
Object Tracking by Scattered Directional Sensors

Kurt Plarre and P. R. Kumar

Abstract— We address the problem of how to track objects
moving at constant velocity using only directional sensors in
a wireless sensor network. We model the field of vision of
each directional sensor as a line, with the measured data being
the times at which sensors detect objects crossing their lines.
The network is initially deployed by scattering sensors, and
the locations and directions in which the sensor point are also
unknown a priori, in addition to the trajectories of the objects.

The estimation problem involves the solution of a highly
non-convex optimization problem. However we develop a three
phase algorithm to solve the problem. It first chooses a
coordinate basis adapted to the motions of the first two objects.
Then it localizes the sensors with respect to that basis, and
refines it as new objects arrive. Finally it transforms the basis
if the GPS positions of six of the deployed nodes are known.

I. INTRODUCTION

Sensor networks integrate many tasks that were tradition-
ally separated: Sensing, computation, communication, and
actuation. They present a rich and challenging environment
for the design of application algorithms, and it is accordingly
useful to address classes of such problems.

In [1] we have studied the problem of detecting a static
heat source with temperature sensors, which is a representa-
tive of problems using omnidirectional sensors to localize a
stationary object.

In this paper we study a somewhat opposite problem
which is representative of scenarios where highly directional
sensors are deployed to track moving objects. A certain
region is monitored by a network of directional sensors
whose positions and orientations themselves are initially
unknown; see Figure 1. The region is crossed sporadically
by objects assumed to be moving at constant velocity at least
within a bounded domain of interest. The task of the network
is to estimate the trajectory of each object.

We model the “field of vision” of sensors as lines. A sens-
ing node detects an object when it crosses its corresponding
line. For each object, the data available to the sensors are thus
the times at which sensors detect the object. The locations of
the sensors and the directions in which the sensors point are
unknown a priori. The sensor directions are also estimated

This material is based upon work partially supported by NSF under Con-
tract Nos. NSF ANI 02-21357 and CCR-0325716, USARO under Contract
Nos. DAAD19-00-1-0466 and DAAD19-01010-465, DARPA/AFOSR under
Contract No. F49620-02-1-0325, DARPA under Contact Nos. N00014-0-1-
1-0576 and F33615-0-1-C-1905, and AFOSR under Contract No. F49620-
02-1-0217.

Kurt Plarre is with the Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, 1308 W. Main St, Urbana, Illinois, 61801,
USA. plarre@uiuc.edu

P. R. Kumar is with the Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, 1308 W. Main St, Urbana, Illinois, 61801,
USA. prkumar@uiuc.edu

si

oj

t
oj
si

R

Fig. 1. Problem setup, and naming conventions.

as part of the problem. Section II presents a more detailed
description of the setup.

The above described estimation problem involves the
minimization of a non-convex function. We devise a three
phase algorithm to solve this problem. In the first phase, the
motions of the first four objects, and the sensor directions
of six sensors are estimated. This problem can be solved in
closed form (Section IV-A). During the second phase, the
parameter estimates are updated, every time a new object
is detected. The third phase is optional and consists of
transforming the estimated parameters from an “internal”
representation to the “real world” coordinate system, if the
locations of six sensors are known somehow, (e.g., through
GPS), or two trajectories are known.

To prolong the lifetime of the network, we make use of the
“sleep state,” a low power state in which sensors consume a
small fraction of the power when “awake.” After the first four
objects have been detected, most sensors go to sleep. Only a
few “sentinel nodes” remain awake. When a sentinel sensor
detects a new object, it wakes up all other nodes (Section
IV-B).

A survey on sensor networks can be found in [2]. Object
tracking and sensor localization are important problems in
sensor networks and have received much attention in the
literature (e.g., [3], [4]). Optimization problems in sensor
networks have also been studied (e.g., [1], [5]). The use
of information provided by detected objects to improve
the accuracy of localization schemes has also been pro-
posed, although in a different context. In [4] connectivity
information and information provided by objects detected
by omnidirectional sensors are used to determine, for each
sensor, a region in which it is located.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuB11.4

0-7803-9568-9/05/$20.00 ©2005 IEEE 3123

II. PROBLEM DESCRIPTION

A network of directional sensors {s1, s2, . . . sm} monitors
a certain region R of the plane. Sporadically, objects moving
at constant velocity cross R. The size of each object is
assumed negligible. A sensor detects an object when it
crosses its “line of sight,” which is simply modeled as a line,
although half-lines and finite line segments can be handled
by the algorithm without modification. See Figure 1.

