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Abstract— This paper deals with the dynamics of controlled
hybrid systems under piecewise open-loop controls restricted
by hard bounds. The system equations may be reset when
crossing some prespecified domains (“the guards”) in the state
space. Here the continuous dynamics which govern the motion
between the guards are complemented by discrete transitions
which govern the resets. A state space model for such systems
is proposed and the reach sets for such models are described.
A verification problem is considered whose solution indicates
whether the reach set (at given time or at some time within a
given time interval) intersects or avoids a prespecified target set.
The computational side of verification is treated through ellip-
soidal techniques that indicate routes for numerical algorithms
including parallel calculations.

I. INTRODUCTION

The standard reachability problem is an essential topic in
control theory [3], [4],[5], [8]. Recent applications require
treating reachability in the more complicated setting of
systems with hybrid dynamics. The notion of hybrid system
has slightly varying definitions in [1], [2], [10], [9] and [11].

This paper deals with a controlled process governed by
an array of linear subsystems, one of which is switched
on at each time and determines the system’s on-line con-
tinuous dynamics. This switching is logically controlled:
when the continuous state crosses some preassigned zones
(“the guards”), the current subsystem may be switched to
another subsystem of the array. The guards are taken here as
hyperplanes, each of which allows a uniquely specified reset
(a transition from the current subsystem to another one). In
addition, the reset may or may not entail a change in the
phase coordinates of the process.

Discussed in this paper is the reachability problem for
such a hybrid system followed by the problem of verifying
whether the system reaches or always avoids a given target
set.The solutions are described through HJB-type equations.

Despite the fairly complicated dynamics, efficient com-
putation of reach tubes through ellipsoidal approximations
[8], with further numerical solution of related verification
problems appears to be available. Ellipsoidal operations for
related algorithms are indicated.

II. THE HYBRID SYSTEM

The overall system is governed by an array of subsystems
indexed i = 1, ..., k,

ẋ ∈ A(i)(t)x + B(i)(t)u(i)(t) + C(i)(t)f (i)(t), (1)
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with continuous matrix coefficients A(i)(t), B(i)(t), C(i)(t),
and x ∈ IRn. The u(i) are piecewise open-loop controls
restricted by inclusions u(i)(t) ∈ P(i)(t) ⊂ IRp, and P(i)(t)
are continuous set-valued functions. The functions f (i) are
given.

The bounds on the control values are ellipsoidal,

P(i)(t) = E(p(i)(t), P (i)(t)). (2)

The continuous functions p(t) and P (t) = P ′(t) are the
center and the “shape” matrix of the ellipsoid E(p(t), P (t)).
Recall that the support function of E(p, P ), ρ(l | E(p, P )) is
given by

max{(l, x) | x ∈ E(p, P )} = (l, p) + (l, P l)1/2.

In the phase space IRn are given k hyperplanes,

Hi = {x | (c(i), x) − γi = 0}, c(i) ∈ IRn, γi ∈ IR

for i = 1, . . . , k. These are the enabling zones (the guards).
Here is how the system operates.
At time t0 the motion initiates from a point in the starting

set X 0 = E(x0, X0) and follows subsystem i (take i = 1, to
be specific), with one of the controls u(1)(t) until (at time
τ ′
i1

) it reaches Hi1 , the first of the hyperplanes Hi along its
route (i1 �= 1).

Here a binary operation interferes: the motion either
continues along the “old” subsystem i = 1 or switches to
(is reset to) a “new” subsystem i1 �= 1. (If i1 = 1, we
presume there is no reset.)

Before crossing Hi1 , the state of the system is denoted as
{t, x, [1+]}; after the binary operation the state is denoted as
either {t, x, [1+, i+1 ]}, if there was a reset, or {t, x, [1+, i−1 ]},
if there was no reset.

The motion then develops according to the subsystem
i = 1 or i = i1 until crossing the next hyperplane Hi2 ,
when a similar binary operation takes place: The motion
either follows the previous subsystem or is reset to subsystem
i2. After the second crossing the state of the system is
{t, x, [1+, is1, i

s
2]}, where each boolean index “s” is either

s = + or s = − .
Thus the state has a memoryless part {t, x}, which is the

current position of the continuous-time variable, and a part
[1+, is1, i

s
2] with memory, related to the discrete event variable

isj , which describes the sequence of switchings made earlier
by the system. At each new crossing a new term is added to
this sequence.

Thus the following general rules are observed:
1) Crossing each hyperplane Hi results either in a reset

to subsystem i or there is no reset.
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2) The crossing takes place in the direction of the support
vector c(i), and at points of crossing we have

min{(c(i)(t), z) | z ∈ F (j)(t, x)} ≥ ε > 0, (3)

for all i, j = 1, ..., k,, in which

F (j)(t, x) =

A(j)(t)x+B(j)(t)E(p(j)(t), P (j)(t))+C(j)(t)f (j)(t).

3) The state after j crossings is {t, x, [is1, . . . , i
s
j ]}, and

each index s is + or −.
4) Upon crossing hyperplane Hm the sequence

[is1, . . . , i
s
j ], describing the “discrete event” part

of the state, is augmented by a new term, which is
either m+, if there is a switching to subsystem m, or
m−, if there is no switching.

