section we assume that Lyapunov exponent is
defined as in (3). Introduce function [8]

v(y) = sup(limt→∞e−ρ(A)t‖x(t)‖),
where the supremum is taken over the set of solutions x(t)
of inclusion (1) with initial data x(0) = y.

The following result is a direct analogue of the theorem
2.1. It provides a basis for all the results of this section.

Theorem 3.1: [8] The following statements are true.
(i) v is a norm in R

n.
(ii) For any solution x(·) of inclusion (1) and any t ≥ 0

we have v(x(t)) ≤ eρ(A)tv(x(0)).

(iii) For any n−vector y there exist a solution x(·) of in-
clusion (1) such that x(0) = y and v(x(t)) = eρ(A)tv(x(0))
for all t ≥ 0.

Function v is called extremal norm. It is a Lyapunov
function for stable inclusions (1) including the boundary case
ρ(A) = 0.

We can get an analogue of the norm w and invariant set
M described in the previous section. Denote by S a unit
sphere with norm v: S = {x ∈ R

n : v(x) = 1}. For any
vector x(0) ∈ S consider solution x(·) of inclusion (1) such
that v(x(t)) = eρ(A)tv(x(0)) for all t ≥ 0. Denote y(t) =
e−ρ(A)tx(t). Then y(t) ∈ S for all t ≥ 0. Denote by Ω the set
of all ω−limit points of all functions y(·) with x(0) ∈ S. The
set M = conv(Ω) is closed, convex, invariant with respect
to inclusion dz/dt ∈ {e−ρ(A)A : A ∈ A} and does not
belong to any hyperplane in R

n. Moreover, conv{x(t) :
x(0) ∈ M} = eρ(A)tM for any t ≥ 0. Hence, M is a level
set of a norm w which is a direct analogue of the norm [11].
Norm w has the property w(x(t)) ≤ eρ(A)tw(x(0)) for any
t ≥ 0 and any solution x(·) of inclusion (1). But it fails to
have property (iii) of theorem 3.1.

The following proposition is trivial but important. The
last statement shows that asymptotically stable inclusion
(1) always has a Lyapunov function which is a form of
(sufficiently high) even degree.

Proposition 3.1: [8] The following statements are equiv-
alent.

(i) Inclusion (1) is asymptotically stable.
(ii) Inclusion (1) is exponentially stable.
(iii) Lyapunov index ρ(A) is negative.
(iv) There exists a form of even degree, which is a

Lyapunov function of inclusion (1).
Now consider the dual inclusion, that is, the inclusion (1)

with the set of matrices A∗ = {A∗ : ∈ A}. Denote by
ρ(A∗) its Lyapunov exponent.

Theorem 3.2: [8] Lyapunov exponents ρ(A) and ρ(A∗)
coincide.
(compare with theorem 2 in [14]). The next theorem is an
analogue of Pontryagin maximum principle for continuous
time linear inclusions (1).

Theorem 3.3: [8] For any nonzero x ∈ R
n there exists

l ∈ ∂v(x) such that max{(l, (A−ρ(A))x), : A ∈ A } = 0.
For any l ∈ ∂v(x), A ∈ A we have (l, (A − ρ(A))x) ≤ 0.

Note that for almost all x the subdifferential ∂v(x) consists
of a single vector l = v′(x).

Now consider some algebraic criteria for stability of
inclusions (1). We need

Definition 3.1: An m × m-matrix Γ satisfies condition
U(λ) if all off-diagonal elements of matrix Γ are nonnega-
tive, and the sum of all elements of each row of matrix Γ is
less than λ.

The following statement is a generalization of criterion
[1].

Theorem 3.4: [8] For any positive ε there exists an integer
number m ≥ n and an n × m−matrix L such that the
linear span of rows of L is R

n, and for any matrix A ∈ A

2334



there exists a m × m−matrix Γ such that matrix Γ satisfies
condition U(ρ(A) + ε) and A∗Γ = LΓ.

In particular, this criterion may be reformulated as follows.
Theorem 3.5: The Lyapunov exponent ρ(A) is negative if

and only if there exist an integer m ≥ 1, a number λ < 0,
a positive definite diagonal matrix H and n × m−matrix G
such that for any matrix A ∈ A there exist a m×n−matrix
A′ and m × m−matrix A′′ such that matrix

Γ(A) =
(

H−1AH + GA′ −H−1A∗HG + GA′′

A′ A′′

)

(7)
satisfies condition U(λ).
If we denote Γ̃(A) = diag{H, I}Γ(A), G̃ = HG, then
criterion of theorem 3.5 amounts to n bilinear and m
linear scalar inequalities with respect to unknown entries of
matrices G̃, H , A′, A′′. To check these inequalities we can
use suitable numerical methods.