Sensors are initially deployed by scattering them in R.
Their locations and the directions of their sensors are un-
known a priori. We do not assume any distribution on the
locations of the sensors, or the directions of their lines of
sight, except for certain non-degenerancy conditions.

The goal of the system is to determine the orientations
of the sensors, and the motions of all the objects, in some
coordinate system. Later on, if at least six sensors know their
exact locations (for example, using GPS), or two trajectories
are known, then it is additionally possible to obtain the
absolute positions with respect to the externally specified
coordinate system.

As mentioned above, there are degenerate situations in
which the proposed algorithm cannot be used, for example,
if all sensor lines are perfectly parallel. We disregard such
situations, and design the algorithm for a generic “good”
case. Also, only one object can be handled by the algorithm,
at a time, which is the case when objects arrive infrequently.
Alternatively, one could assume that there is some separate
mechanism, say the signature of an object, that allows
sensors to associate crossing times with objects.

Note that the assumption that objects move in straight lines
is not a limitation, since time samples can be ordered and
split into segments, and the method applied to each segment,
thus approximating the object trajectory by a piecewise affine
function. This however requires that each time segment cross
a certain number of sensors.

Let us denote the equation of the line of sight of sensor
si as

xsi

asi
+ ysi

bsi
= 1 or āsixsi + b̄si

ysi = 1 .

The movement of object oj will be modeled as

xoj (t) = vx
oj

t + x0
oj

,

yoj (t) = vy
oj

t + y0
oj

.

The time at which sensor si detects object oj is thus

toj
si

=
1 − āsix

0
oj

− b̄siy
0
oj

āsiv
x
oj

+ b̄siv
y
oj

+ νoj
si

,

where ν
oj
si is assumed to be zero mean noise, with ν

oj
si

independent of νol
sk

for (si, oj) �= (sk, ol).

If we associate with each t
oj
si the variable

τoj
si

:= (āsiv
x
oj

+ b̄siv
y
oj

)toj
si

+ (āsix
0
oj

+ b̄siy
0
oj

) − 1 ,

then the estimation of the object motion and sensor direction
parameters can be posed as one of minimizing the cost

function

J =
∑
i,j

(
τoj
si

)2
, (1)

where, for simplicity, the arguments of J , which are the
unknown parameters, are not shown explicitly.

To show the difficulty of minimizing (1), we give the
expanded form of J , for three sensors and two objects:

J =[(
ās1v

x
o1

+ b̄s1v
y
o1

)
to1
s1 +

(
ās1x

0
o1

+ b̄s1y
0
o1

) − 1
]2 +[(

ās1v
x
o2

+ b̄s1v
y
o2

)
to2
s1 +

(
ās1x

0
o2

+ b̄s1y
0
o2

) − 1
]2 +[(

ās2v
x
o1

+ b̄s2v
y
o1

)
to1
s2 +

(
ās2x

0
o1

+ b̄s2y
0
o1

) − 1
]2 +[(

ās2v
x
o2

+ b̄s2v
y
o2

)
to2
s2 +

(
ās2x

0
o2

+ b̄s2y
0
o2

) − 1
]2 +[(

ās3v
x
o1

+ b̄s3v
y
o1

)
to1
s3 +

(
ās3x

0
o1

+ b̄s3y
0
o1

) − 1
]2 +[(

ās3v
x
o2

+ b̄s3v
y
o2

)
to2
s3 +

(
ās3x

0
o2

+ b̄s3y
0
o2

) − 1
]2

.
(2)

Note that this is a non-convex function of

{(āsi , b̄si , v
x
oj

, x0
oj

, vy
oj

, y0
oj

); 1 ≤ i ≤ 3, 1 ≤ j ≤ 2} ,

the sensor and object parameters.
In addition the number of parameters to determine is very

large. For example, even for four objects and six sensors, the
number of parameters is 4×4+6×2 = 28. Only the global
minimum is an acceptable solution, and only an exhaustive
search could ensure that one finds it.