This notation allows one to trace back the array of
subsystems used earlier from any on-line position {t, x}. If,
for example, the state is {t, x, [1+, i−1 , ..., i−j ]} with s = −
for all i1, ..., ij , the trajectory did not switch at any of the
j crossings, having followed the initial subsystem i = 1
throughout the whole process.

Note that at each state {t, x, [1+, is1, ..., i
s
j ]} the system

follows the subsystem whose number coincides with that of
the last term with index s = +.

The hybrid system under consideration differs from so-
called switching systems in that the time instants for crossing
are not fixed but are determined by the course of each tra-
jectory. Note, however, that resets result in an instantaneous
change of velocity ẋ(t), but with no change in the current
position x(t) of the system in the phase space.(Such a change
could be added by demanding in addition to the above that
at point x(τ) of reset (m) the state space variable instan-
taneously moves from x(τ) to x(τ+) = Kmx(τ) + k(m)

for a given n × n matrix Km and n-vector k(m). While
complicating the formulas, such change would not affect the
essential steps of the presented schemes).

The paper is concerned with reachability under piecewise
open-loop controls with possible resets of controlled systems
at given guards, and in between these resets the control
is open-loop. The starting set X 0 is ellipsoidal, X 0 =
E(x0, X0).

III. REACHABILITY UNDER RESETS

The reachability problem has two versions.
Problem I. Find the set of all {x} reachable from starting

position {t0,X 0} at given time t through all possible
controls. This is the reach set X (t; t0,X 0) at time t from
{t0,X 0}.

Problem II. Find the set of all {x} reachable from
starting position {t0,X 0} at some time t within interval
t ∈ [t′, t′′] = T through all possible controls. This is the
reach set X (t′, t′′; t0,X 0) within interval T .

One may observe that the problem consists in investigating
branching trajectory tubes, in describing their cross-sections
(“cuts”), and the unions of such cross-sections. The reach

sets may therefore be disconnected. We next discuss reach
sets at given time t.

Let us first describe the reach set for a given sequence
[is1

1 , . . . , isr
r ] of crossings, from position {t0,X 0, [j]}, taking

j = 1 to be specific. The index s1 is either − or +.
1) The reach set after one crossing: (a) Before reaching

Hi1 , i1 = j we have

X (1)[t] = X (1)(t; t0,X 0, [1+]) = G(1)(t, t0)X 0+

+
∫ t

t0

G(1)(t, s)[B(s)P(1)(s) + C(s)f (1)(s)]ds, (4)

in which G(i)(t, s) is the transition function for subsystem
i.

(b) To be precise, suppose that before reaching Hj we have

max{(c(j), x) | x ∈ X (1)[t]} = ρ+
j (t) < γj .

The first instant of time when X (1)[t]
⋂

Hj �= ∅ is τ ′
j , the

smallest positive root of the equation

γj − ρ+
j (t) = 0.

Introducing the function

ρ−j (t) = min{(c(j), x) | x ∈ X (1)[t]},

we observe that the condition X (1)[t]
⋂

Hj �= ∅ will hold so
long as

ρ−j (t) ≤ γj ≤ ρ+
j (t),

and the point of departure from Hj is the largest positive
root τ ′′

j of
γj − ρ−j (t) = 0.

Condition (3)above ensures that τ ′
j , τ

′′
j are unique. Note that

τ ′′
j is the time instant when the entire reach set X (1)[t] leaves

Hj .
Denote X (1)[t]

⋂
Hj = Z(j)

1 (t).

(c) After the crossing we have to envisage two branches:
(−) with no reset—then nothing changes and

X (t; t0,X 0, [1+, j−]) = X (1)(t; t0,X 0, [1+]);

(+) with reset—then we consider the union

X (t; t0,X 0, [1+, j+]) =⋃
{X (j)(t; s,Z(j)

1 (s)) | s ∈ [τ ′
j , τ

′′
j ]}, t ≥ τ ′′

j .

Thus, in case (−) the reach tube develops further along the
“old” subsystem (1), while in case (+) it develops along the
“new” subsystem (j = i1).

(d) For each new crossing we repeat this procedure and
obtain the reach set X (t; t0,X 0, [1+, i

(s1)
1 , . . . , i

(sr)
r ]) for the

branch [1+, i
(s1)
1 , . . . , i

(sr)
r ].

We further impose the following condition.
Assumption 3.1: The intervals [τ ′

i , τ ′′
i ], i = 1, . . . , r, do

not intersect.
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For any interval [t0, t], with τ ′′
im

≤ t ≤ τ ′
im+1

and τ ′′
ij
≤ t∗ ≤

τ ′
ij+1

, ij < im, one may observe the following semigroup-
like property:

X (t; t0,X 0, [1+, is1
1 , . . . , ism

m ]) = (5)

X (t; t∗,X (t∗; t0,X 0, [1+, is1
1 , . . . , i

sj

j ]), [isj+1
j+1 , . . . , ism

m ]).

