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Abstract—This paper considers 3-dimensional cross-track
control for a class of underactuated autonomous vehicles.
A control strategy is presented that guarantees global
κ-exponential stability of the cross-track error to straight line
trajectories in three dimensional space. The results are based
on a Line-of-Sight guidance algorithm and stability results
are proven using nonlinear cascaded systems theory. Globally
κ-exponentially stabilizing controllers are synthesized using the
technique of sliding mode with eigenvalue decomposition, and
the performance of the proposed control strategy is evaluated
by a case study with an AUV.

I. INTRODUCTION

The route of an autonomous vehicle can compactly be
described in terms of way-points, with the reference trajec-
tory made up of the straight lines interconnecting the way-
points. A way-point is usually a fixed point in space, given
in Cartesian coordinates in some inertial reference frame.
The way-point description leads to a attractive decoupling
between the geometric task of controlling the position and
orientation of the autonomous vehicle and the dynamic task
of controlling the speed of the vehicle ([1]). The way-points
can be decided without having to specify the desired speed
profile of the vehicle, and the speed profile can then be
changed without having to recompute the way-points. This
would not have been the case if the reference trajectory
was given in terms of a time-dependent trajectory. In this
paper we exploit this feature and use a Line-of-Sight (LOS)
guidance law to achieve stability to the reference trajectory
while the desired forward speed of the vehicle can be
controlled to any nonzero value.
Guidance algorithms based on the LOS principle was

initially developed for controlling the flight path of missiles,
but similar ideas was soon adopted for path control of other
mechanical systems. LOS algorithms are commonly used
for way-point tracking and cross-track control. When the
objective is to converge a set of way-points in the order they
are given, the problem is referred to as way-point tracking
and when the distance to the reference trajectory, the cross-
track error, is to be controlled, the control problem is referred
to as cross-track control.
Over the last decade, way-point tracking and cross-track

control for marine surface vessels, autonomous underwater
vehicles and wheeled mobile robots have been studied by
numerous authors. Way-point tracking and cross-track con-
trol of underactuated marine surface vessels are studied in
[2] and [3]. Both papers utilize the LOS guidance principle
and controllers are designed to give the closed loop system
a cascaded structure. Stability is investigated and global

asymptotic stability and global κ-exponential stability of the
heading and cross-track error is proven.
LOS-based control of underactuated surface vessels are

also studied in [4] and [5]. In both papers, controllers
that globally asymptotically stabilizes the heading and surge
speed of the vessel are presented, but stability of the cross-
track error is not addressed.
[6] and [7] considers planar and 3D path following for

underactuated autonomous underwater vehicles respectively.
In both papers, the path tracking problem is described in
the Serret Frenet coordinate frame and nonlinear control
strategies are proposed that guarantees global asymptotic
convergence to the reference path. The planar path following
problem is also considered in [8]. Assuming no knowledge
of the curvature of the desired path, a nonlinear control
strategy that guarantees boundedness of the tracking error
is proposed.
[9] presents results on planar way-point tracking for au-

tonomous underwater vehicles. A controller is synthesized
using integrator backstepping and asymptotic convergence
to the desired way-point is proven. Multivariable sliding
mode control of low-speed autonomous underwater vehicles
is studied in [10]. Controllers for steering, diving and speed
are designed based on decoupled models and a LOS guidance
algorithm is used for path following.
Underactuation of mechanical systems often leads to non-

holonomic constraints on the acceleration of the system.
As pointed out in the famous paper by Brockett [11], a
large class of underactuated systems cannot be stabilized by
a continuously differentiable, time-invariant state feedback
control law, even if they are strongly accessible. This fact
prevents the control strategy presented in this paper, which
gives a time-invariant state feedback controller, from holding
at zero forward speed. However, in this paper we assume that
the forward speed is non-zero and address the underactuated
(straight) path following problem and not the nonholonomic
stabilization problem. Some results on stabilization of non-
holonomic systems in general are given in [12] and [13], and
for mobile robots in particular in [14], [15] and [16].
The purpose of this paper is to develop a control strategy