To estimate the minimum of (1) we devise a novel two
phase algorithm with an optional third phase that corresponds
to the final coordinate transformation. We will develop a
recursive algorithm by which the data provided by four
objects and six sensors is used to determine an initial
solution. The data provided by other sensors and objects is
recursively incorporated into the algorithm, thus improving
the accuracy of the solution. Details are given in Sections IV-
A and IV-B. Section V presents simulations of the algorithm
for an example application, and Section VI presents an actual
implementation.

III. THE MAIN IDEAS

It is evident that finding the global minimum of a non-
convex cost function, such as (1), directly, is a very difficult
task. We thus divide the process into two phases. In the first
phase, we use the data obtained from only m sensors and n
objects, where m and n are chosen in such a way that (1)
can be set exactly to zero, independent of the noise. Solving
the resulting equation provides an initial estimate of the
parameters. In the second phase, as new data is incorporated
into the problem, the sensor and object parameter estimates
are refined, using a local improvement algorithm.

We note that since we do not know the “real world”
coordinate system we must choose a “custom” system in
which to state the equations and thus localize the sensor
rotations, and the motions of the objects. Later on we will
use the locations of six sensors, if known, to transform the so
obtained parameters to the correct representation. This can
be done at any point of the algorithm.

3124

Since we are free to choose our coordinate system, we
will choose it in such a way that it simplifies the estimation
problem. In fact, if the coordinate system is not carefully
chosen, the resulting equations cannot be solved in closed
form. We thus have the task of finding the right coordinate
system in which to write the equations, and then finding a
procedure to solve them.

We choose the “adaptive” coordinate system in the fol-
lowing way:

1) The motion of the first object is used to fix the
“horizontal x−axis,” with its position at time t = 0
as the origin, and speed normalized to 1. As we will
see in Section IV, this fixes all parameters of o1 in the
custom system.

2) The motion of the second object is used to fix the
“vertical y − axis,” with its speed also normalized
to 1. However, since its position at time t = 0 is
unknown, two parameters corresponding to o2 will be
undetermined (Section IV).

To determine the number of sensors, and object measure-
ments, needed to find the initial estimates, i.e., n and m, we
reason in the following way:

1) Each remaining object, oj , used in the first phase will
add four unknown parameters to the problem: vx

oj
, x0

oj
,

vy
oj

, and y0
oj

.
2) Each sensor si included in this phase will add two

unknown parameters to define its “line.”
3) On the other hand, the number of data measurements

obtained from the detection of the first n objects by m
sensors is nm.

Considering that we need at least the same number of data
variables as the number of unknown parameters to solve the
equations, we need:

nm ≥ 4(n − 2) + 2 + 2m ,

which is satisfied by m = 6, and n = 3. We thus need at
least six sensors and three objects to initialize the system.
However we will see in Section IV-A that the resulting
equation is quadradic, and we will need the data from a
fourth object to resolve the sign of the root.

IV. ALGORITHM

In this section we present the estimation algorithm. An
actual implementation is presented in Section VI.

A. First phase

During this first phase, after deployment, all sensors are
awake, waiting for the first four objects. The data collected
from these objects is used to form an initial estimate of the
object and sensor parameters.

As mentioned above, the first object is used to fix the
“horizontal x−axis” of the adaptive coordinate system. The
point on the plane at which o1 was at time t = 0, is chosen as
the origin of the coordinate system. The direction of motion
determines the axis, and the scale is given by assuming that
the speed of o1 is 1.

(x̃0
o2

, ỹ0
o2

)

(0, 0)
t = 0

t = 0

o2

o1

Fig. 2. Adaptive coordinate system obtained from the trajectories of the
fi rst two objects.

The second object fixes the vertical axis. The direction of
motion of o2 determines the “vertical y− axis,” while the
scale is given by assuming that its speed is 1. The point at
which o2 was at time t = 0 is unknown. We call this point
(x̃0

o2
, ỹ0

o2
). These parameters are unknown even with respect

to the adaptive basis and must be estimated as part of the
problem.