For a particular set of matrices Aa (5) we have the
following equivalent statements from different areas of math-
ematics.

Theorem 3.6: [19] The following statements are equiva-
lent.

(i) The Lyapunov exponent ρ(Aa) is negative.
(ii) There is only one bounded on (0,∞) and continuous

solution y(·) to the equality

y(t){− 1
µ

y(t) +
∫ ∞

0

(c, eAτ b)y(t + τ)dτ} = 0 ∀t ≥ 0,

and this solution is trivial: y ≡ 0.
(iii) Let ξ be a stationary stochastic process, P{ξ(t) =

0} ≡ P{ξ(t) = 1} ≡ 1/2. There exists an invariant with
respect to system

dx/dt = (A + bξc∗)x + ξb

stochastic measure with bounded support.
(iv) For all solutions of system

dx/dt = Ax + b(c, x)u,
dl/dt = −A∗l − c(b, l)u,

u = µ{1 + sign[(c, x)(b, l)]}/2

it follows x(t) → 0 as t → ∞.
Finally we point out the relation between Lyapunov ex-

ponent of a continuous time inclusion (1) and Lyapunov
exponent of the discrete time first approximation. This result
coupled with theorem 2.4 may be used to prove stability of
continuous time inclusion (1).

For any positive number τ denote by ρτ (A) the discrete
time Lyapunov exponent (4) of inclusion (2) with the set of
matrices {eAτ : A ∈ A}.

Theorem 3.7: [15] There exists a constant C such that
ρτ (A) ≤ τρ(A) ≤ ρτ (A) + Cτ2 for all τ ∈ (0, 1).

IV. INCLUSIONS WITH DELAYS

Given a positive number τ and a bounded closed set of
pairs of real n×n−matrices A consider the following linear
inclusion:

dx

dt
(t) ∈ {A1x(t) + A2x(t − τ) : (A1, A2) ∈ A}. (8)

The state of the inclusion is a pair (xt, x(t)), where xt =
{x(t+θ) −τ ≤ θ < 0} ∈ L2(τ, 0) and x(t) ∈ R

n. The initial
data for this inclusion is a pair (x0, x(0)) ∈ L2(−τ, 0)×R

n.
Introduce the Lyapunov exponent [16]

ρ(A) = sup(x0,x(0)) �=0 lim
t→∞

ln(‖xt‖L2(−τ,0) + ‖x(0)‖)
t

.

where supremum is taken over all solutions of inclusion (8)
with nonzero initial data (x0, x(0)). Due to the boundedness
of the set A the number ρ(A) is finite.

We assume as above, that the set of pairs of matrices A is
irreducible, that is, there is no proper subspace in R

n which
is invariant with respect to inclusion (8) (i.e. with respect to
any matrix of any pair (A1, A2) ∈ A).

The following theorem generalizes the results of theorem
3.1 to the case of inclusions with delay (8).

Theorem 4.1: [16] There exists a norm w in L2(−τ, 0)×
R

n such that
(i) for any solution (xt, x(t)) of inclusion (8) we have

w(xt, x(t)) ≤ eρ(A)tw(x0, x(0)) for all t ≥ 0;
(ii) for any initial data (y0, y) there exists a solution

solution (xt, x(t)) of inclusion (8) such that y0 = x0,
y = x(0) and w(xt, x(t)) = eρ(A)tw(x0, x(0)) for all t ≥ 0.

V. AIZERMAN PROBLEM FOR ONE TIME-VARYING

NONLINEARITY

Consider a feedback system with one nonlinearity

dx
dt = Ax + bξ, σ = c∗x,

ξ(t) = ϕ(t, σ),
(9)

where A, b, c are constant matrices of dimension n×n, n×1
and n × 1 respectively, and ϕ is a function from the set

M = {ϕ : 0 ≤ ϕ(t, s)
s

≤ µ ∀s �= 0, t ≥ 0}.
where µ is given positive number.

Aizerman problem consists of finding necessary and suffi-
cient conditions in the space of parameters (A, b, c, µ) for
absolute stability of system (9) in class M (i.e. global
asymptotic stability of system (9) with all nonlinearities
ϕ ∈ M).