that guarantees global κ-exponential stability to straight-
line trajectories in three dimensional space, for a class of
underactuated autonomous vehicles. We seek to incorporate
the nice features of line of sight guidance, a guidance
method that is much used in practice, while also guaranteeing
stability of the cross-track error. Finally, the purpose is also
to show how nonlinear cascaded systems theory can be used
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to achieve a separation property, where the stability of the
overall system is not explicitly dependent on a particular
controller, but rather on the dynamical properties of the
closed loop system. This makes the obtained results more
general and easier extendable to other systems and other
controllers.
The outline of this paper is as follows: In Section II some

preliminaries are presented. In Section III the vehicle model
is presented and the control objective is defined. Section IV
presents the main stability results and Section V presents
a suitable controller based on the sliding mode principle.
Simulation results for the proposed control strategy applied
to an AUV is presented in Section VI.

II. PRELIMINARIES

Definition 1 (Global κ-exponential stability [17]).
The system

ẋ = f (t, x) , f(t,0) = 0 ∀ t ≥ t0 , x ∈ Rn

is globally κ-exponentially stable if there exists a class K
function κ(·) and a constant γ > 0 such that ∀x(t0) ∈ Rn

||x(t)|| ≤ κ(||x(t0)||)e−γ(t−t0) ∀t ≥ t0 ≥ 0

Result 1. Global κ-exponential stability is equivalent to
global uniform asymptotic stability (GUAS) plus local uni-
form exponential stability (LUES) ([18]).

III. THE SYSTEM MODEL AND CONTROL OBJECTIVE

We consider 3-dimensional cross-track control for a class
of underactuated mechanical systems; underactuated au-
tonomous vehicles, with independent control in surge, pitch
and yaw. In particular, we assume that the roll motion of
the vehicle can be neglected and that the dynamics of the
vehicle can be described by the 5-DOF model:

η̇ = J(η)ν (1a)

Mν̇ + C(ν)ν + (D + D(ν))ν + g(η) = Bττ (1b)

where η ∈ R5, ν ∈ R5 and τ ∈ R3 are given by

η = (x y z θ ψ)T ν = (u v w q r)T τ = (τ1 τ2 τ3)
T

Here, (x, y, z) is the inertial position, θ is the pitch angle and
ψ is the yaw angle. Furthermore, u is the surge velocity, v is
the sway velocity, w is the heave velocity, q is the pitch rate
and r is the yaw rate. Finally, τ1, τ2 and τ3 are independent
control inputs.
Moreover, J(η) is the kinematic transformation matrix,

M is the mass and inertia matrix, C(ν) is the Coriolis and
centripetal matrix, D and D(ν) are damping and friction
matrices, g(η) accounts for gravity and buoyancy and Bτ is
the actuator configuration matrix, where rank (Bτ ) = 3. The
mass and inertia matrix is assumed to be constant, symmetric
and positive definite, such that:

Ṁ = 0 and xT Mx = xT MT x > 0 ∀x ∈ R5\{0}

The differential kinematics (1a) relates the body fixed
velocities ν to the inertial velocities η̇. In particular, the
differential kinematics are given by ([19]):

ẋ = cosψ cos θu − sin ψv + cosψ sin θw (2)

ẏ = sin ψ cos θu + cosψv + sin θ sin ψw (3)

ż = − sin θu + cos θw (4)

θ̇ = q (5)

ψ̇ =
1

cos θ
r (6)

We place the origin of the inertial reference coordinate
system in the previous way-point with the z-axis pointing
down and the x-axis pointing towards the next way-point.
The y-axis is chosen to complete the right-handed coordinate
system. With this choice of reference coordinate system,
the y-position of the vehicle equals the horizontal cross
track error, the z-position equals the vertical cross-track
error and the x-axis corresponds to the desired straight-line
trajectory. The control objective is to force the autonomous
vehicle to track the straight-line trajectory interconnecting
two consecutive way-points, while maintaining a desired
non-zero, constant forward speed. In particular, if we define

η̃ �
(

0 y z θ ψ
)

ν̃ �
(

ũ v w q r
)

where the surge speed error ũ is defined as

ũ � u − ud (7)

the control objective is to find a smooth, time-invariant state
feedback control law τ = τ (η̃, ν̃) that makes the origin
(η̃, ν̃) = (0,0) globally κ-exponentially stable.
Remark: Note that by controlling the surge speed u, we

are not interested in controlling the x-position as a function
of time. Therefore, we impose no control objective on x.