In our coordinate system, we know that the line corre-
sponding to sensor si passes through the points (to1

si
, 0) and

(x̃0
o2

, ỹ0
o2

+ to2
si

). Thus, the equation for si in this system is
determined as

ỹsi

x̃si − to1
si

=
ỹ0
o2

+ to2
si

x̃0
o2

− to1
si

. (3)

Thus, subject only to (x̃0
o2

, ỹ0
o2

) being unknown, each sen-
sor’s line is determined.

Now we turn to the second object. Reordering, (3) we
obtain

(x̃0
o2

− to1
si

)ỹsi = (ỹ0
o2

+ to2
si

)x̃si − to2
si

ỹ0
o2

− to1
si

to2
si

. (4)

Consider now the third object o3. Assume that the equation
for o3 in our coordinate system is

x̃o3(t) = ṽx
o3

t + x̃0
o3

, ỹo3(t) = ṽy
o3

t + ỹ0
o3

.

We know o3 is detected by sensor si at time to3
si

. Combining
this information with (4), we obtain

(x̃0
o2

− to1
si

)(ỹ0
o3

+ ṽy
o3

to3
si

) =
(ỹ0

o2
+ to2

si
)(x̃0

o3
+ ṽx

o3
to3
si

) − to1
si

ỹ0
o2

− to1
si

to2
si

. (5)

Let M be a matrix such that its i−th row is

Mi,∗ :=
[
x̃0

o2
− to1

si
, to3

si
(x̃0

o2
− to2

si
) ,−(ỹ0

o2
+ to2

si
) ,

−to3
si

(ỹ0
o2

+ to2
si

) , (to1
si

ỹ0
o2

+ to1
si

to2
si

)
]

. (6)

Likewise, let v := [ỹ0
o3

, ṽy
o3

, x̃0
o3

, ṽx
o3

, 1]T. Then, from (5),
we can write the linear system Mv = 0. For this system to
have a nontrivial solution, M must be column rank deficient.
Let us rewrite M in term of its columns. For this, let us first
define

ē := [1, 1, . . . , 1]T ,

T̄o1 := [to1
s1 , to1

s2 , . . . , to1
sm

]T ,

T̄o2 := [to2
s1 , to2

s2 , . . . , to2
sm

]T ,

T̄o3 := [to3
s1 , to3

s2 , . . . , to3
sm

]T ,

T̄ o2
o1

:= [to1
s1 to2

s1 , to1
s2 to2

s2 , . . . , to1
sm

to2
sm

]T ,

T̄ o3
o1

:= [to1
s1 to3

s1 , to1
s2 to3

s2 , . . . , to1
sm

to3
sm

]T ,

T̄ o3
o2

:= [to2
s1 to3

s1 , to2
s2 to3

s2 , . . . , to2
sm

to3
sm

]T .

3125

With these definitions we can write M as

M =
[
x̃0

o2
ē − T̄o1 , x̃0

o2
T̄o3 − T̄ o3

o1
, −ỹ0

o2
ē − T̄o2 ,

−ỹ0
o2

T̄o3 − T̄ o3
o2

, ỹ0
o2

T̄o1 + T̄ o2
o1

]
(7)

Since M is column rank deficient, there exist real numbers
α1, α2, α3, α4, α5, such that

α1(x̃0
o2

ē − T̄o1) + α2(x̃0
o2

T̄o3 − T̄ o3
o1

)+
α3(−ỹ0

o2
ē − T̄o2) + α4(−ỹ0

o2
T̄o3 − T̄ o3

o2
)+

α5(ỹ0
o2

T̄o1 + T̄ o2
o1

) = 0 . (8)

Collecting terms, and defining

M̄ :=
[
ē, T̄o1 , T̄o3 , T̄o2 , T̄

o3
o1

, T̄ o3
o2

, T̄ o2
o1

]
,

v̄ :=
[
α1x̃

0
o2

− α3ỹ
0
o2

, α5ỹ
0
o2

− α1, α2x̃
0
o2

− α4ỹ
0
o2

,

−α3,−α2,−α2,−α4, α5]
T

,

we can rewrite (8) as M̄v̄ = 0. Let [θ1, θ2, θ3, θ4, θ5, θ6]T

be the solution to this equation, with α5 := 1. Then

α1x̃
0
o2

− α3ỹ
0
o2

= θ1 , −α3 = θ4 ,

α5ỹ
0
o2

− α1 = θ2 , −α2 = θ5 ,

α2x̃
0
o2

− α4ỹ
0
o2

= θ3 , −α4 = θ6 ,

Solving this nonlinear system one obtains

x̃0
o2

= α5θ3+α4θ2+α2α3
2α2α5

±√
(α5θ3+α4θ2+α2α3)2+4α2α5(α4θ1−α3θ3)

2α2α5
.