It is easy to see that system (9) is absolute stable in class
M if and only if inclusion (1) with the set of matrices A =
Aa = {A + bνc∗ : 0 ≤ ν ≤ µ} is asymptotically stable,
which is equivalent in turn to the inequality ρ(Aa) < 0.

The first solution to this problem for two-dimensional
systems (i.e. if n = 2) was presented in [17] (see also a
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more general result in [18]). It may be formulated in terms
of parameters A, b, c, µ or as follows.

Theorem 5.1: [19] For two-ordered systems (n = 2) the
Lyapunov exponent ρ(Aa) is negative if and only if the
following system is stable

dx/dt = Ax + b(c, x)
µ

2
{1 + sign[(c, x)(b, l)]}.

This theorem provides the extremal solutions for system (9).
Namely, these solutions correspond to nonlinearity ξ(t) =
σ(t) if sign[(c, x)(b, l)] ≥ 0 and ξ(t) = 0 otherwise.

For three-ordered systems it is much more difficult to find
out such extremal solutions.

Denote by I the identity matrix. Introduce shorthand ρ =
ρ(Aa). Consider the following system

dx/dt = (A − ρI)x + b(c, x)u,
dl/dt = −(A − ρI)∗l − c(b, l)u,
u = µ

2 {1 + sign[(c, x)(b, l)]}.
(10)

Denote by S the unit sphere of extremal norm v: S = {x :
v(x) = 1}. Then for any solution of equation (10) we have
v(x(t)) ≤ v(x(0)) and for any x(0) ∈ S there exists a
solution x(·) of equation (10) such that x(t) ∈ S for all
t ≥ 0. These solution are called extremal. The values x(t +
τ) of extremal solutions x(·) with t > 0 do not intersect
and depend continuously on initial values x(τ) if τ > 0.
The set S is two-dimensional, and hence it is reasonable to
suggest that each extremal solution tends to a constant point
or (orbitarily) to a periodic extremal solution.

The proof of this statement (and the following theorem) is
rather long, technical [19] and uses auxiliary seminorms and
careful study of the geometry of the set S. The final result
occurs to be simple. Denote B = A + bµc∗.

Theorem 5.2: [19] Assume n = 3 and matrices A − ρI
and B − ρI are Hurwitz (i.e. all their eigenvalues have
negative real parts). Then there exists a solution (x0(·), l0(·))
of system (10) and a positive number T such that

(i) (x0(t), l0(t)) = (−x0(t+T ),−l0(t+T )) for all t ≥ 0;
functions (c, x0(·)) and (b, l0(·)) have only one (and simple)
root on the interval [0, T );

(ii) for any extremal solution of equation (10) with x(0) ∈
S we have x(t) → {x0(s) : 0 ≤ s < 2T} as t → ∞.
The convergence in (ii) is in Hausdorf metrics. This theorem
states that provided matrices A − ρI and B − ρI are
Hurwitz all the extremal solutions of system (10) tend to
an antiperiodic solution, which has exactly two switches on
a half of a period.

This property allows formulation of a criterion for absolute
stability of system (9) in class M.

Theorem 5.3: [19] System (9) with n = 3 is absolute
stable in class M if and only if matrices A and B are Hur-
witz and for any nonnegative numbers p, q, r the following
inequality holds

det(e−r(p+q)eApeBq + I) �= 0.
This result also allows to get an analogue of Perron-

Frobenius theorem for linear third-order inclusions.

Theorem 5.4: [19] Assume n = 3 and differential inclu-
sion

dx/dt ∈ {Dx : D = A + bνc∗, ν ∈ [0, µ]}
has a sharp invariant cone. Then the Lyapunov exponent of
this inclusion is equal to the maximal real eigenvalue of
matrices A and A + bµc∗.

Consider some computational issues. Assume the roots
{µ1, µ2, µ3} and poles {λ1, λ2, λ3} of function 1+W (s) =
1 + (c, (A − sI)−1b) are all different. Then

W (s) =
α1

s − λ1
+

α2

s − λ2
+

α3

s − λ3

for some complex numbers α1, α2, α3. In a partic-
ular basis the triple (A, b, c) is presented in a form
A = diag {λ1, λ2, λ3}, b = col(−1,−1,−1) and c =
col(α1, α2, α3).

Lemma 5.1: [19] The matrix B in this basis has a form

B = K−1diag {µ1, µ2, µ3}K,

where K = {kij}3
i,j=1, kij = αi

λi−µj
.