IV. GLOBAL κ-EXPONENTIAL CROSS-TRACK
MANEUVERING

In this section we consider the cross-track error dynamics
and apply a LOS guidance algorithm. Using nonlinear cas-
caded systems theory, we prove global κ-exponential stability
of the cross-track errors y and z, provided that the surge
speed error dynamics and the LOS angle tracking error
dynamics are made globally κ-exponentially stable.
We pick a point that lies a constant distance ∆ > 0

ahead of the vehicle, along the trajectory. The line of sight
is the line joining the vehicle and the selected point. The
angles formed by the xy-plane projection and the xz-plane
projection of the line of sight and the x-axis of the reference
coordinate system, is referred to as the LOS angles. The
constant ∆ is referred to as the look-ahead distance. With
reference to Figure 1, the LOS angles are given by the
following two expressions:

θLOS = tan−1(
z

∆
) (8)

ψLOS = tan−1(
−y

∆
) (9)

Note that, we have used the same ∆ in both (8) and (9),
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Fig. 1. Illustration of LOS angles ψLOS and θLOS .

but they could generally be different. We choose the LOS
angles and their derivatives as reference input for the control
system, i.e.

θd = θLOS (10)

ψd = ψLOS (11)

qd = θ̇LOS =
∆

∆2 + z2
ż (12)

rd = ψ̇LOS cos θ = cos θ
∆

∆2 + y2
ẏ (13)

Furthermore, we define the tracking errors in pitch and yaw,
and the tracking errors in pitch and yaw rate as

θ̃ � θ − θd ψ̃ � ψ − ψd q̃ � q − qd r̃ � r − rd (14)

Applying definitions (7) and (14), (3-4) can be written

ẏ = sin(ψ̃ + ψd) cos(θ̃ + θd)(ũ + ud)

+ cos(ψ̃ + ψd)v + sin(θ̃ + θd) sin(ψ̃ + ψd)w (15)

ż = − sin(θ̃ + θd)(ũ + ud) + cos(θ̃ + θd)w (16)

By expanding the trigonometric functions of sums of angles
and factoring the result with respect to the tracking errors,
(15-16) can be written

ẏ = sin ψd cos θdud + cosψdv

+ sin θd sin ψdw + χT x̃ (17)

ż = − sin θdud + cos θdw + ωT x̃ (18)

where x̃ � (ũ θ̃ ψ̃)T , χT � (χ1 χ2 χ3)
T and ωT �

(ω1 ω2 ω3)
T . The individual components of the vectors χ

and ω are given by

χ1 = sin(ψ̃ + ψd) cos(θ̃ + θd)

χ2 =
sin θ̃

θ̃

(
− sin θd cos ψ̃ sinψdud

+ cos θd sin(ψ̃ + ψd)w
)

+
cos θ̃ − 1

θ̃

(
cos ψ̃ sin ψd cos θdud

+ sin θd cos ψ̃ sin ψdw
)

χ3 =
sin ψ̃

ψ̃

(
cosψd cos(θ̃ + θd)ud

− sinψdv + cos θ̃ sin θd cosψdw
)

+
cos ψ̃ − 1

ψ̃
(sin ψd cos θdud + cosψdv

+ sin θd sin ψdw)

ω1 = − sin(θ̃ + θd)

ω2 = − sin θ̃

θ̃
(cos θdud + sin θdw)

+
1 − cos θ̃

θ̃
(sin θdud − cos θdw)

ω3 = 0

Note that lim
x→0

sin x
x

= 1 and lim
x→0

cos x−1
x

= 0, such that χ

and ω are well-defined.
Inserting (8) and (9) into (17) and (18), yields

ẏ = − y√
y2 + ∆2

∆√
z2 + ∆2

ud +
∆√

y2 + ∆2
v

− yz√
y2 + ∆2

√
z2 + ∆2

w + χT x̃ (19)

ż = − z√
z2 + ∆2

ud +
∆√

z2 + ∆2
w + ωT x̃ (20)

With a slight abuse of notation, suppose there exists con-
trollers such that the two closed loop systems

ξ̇ = f ξ(t, ξ) (21)

ζ̇ = f ζ(t, ζ) (22)

where

ξ �
(

x̃T q̃ r̃ v w
)T

ζ �
(

ũ θ̃ q̃ w
)T

are globally κ-exponentially stable. We can then state the
following two propositions.