(9)

To resolve the sign in (9) we make use of the data provided
by the fourth object o4. We simply choose the sign that best
explains the detection times to4

si
.

Once the value of x̃0
o2

is known, remaining parameters can
be easily computed.

B. Second phase

Once the parameters for the first four objects and six
sensors have been estimated, most sensors go to sleep. A few
sentinel sensors stay awake and sensing. When a sentinel
sensor detects an object, it wakes up the complete sensor
network. All sensors then wait for the object and register the
time at which they detect it. It is important to note that we
allow for the possibility that some sensors will not detect
a given object, since they may wake up too late. This is
illustrated in Figure 3.

Each sensor has at most one detection time for the new
object. To form an estimate of the trajectory of this object, at
least four measurements are necessary. To gather this infor-
mation, sensors share their measurements (if they have one),
and collect measurements from other nodes. The obtained
data are used to refine the estimates of all parameters.

For each sk, and object ol, let Osi
sk

:= {l|si knows tol
sk
},

and Ssi
ol

:= {k|si knows tol
sk
}. The cost at si is then given

by

Jsi =
∑
k

∑
l∈Osi

sk

[
āsi
sk

vx,si
ol

tol
sk

+ āsi
sk

x0,si
ol

+

b̄si
sk

vy,si
ol

tol
sk

+ b̄si
sk

y0,si
ol

− 1
]2

.

(10)

oj oj

si sk

wake up

(a) (b)

si

sk

Fig. 3. Some objects are not detected by all sensors: (a) sk wakes up
too late to detect oj , (b) si only covers a half-line, while sk has a limited
range.

where āsi
sk

, b̄si
sk

, vx,si
ol

, x0,si
ol

, vy,si
ol

, and y0,si
ol

are the estimated
parameters at si. We use a block coordinate descent method
(see [6]) to minimize Jsi . Sensor si performs one step of
Newton’s algorithm for the parameters of each sensor and
object for which it has enough data.

For example, for each sensor sk, for which it has enough
data, si computes

Asi
sk,ol

:= vx,si
ol

tol
sk

+ x0,si
ol

, Dsi
ok,ol

:= āsi
sk

tol
sk

,

Bsi
sk,ol

:= vy,si
ol

tol
sk

+ y0,si
ol

, Esi
ok,ol

:= b̄si
sk

,

Csi
ok,ol

:= āsi
sk

, F si
ok,ol

:= b̄si
sk

tol
sk

.

With these definitions we can rewrite (10) as

Jsi =
∑
k

∑
l∈Osi

sk

[
Asi

sk,ol
āsi
sk

+ Bsi
sk,ol

b̄si
sk

− 1
]2

=
∑
l

∑
k∈Ssi

ol

[
Dsi

ok,ol
vx,si
ol

+ Csi
ok,ol

x0,si
ol

+

F si
ok,ol

vy,si
ol

+ Esi
ok,ol

y0,si
ol

− 1
]2

.
(11)

Let vsi
sk

:=
[
āsi
sk

, b̄si
sk

]T
. The gradient of Jsi with respect to

vsi
sk

is

gsi
sk

:=

⎡
⎣ ∑

l∈Osi
sk

(Asi
sk ,ol

āsi
sk

+ Bsi
sk,ol

b̄si
sk

− 1)Asi
sk,ol

,

∑
l∈Osi

sk

(Asi
sk,ol

āsi
sk

+ Bsi
sk,ol

b̄si
sk

− 1)Bsi
sk,ol

⎤
⎦

T

,

and the Hessian is given by

Hsi
sk

:=

⎡
⎢⎢⎣

∑
l∈Osi

sk

(Asi
sk,ol

)2
∑

l∈Osi
sk

Asi
sk,ol

Bsi
sk,ol

∑
l∈Osi

sk

Bsi
sk,ol

Asi
sk,ol

∑
l∈Osi

sk

(Bsi
sk,ol

)2

⎤
⎥⎥⎦ .