Denote Λ1(p) = diag {eλjp}3
j=1, Λ2(q) =

diag {eµjq}3
j=1. Theorem 5.3 takes the following form

Theorem 5.5: [19] Assume n = 3. System (9) is absolute
stable in class M if and only if matrices A and B are
Hurwitz and the following inequality holds:

min
p≥0, q≥0 r≥0

det(K) det(Λ2(q)K + KΛ1(−p)er(p+q)) �= 0.

There are no similar results for inclusions of bigger
dimension n ≥ 4.

REFERENCES

[1] A. P. Molchanov and E. S. Pyatnitsky,“Lyapunov functions which
determine necessary and sufficient conditions of absolute stability
of nonlinear time-varying control systems,” Automation and Remote
Control, no. 3, pp. 63–73, no. 4, pp. 5–15, no. 5, pp.38–49, 1986.

[2] A. P. Molchanov,“Lyapunov functions for nonlinear discrete control
systems,” Automation and Remote Control, no. 6, pp. 26–35, 1987.

[3] V. I. Opoitsev,“The inversion of the principle of contraction mapping,”
Proceedings of mathematical sciences (in Russian), vol. 31, no. 4,
pp.169–198, 1976.

[4] A. M. Mejlakhs,“On the synthesis of stable automatic control sys-
tems with parametric disturbances,” Automation and Remote Control,
no. 10, pp. 5–16, 1978.

[5] A. M. Mejlakhs,“On the existence of Lyapunov functions for linear
systems with parametric disturbances,”in the monograph Complex
control systems, Kiev, Vyscha shkola, pp.11–15, 1980.

[6] E. S. Pyatnitsky,“ Absolute stability of time-varying nonlinear sys-
tems,” Automation and Remote Control, no. 1, pp. 5–15, 1970.

[7] N. E. Barabanov,“On the Lyapunov exponents of discrete inclusions,”
Automation and Remote Control, no. 2, pp. 40–46, no. 3, pp. 24–29,
no. 5, pp.17–24, 1988.

[8] N. E. Barabanov,“On the absolute characteristic exponent of a class
of linear time-varying systems of differential equations,” Siberian
Mathematical Journal, no. 4, pp.12–22, 1988.

[9] G.-C. Rota and G. Strang, “A note on the joint spectral radius,”
Indag. Math., vol. 22, pp. 379–381, 1960.

[10] F. Wirth,“The generalized spectral radius and extremal norms,” Linear
Algebra and Its Applications, vol. 343, pp. 17–40, 2002.

[11] V. Yu. Protasov,“Joint spectral radius and invariant sets of linear
operators,” Fundamental and Applied Mathematics, vol. 2, no. 1, pp.
205–231, 1996.

2336



[12] V. D. Blondel, S. Gaubert and J. N. Tsitsiklis,“Approximating the
spectral radius of sets of matrices in the max-algebra is NP-hard,”
IEEE Transactions on Automatic Control, vol. 45, no. 9, pp. 1762–
1765, 2000.

[13] N. E. Barabanov,“On the problem of absolute stability of impulse
automatic control systems,” Automation and Remote Control, no. 8,
pp. 28–37, 1988.

[14] T. Hu, Z. Lin, R. Goebel and A. Teel,“Stability regions for saturated
linear systems via conjugate Lyapunov functions,” Proceedings of 43rd
IEEE CDC, Bahamas, pp.5499–5504, 2004.

[15] N. E. Barabanov,“Method for computation of Lyapunov exponent of
differential inclusions,” Automation and Remote Control, no. 4, pp.
53–58, 1989.

[16] N. E. Barabanov,“On the existence of an extremal norm of a class of
linear differential equations with a delay,” Differential Equations (in
Russian), vol. 34, no. 3, pp. 294–297, 1998.

[17] A. Yu. Levin,“On the stability of solutions of equations of the second
order,” Doklady Akademii Nauk SSSR (in Russian), vol. 141, no. 6,
pp.1296-1301, 1961.

[18] N. E. Barabanov,“Stability of two-ordered differential inclusions,”
Differential Equations (in Russian), vol. 26, no. 10, pp. 1817–1818,
1990.

[19] N. E. Barabanov,“On the Aizerman conjecture for time-varying three-
ordered systems,” Differential Equations (in Russian), vol. 29, no. 10,
pp. 1659–1668, 1993.

2337


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