Proposition 1. Let ud > 0 be the constant desired surge
speed. If ζ = 0 is made a globally κ-exponentially stable
equilibrium point of (22), then (z, ζ) = (0,0) is a globally
κ-exponentially stable equilibrium point of (20) and (22).

Proof. The system (20) and (22) can be seen as a cascaded
system:

ż = − z√
z2 + ∆2

ud + hz(t, z, ω)ζ (23a)

ζ̇ = f ζ(t, ζ) (23b)

where

hz(t, z, ω) =
(

ω1 ω2 0 ∆√
z2+∆2

)

where ω1 and ω2 are elements of the vector ω. Note that
ω3 = 0, hence (23a) is independent of both ψ̃, r̃ and y. The
cascaded system (23) can be seen as the nominal system

Σ1 : ż = − ud√
z2 + ∆2

z
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perturbed by the output of the globally κ-exponentially stable
system

Σ2 : ζ̇ = fζ(t, ζ)

through the interconnection term hz(t, z, ω).
To prove global κ-exponential stability of the origin

(z, ζ) = (0,0) of (23), we apply two results from the
theory of cascaded nonlinear systems. We first prove that
the nominal Σ1 system is globally κ-exponentially stable.
We choose the positive definite and radially unbounded Lya-
punov Function Candidate (LFC) V = 1

2z2 and differentiate
V along the solution of Σ1:

V̇ = − ud√
z2 + ∆2

z2 < 0

Since V is radially unbounded and V̇ is negative definite
along the trajectories of Σ1, it follows that the origin z = 0
is a GUAS equilibrium of the nominal system Σ1.
Moreover, on the ball D = {z ∈ R | |z| ≤ r}, r > 0, we

have that

V̇ ≤ − ud√
r2 + ∆2

z2 ≤ −kzz
2 < 0

for some 0 < kz ≤ ud√
r2+∆2

, and it follows from ([20], Th.
4.10) that the origin z = 0 is a LUES equilibrium of the
nominal system Σ1. By Result 1, z = 0 is also a globally
κ-exponentially stable equilibrium of the nominal system Σ1.
In order to prove that the origin (z, ζ) = (0,0) of

the cascaded system (23) is also globally κ-exponentially
stable, we apply ([15], Th. 7) and ([15], Lemma 8). We
start by verifying the three assumptions of ([15], Th. 7).
The first assumption, the GUAS assumption on the nominal
system, was proven above. The third assumption, the integral
assumption on the perturbing signal, is satisfied trivially by
the assumption that Σ2 is globally κ-exponentially stable.
However, it remains to show that the second assumption, the
assumption on the interconnection, is satisfied. That is the
linear growth condition

||hz(t, z, ω)|| ≤ θ1(||ζ||) + θ2(||ζ||)|z|
where θ1, θ2 : R+ → R+ are continuous functions. Writing
out ||hz(t, z, ω)||1 yields

||hz(t, z, ω)||1 = |ω1| + |ω2| +
∣∣∣∣

∆√
z2 + ∆2

∣∣∣∣
≤ 2(1 + |ud| + |w|)
≤ 2(1 + c + ||ζ||1)

where |ud| ≤ c. Hence the assumption on the interconnection
is satisfied with θ1 = 2(1+c+||ζ||) and θ2 = 0, and by ([15],
Th. 7), the origin (z, ζ) = (0,0) of the cascaded system (23)
is GUAS. Moreover, since Σ1 and Σ2 are both globally κ-
exponentially stable it follows from ([15], Lemma 8) that the
origin (z, ζ) = (0,0) of the cascaded system (23) is globally
κ-exponentially stable.