Applying Newton’s method to (10) with respect to āsk
and

b̄sk
, we obtain the recursion

vsi
sk

← vsi
sk

− (
Hsi

sk

)−1
gsi

sk
.

Similar expressions are obtained, if Newton’s method is
applied to (10), with respect to vx,si

ol
, x0,si

ol
, vy,si

ol
, and y0,si

ol
.

3126

0 1
0

1

Fig. 4. Setup for simulations. Sensors are shown as circles along the
bottom of the fi gure; their directions are shown by lines. The dark parallel
horizontal lines indicate the boundaries of the region of interest. Objects
move from left to right but not along parallel trajectories.

V. SIMULATIONS

We have conducted simulations, followed by an imple-
mentation. In this section, we present the results of our pre-
liminary simulation studies. In the next section, we describe
the results of the experimentation.

Figure 4 shows the setup for the simulations. A section
of a passage (say, a road, bridge, or tunnel) is monitored
by a collection of m sensors located along one side of the
passage. The length of the section is L, and its width is W .
In the simulations, for simplicity L = W = 1. Sensors are
located regularly, except for noise in their positions, and the
angles of their lines of sight are approximately 63 degrees.
The exact angles of the sensors must be recovered from the
measurements, as part of the problem. We have purposely
avoided situations in which sensors are “close to vertical” or
“close to horizontal,” since such situations produce numerical
problems. The measurement errors are uniformly distributed
in [−0.01, 0.01]. Objects enter the section from the left and
exit it from the right. The speed of the objects is chosen
uniformly and independently in the range [0.01, 0.1], while
their trajectories are fixed by choosing random entry and
exit points. To ensure that the two first trajectories are
not parallel, they are fixed: the first trajectory entering and
exiting at the bottom, and the second trajectory entering at
the bottom and exiting at the top (thus maximizing the angle
between them).

The estimation of the sensor and object parameters is done
by minimizing the quadratic cost function (1), although the
quality of the resulting estimates is assessed by the cost
defined by

(2m̄ + 4n̄)Jp :=
m̄∑

i=1

[
(âsi − asi)2 + (b̂si − bsi)2

]
+

n̄∑
j=1

[
(v̂x

oj
− vx

oj
)2 + (x̂0

oj
− x0

oj
)2+

(v̂y
oj

− vy
oj

)2 + (ŷ0
oj

− y0
oj

)2
]

,

where m̄, and n̄ are the number of sensors and objects,
respectively. The behavior of Jp for the first 100 objects

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Object number

A
ve

ra
ge

 J
p

Fig. 5. Average estimation error (Jp), as a function of the number of
detected objects, for 100 different runs of the algorithm.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Simulation number

Jp

Fig. 6. Error in parameter estimates given by the adaptive basis algorithm
(crosses), and a randomly restarted local improvement algorithm (dots).

(after the passage of the initial four objects necessary
to initialize the algorithm), for 100 different runs of
the algorithm is shown in Figure 5. The curve shown
corresponds to an average over the 100 runs of the
simulation. It is clear from Figure 5 that the quality of the
estimation improves with the number of detected objects,
which is desirable. It is important to mention the importance
of the refining step to improve the performance of the
algorithm when measurements are noisy.

To illustrate the importance of the first phase of the
algorithm, we compare in Figure 6 the error in the parameter
estimates, Jp, for the first six sensors and four objects, given
by the adaptive basis algorithm (crosses), versus that of a ran-
domly restarted local improvement algorithm (dots). In each
simulation, the local improvement algorithm was restarted at
100 different points, and the best parameter estimates chosen,
as the ones minimizing (1). The random initialization points
were obtained in the same fashion as the actual parameters of
sensors and objects. No noise in the data was considered. It
can be seen in Figure 6 that the local improvement algorithm
is unable to find the optimum parameter estimates, in contrast
to the adaptive basis algorithm.