Proposition 2. Let ud > 0 be the constant desired surge
speed. If ξ = 0 is made a globally κ-exponentially stable
equilibrium point of (21), then (y, z, ξ) = (0, 0,0) is a

globally κ-exponentially stable equilibrium point of (19-20)
and (21).

Proof. The systems (19) and (21) can be seen as a cascaded
system:

ẏ = − ud√
y2 + ∆2

∆√
z2 + ∆2

y + hy(t, y, z, χ)ξ (24a)

ξ̇ = fξ(t, ξ) (24b)

where

hy(t, y, z, χ) =
(
χT gy2 gy3 gy4 gy5

)

gy2 = 0 gy4 = ∆√
y2+∆2

gy3 = 0 gy5 = −yz√
y2+∆2

√
z2+∆2

We proceed as in the proof of Proposition 1 and show that
the origin of the nominal system

Σ1 : ẏ = − ud√
y2 + ∆2

∆√
z2 + ∆2

y

is globally κ-exponentially stable. It should be noted that
the nominal system Σ1 is non-autonomous, since it depends
on the time-varying signal z(t). However, since ζ, used in
the proof of Proposition 1, is a subvector of ξ and the
additional elements of ξ do not affect the ż-equation, the
stability property of z = 0 is invariant when perturbed by
ξ in place of ζ. This follows from the proof of Proposition
1 by replacing ζ with ξ and extending the interconnection
term hz with corresponding zeros. The rest of the proof is
then the same and since ξ = 0 is a globally κ-exponentially
stable equilibrium point of (21) and ud > 0 by assumption,
global κ-exponential stability of (z, ξ) = (0,0) follows. The
two propositions could easily be combined into one result.
We have split it in two to clearly illustrate which variables
that have to converge in order for the horizontal and vertical
cross-track errors to converge, respectively. We think this
gives a more general understanding of why and when the
LOS algorithm works.
From the global κ-exponential stability property of

(z, ξ) = (0,0), there exists an upper bound on the position
variable z(t). In particular, there exists a bz = bz(z0) > 0,
independent of t0, such that |z(t)| ≤ bz , ∀t ≥ t0. We take
the positive definite and radially unbounded LFC V2 = 1

2y2

and differentiate V2 along the solution of Σ1:

V̇2 = − ud√
y2 + ∆2

∆√
b2
z + ∆2

y2 < 0

Since V2 > 0 and radially unbounded and V̇2 is negative
definite along the trajectories of Σ1, y = 0 is a GUAS
equilibrium point of the nominal system Σ1. Moreover, for
y ∈ Dy = {y ∈ R | |y| ≤ r}, r > 0, V̇2 satisfies

V̇2 = − ud√
r2 + ∆2

∆√
b2
z + ∆2

y2 ≤ −kyy2 < 0

where
0 < ky ≤ ud√

r2 + ∆2

∆√
b2
z + ∆2
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That is, for y ∈ Dy V̇2 is upper bounded by a quadratic and
negative definite function, and by ([20], Th. 4.10), y = 0
is a LUES equilibrium point of the nominal system Σ1. By
Result 1, y = 0 is also a globally κ-exponentially stable
equilibrium point of the nominal system Σ1.
The perturbing system

Σ2 : ξ̇ = fξ(t, ξ, η, ν)

is globally κ-exponentially stable by assumption. To show
that the origin (y, ξ) = (0,0) of the cascaded system
(24) is globally κ-exponentially stable, we once more apply
([15], Th. 7) and ([15], Lemma 8). Again the first and third
assumption of ([15], Th. 7) are trivially satisfied. Moreover,
the second assumption is also satisfied, as can be seen by
writing out the 1-norm of hy(t, y, z, χ):

||hy(t, y, z, χ)||1 ≤ ||χ||1 +

∣∣∣∣∣
∆√

y2 + ∆2

∣∣∣∣∣

+

∣∣∣∣∣
−yz√

y2 + ∆2
√

z2 + ∆2

∣∣∣∣∣
≤ 3 + 4(|ud| + |w|) + 2|v|
≤ 3 + 4c + 6||ξ||1

where |ud| < c. Thus the second assumption is satisfied
with θ1 = 3 + 4c + 6||ξ||1 and θ2 = 0, and by ([15], Th.
7) the origin (y, ξ) = (0,0) of the cascaded system (24)
is GUAS. Furthermore, since Σ1 and Σ2 are both globally
κ-exponentially stable, it follows from ([15], Lemma 8) that
(y, ξ) = (0,0) is globally κ-exponentially stable.