3127

VI. IMPLEMENTATION

The algorithm was next implemented on Berkeley mica2
[7] motes provided with light sensors, and lasers that were
pointed at the sensors. Sensors were installed on one side of a
track and lasers on the other side. A toy car was run through
this sensor field, acting as “object.” The track was 16 feet
long and 8 feet wide. The speed of the car was approximately
constant, equal to 1.41 feet per second. A picture of the setup
can be seen in Figure 7.

As the car runs along the track, it interrupted the lasers.
The interruption times were recorded by the sensors. Six
sensors {s1, ..., s6} were used. Each sensor transmitted the
recorded time to a seventh sensor s7, which performed the
computations. After four runs, s7 estimated the angles of the
sensors, and the entry and exit points of the last run. After
that, for every new run, s7 updated the estimated parameters
and computed the entry and exit points of the latest run.
Figure 8 shows the estimated trajectories for four runs in an
experiment with a total of 32 runs.

Note that the algorithm is able to estimate the trajectories
with reasonable accuracy, and is numerically stable, even
after a large number of objects has passed.

To perform the coordinate transformation, the first two
trajectories were fixed. The first car entered at 0 and exited
at 0, while the second car entered at 0 and exited at 8. This
improved the accuracy of the estimation.

VII. CONCLUDING REMARKS

We have studied the application of directional sensors to
the detection and tracking of moving objects. The estimation
of the object trajectory is a non-convex optimization problem.
To overcome the difficulty of local minima, as well as the
large number of parameters, a two phase, adaptive-basis
optimization algorithm was designed.

The use of the adaptive-basis algorithm in the first phase
of the algorithm is of key importance, since large errors in
the estimated sensor directions, produced by the use of a
suboptimal method in the first phase, cannot be corrected by
the algorithm in the second phase.

Fig. 7. Picture of testbed. Sensors can be seen on the right, while lasers
are on the left. The car that was used as “object” is in the center.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

Run 4

0 2 4 6 8 10 12 14 16

0

2

4

6

8

Run 13

0 2 4 6 8 10 12 14 16

0

2

4

6

8

Run 22

0 2 4 6 8 10 12 14 16

0

2

4

6

8

Run 31

Fig. 8. Runs 4, 13, 22, and 31 from an experiment with a total of 32 runs.
Top circles are lasers, bottom circles are sensors. Sensor lines are shown
with dotted lines. Note that the sensor lines shown were estimated from
the data. The domain is a rectangle marked with a thick borderline. The
actual trajectory is shown as a left-to-right thick line. Estimated entry and
exit points are indicated with triangles.

We have presented simulations comparing the performance
of the adaptive-basis algorithm to that of a randomly initial-
ized local improvement algorithm.

We have also presented the results of an actual implemen-
tation using Berkeley motes and lasers.

VIII. ACKNOWLEDGMENTS

We thank Roberto Solis Robles for his implementation
of this algorithm on the mica2 motes, and for ensuring the
proper time synchronization of the sensors.

REFERENCES

[1] Kurt Plarre and P. R. Kumar, “Increasingly correct message passing
algorithms for heat source detection in sensor networks,” in 1st
IEEE Int. Conf. on Sensor and Ad hoc Communications and Networks
(SECON 2004), Santa Clara, CA, October 2004, pp. 470–479.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications Magazone, vol. 40, no. 8,
pp. 102–114, 2002.

[3] Juan Liu, Maurice Chu, Jie Liu, Jim Reich, and Feng Zhao, “Distributed
state representation for tracking problems in sensor networks,” in 3rd
Int. Conf. on Information Processing in Sensor Networks (IPSN 2004),
Berkeley, CA, April 2004, pp. 234–242.

[4] A Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem, “Distributed
online localization in sensor-networks using a moving target,” in 3rd
Int. Conf. on Information Processing in Sensor Networks (IPSN 2004),
Berkeley, CA, April 2004, pp. 61–70.

[5] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in 3rd Int. Conf. on Information Processing in Sensor Networks
(IPSN 2004), Berkeley, CA, April 2004, pp. 20–27.

[6] Dimitri P. Bertsekas, Nonlinear Programming, Athena Scientifi c,
Belmont, Mass., USA, 1995.

[7] Online reference: http://www.xbow.com.

3128

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