V. CONTROLLER DESIGN

In the preceding section, we presented two propositions
giving sufficient conditions for global κ-exponential stability
of the cross-track errors y and z. In particular, it was shown
that a controller rendering (ũ, θ̃, q̃, w) = (0, 0, 0, 0) globally
κ-exponentially stable, with ud > 0 and θd chosen according
to (10), was sufficient to guarantee global κ-exponential
stability of the vertical cross-track error z. It was further
shown that global κ-exponential stability of the extended
origin (x̃, q̃, r̃, v, w) = (0, 0, 0, 0, 0), with ud > 0 and θd

and ψd chosen according to (10) and (11), was sufficient to
guarantee global κ-exponential stability of both the vertical
and horizontal cross-track error. In this section, we design
controllers using sliding mode with eigenvalue decomposition
that guarantees that the closed loop system satisfies the
conditions of Proposition 1 and 2.
We write (1b) in the following form

ν̇ = Aν + Bτ + f(ν, η) (25)

where

A = M−1D B = M−1Bτ

f(ν, η) = M−1(−C(ν)ν − D(ν)ν − g(η))

We split the system into two subsystems by defining

ν1 = (u w q)T u1 = (τ1 τ2)
T

ν2 = (v r)T u2 = τ3

This decomposition results in the following two state space
models

ν̇1 = A1ν1 + B1u1 + f1(ν, η) (26)

ν̇2 = A2ν2 + b2u2 + f2(ν, η) (27)

where f1 and f2 also accounts for the interaction between
the subsystems.

A. Surge Force and Pitch Torque Control

We extend (26) by adding the pitch angle dynamics (5)
and introduce integral action in the surge mode by defining
a new augmented state

x1 �

( ∫ t

t0
u(s)ds νT

1 θ
)T

and the corresponding desired state

x1d �

( ∫ t

t0
ud(s)ds ud 0 qd θd

)T

The integral action gives increased robustness to modeling
errors and environmental disturbances.
We define the tracking error

x̄1 � x1 − x1d

and compute the corresponding tracking error dynamics:

˙̄x1 = Ā1x1 + B̄1u1 + f̄1(ν, η) − ẋ1d (28)

where

Ā1 =

⎛
⎜⎝

0 1 0 0 0
0 a11 a12 a13 0
0 a21 a22 a23 0
0 a31 a32 a33 0
0 0 0 1 0

⎞
⎟⎠

B̄1 =

⎛
⎜⎝

0 0
b11 b12
b21 b22
b31 b32
0 0

⎞
⎟⎠ f̄1(ν, η) =

⎛
⎝

0
f1(ν, η)

0

⎞
⎠

Here, aij is the element of row i and column j of A1 and
bij is the element of row i and column j of B1.
To partially stabilize the system (28), we choose the state

feedback controller:

u1 = −K̄1(x1 − x1d) + u10 (29)

Here u10 is an auxiliary control input and K̄1 = (K1 02×1)
is chosen by pole placement such that the upper left 4 × 4
submatrix of A1c � Ā1 − B̄1K̄1 is Hurwitz. Note that
the linear state feedback leaves the pitch angle uncontrolled.
Inserting (29) into (28) gives the closed-loop tracking error
dynamics:

˙̄x1 = A1cx1 + B̄1K̄1x1d + B̄1u10 + f̄1(ν, η)− ẋ1d (30)

To apply sliding mode design, we define a sliding surface

σ1(x̄1) � hT
1 x̄1 (31)

where h1 ∈ R5 is a constant vector to be determined, and
derive the dynamics of the sliding surface by differentiating
σ1(x̄1) along the solutions of (30):

σ̇1(x̄1) = hT
1

(
A1cx1 + B̄1K̄1x1d + B̄1u10

+f̄1(ν, η) − ẋ1d

)
(32)

606



The idea underlying a sliding mode approach, is to design
the control input such that the system trajectories converge to
the sliding surface. In this case, we design u10 such that the
trajectories x̄(t) converge to the sliding surface σ1(x̄1) = 0.
We take the positive definite and radially unbounded LFC
V1 = 1

2σ2
1 and differentiate V1 along the solutions of (32):

V̇1 = σ1h
T
1

(
A1cx1 + B̄1K̄1x1d + B̄1u10

+f̄1(ν, η) − ẋ1d

)

We assume that hT
1 B̄1 �= 0, such that the system is

controllable and choose the control u10 according to

u10 = (hT
1 B̄1)

T (hT
1 B̄1B̄

T

1 h1)
−1

(
− hT

1 Ā1x1d

−hT
1 f̄1(ν, η) + hT

1 ẋd − kσ1
σ1

)
(33)

where kσ1
> 0 is an adjustable controller gain. With u10

given by (33), the Lyapunov Function derivative V̇1 is given
by:

V̇1 = σ1x̄
T
1 AT

1ch1 − kσ1
σ2

1

To get rid of the term σ1x̄
T
1 AT

1ch1, we note that AT
1c is

square, but singular. The matrix Ā1 is singular, and because
the last column of K̄1 is chosen equal to zero, Āc is singular.
Then Ā

T

c is singular. From linear algebra we know that
a singular matrix has one or more zero eigenvalues. Thus
choosing h1 as a right eigenvector of AT

1c corresponding
to a zero eigenvalue, renders x̄T

1 AT
1ch1 = λx̄T

1 h1 zero.
Continuing the Lyapunov analysis then yields

V̇1 = −kσ1
σ2

1 < 0

which shows that V̇1 is quadratic and negative definite.
Moreover, since V1 > 0 is a quadratic Lyapunov function, V1

satisfies ([20], Th. 4.10), and σ1 = 0 is a GUES equilibrium
point of (32). For the proof of the fact that σ1(x̄1) = 0 ⇒
x̄1 = 0, we refer to [21] and [22].

B. Yaw Torque Control

We proceed as in the previous section and extend (27) with
the yaw-angle dynamics (6) and define a new augmented
state and a corresponding desired state:

x̄2 �
(

νT
2 ψ

)T
x̄2d �

(
0 rd ψd

)T

The resulting state space model is then given by

˙̄x2 = Ā2x̄2 + b̄2u2 + f̄2(ν, η)

where

Ā2 =

⎛
⎝

a11 a12 0
a21 a22 0
0 1 0

⎞
⎠ , b̄2 =

⎛
⎝

b11

b21

0

⎞
⎠

f̄2(ν, η) =

⎛
⎝

0
f1(ν, η)
1−cos θ
cos θ

r

⎞
⎠

Here aij is the element of row i and column j of A2 and
bij is the element of row i of b2. Again, we define a sliding
surface

σ2(x̄2) � hT
2 x̄2 (34)

where h2 ∈ R3 and x̄2 � x2 − x2d. Following the same
procedure as for the surge and pitch subsystem, we choose
the control law

u2 = −k̄
T

2 (x2 − x2d) + u20 (35)

where the auxiliary control input u20 is chosen according to

u20 =
1

hT
2 b2

(−hT
2 Ā2x2d − hT

2 f̄2(ν, η) + hT ẋd − kσ2
σ2)

where kσ2
> 0. The vector h2 is chosen as the right

eigenvector of AT
2c = (Ā2 − b̄2k̄

T

2 )T corresponding to a
zero eigenvalue. Again AT

2c has a zero a zero eigenvalue,
since it is a singular matrix. We choose the positive definite
and radially unbounded LFC V2 = 1

2σ2
2 and differentiate V2

along the solution of (34):

V̇2 = σ2h
T
2 (A2cx̄2 − kσ2

σ) = −kσ2
σ2

2 < 0

Then, since the Lyapunov Function derivative V̇2 is quadratic
and negative definite and V2 > 0 is quadratic, it follows from
([20], Th. 4.10) that σ2 = 0 is a GUES equilibrium point of
(34).
The surge and pitch controller (29) and the yaw controller

(35) renders (ũ, w, q̃, θ̃) = (0, 0, 0, 0) and (v, r̃, ψ̃) GUES
respectively. Therefore, the combined origin (x̃, q̃, r̃, v, w) =
(0, 0, 0, 0, 0) is also GUES. Then, provided that ud > 0 and
θd, ψd, qd and rd are chosen according to (10)-(13), all the
assumptions of Proposition 1 and 2 are satisfied. We can then
conclude that the developed controllers guarantee global κ-
exponential stability of both the vertical and the horizontal
cross-track error and the desired forward speed of the vehicle.

VI. CASE STUDY: HUGIN AUV

The proposed control strategy was simulated in Mat-
lab/Simulink on a full 6DOF model of the HUGIN AUV.
The HUGIN AUV has three available controls: a propeller
thrust T and two rudder deflections δD and δS for diving
and steering respectively. The AUV can be described by the
6DOF model

Mν̇ + C(ν)ν + D(ν)ν + g(η) = Bττ (36)

where τ = (T δD δS)T and the mass and inertia matrix

M =

⎛
⎜⎜⎝

m11 0 0 0 m15 0
0 m22 0 −m15 0 m26

0 0 m33 0 m35 0
0 −m15 0 m44 0 0

m15 0 m35 0 m55 0
0 m26 0 0 0 m66

⎞
⎟⎟⎠

is constant, symmetric and positive definite. The total damp-
ing matrix is given by

D(ν) =

⎛
⎜⎜⎝

d11 + d1u|u| 0 0 0 0 0
0 d22 0 0 0 d26

0 0 d33 0 d35 0
0 0 0 d44 0 0
0 0 d53 0 d55 0
0 d26 0 0 0 d66

⎞
⎟⎟⎠

and the actuator configuration matrix is given by

Bτ =

⎛
⎜⎜⎝

1 0 0
0 YδS

0
0 0 ZδD

0 0 0
0 0 ZδS

lx
0 YδS

lx 0

⎞
⎟⎟⎠
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A propeller thrust saturation was included by limiting the
propeller revolution corresponding to the propeller thrust to
±230 RPM. The rudders were saturated at ±20◦ and a rudder
slew rate of ±10◦/s was used. The system was given zero
initial surge speed and simulated with the following desired
speed profile

ud(t) =

⎧⎨
⎩

1.25m/s 0 < t ≤ 70
1.75m/s 70 < t ≤ 110
1.50m/s 110 < t ≤ 150

The initial cross-track errors were chosen as y(0) = 50m and
z(0) = 30m. The reference signals in pitch and yaw were
computed using (8), (9), (12) and (13). To generate smooth
derivatives, each reference signal was filtered by a low-pass
filter before being fed to the control system. The look-ahead
distance was chosen as ∆ = 20m. ∆ is an important control
parameter. For AUV operations it is generally important
to have a well-damped motion, as this is important to the
sensor data quality. There will always be a trade-off between
convergence rate and how well-damped the motion is. A nice
feature of the proposed control algorithm is that it is easy to
adjust the trade-off between the two concerns by adjusting∆.
Choosing ∆ small, leads to a high convergence rate, but will
typically lead to overshoot. Choosing∆ large, overcomes the
problem of overshoot, but gives a slower convergence rate.
The simulation results are shown in figure 2(a)-2(c).
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Fig. 2.

VII. CONCLUSIONS

In this paper, a cross-track control scheme for uderactuated
autonomous vehicles that guarantees global κ-exponential
stability of the cross-track error to straight line trajectories
has been presented. In particular, we proposed a control
scheme based on a line of sight guidance law and designed
stabilizing controllers using sliding mode with eigenvalue

decomposition. Stability of the cross-track error was proven
using nonlinear cascaded systems theory, and the perfor-
mance of the proposed control scheme was indicated through
a case study with the HUGIN AUV.
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