Assumption 3.1 is not a necessary requirement and can
be omitted. However under this assumption the explanation
of the general scheme is more transparent and relieved of
unimportant details.

2) The one-stage crossing transformation: Recall that the
continuous-time transition between crossings along subsys-
tem j, from position {τ,X} with τ ≥ τ ′′

j to the position at
time t ≤ τ ′

j+1 is X (j)(t; τ,X ).
On the other hand, we may define a “one-stage crossing”

transformation from position (state) {τ ′
j ,X , [1+]} at the first

time (τ ′
j) of crossing Hj to the last time (τ ′′

j ) of crossing
Hj :

T s
j {τ ′

j ,X , [1+]} =

{τ ′′
j ,X (1)(τ ′′

j ; τ ′
j ,X , [1+, j−])}, if s = −,

T s
j {τ ′

j ,X , [1+]} =

{τ ′′
j , Z̄(j)

1 [τ ′′
j ], [1+, j+]}, if s = +.

Above,

Z̄(j)
1 [τ ′′

j ] = ∪{X (j)(τ ′′
j ; t,Hj∩X (1)(t; τ ′

j ,X ))| t ∈ [τ ′
j , τ

′′
j ]}.

We can now represent a branch [1+, is1
1 , . . . , ism

m ] through a
sequence of alternating operations of type T s

j and X (j).
For example, the reach set for the branch [1+, i+1 , i−2 ] from

starting position {τ,X , [1+]}, τ ≤ τ ′
i1

, at time t ∈ [τ ′′
i2

, τ ′
i3

]
requires the following sequence of mappings:

T+
i1
{τ ′

i1 ,X
(1)(τ ′

i1 ;X , τ), [1+]} = {τ ′′
i1 , Z̄

(i1)
1 [τ ′′

i1 ], [1
+, i+1 ]},

X (i1)[τ ′
i2 ] = X (i1)(τ ′

i2 ; τ
′′
i1 , Z̄

(i1)
1 [τ ′′

i1 ]),

T−
i2
{τ ′

i2 ,X
(i1)[τ ′

i2 ], [1
+, i+1 ]} =

{τ ′′
i2 ,X

(i2)(τ ′′
i2 ; τ

′
i2 ,X

(i1)[τ ′
i2 ]), [1

+, i+1 , i−2 ]};

and then, for t ∈ [τ ′′
i2

, τ ′
i3

], the desired set of positions is
given as

{t;X (i2)(t, τ ′
i2 ,X

(i1)[τ ′
i2 ]), [1

+, i+1 , i−2 ]}.

Thus X (i2)(t; τ ′
i2

,X (i1)[τ ′
i2

]) is one branch of the overall
reach set X (t;X , τ)

Lemma 3.1: The branch X (t; t0,X 0, [1, i
(s1)
1 , . . . , i

(sk)
k ])

is given by the composition of alternating one-stage crossing
transformations T s

j and continuous maps X (j), j = 1, . . . , k.
An alternative scheme for calculating reach sets is through

value functions of optimization problems. Its advantage is
that it is not restricted to linear systems.

IV. REACHABILITY THROUGH VALUE FUNCTIONS

As shown in [7], the reach sets for ordinary (non-hybrid)
systems may be calculated as level sets of solutions to
HJB (Hamilton-Jacobi-Bellman) equations for certain op-
timization problems. We will follow this scheme for the
hybrid system under consideration. Consider first a one-stage
crossing.

(a) Before crossing Hi1 = Hj , we assume, as in Section II,
that the system operates from position {t0,X 0, [1]}. Then,
for t < τ ′

j , we have

X (1)[t] = {x | V (1)(t, x) ≤ 0},

wherein

V (1)(t, x) = min
u(1)

{d2(x(1)(t0),X 0) | x(1)(t) = x},

and x(1)(t) = x(t) is the trajectory of subsystem 1. We
also write V (1)(t, x) = V (1)(t, x1, x2, . . . , xn), for x =
(x1, . . . , xn).

(b) At the crossing we have X (1)(t; τ ′
j ,X ) ∩ Hj = Z(j)

1 (t),
which can be calculated as follows. Without loss of gener-
ality we may take c

(j)
1 = 1. Then

Z(j)
1 (t) = {x | V (1)(t, ζ(x), x2, . . . , xn)) ≤ 0},

ζ(x) = γj −
n∑

i=2

c
(j)
i xi.

In particular, if the hyperplane Hj = {x | xj = γj},

Z(j)
1 (t) = {x | V (1)(t, x1, . . . , γj , . . . , xn) ≤ 0},

where γj replaces xj and the set Z(j)
1 (t) �= ∅ iff ρ−j (t) ≤

γj ≤ ρ+
j (t), wherein

ρ+
j (t) = max{(c(j), x) | V (1)(t, x) ≤ 0},

ρ−j (t) = min{(c(j), x) | V (1)(t, x) ≤ 0}.

This happens within the time interval [τ ′
j , τ

′′
j ], ρ+

j (τ ′
j) =

ρ−j (τ ′′
j ) = 0.

(c) After crossing Hi1 = Hj , we envisage two
branches: (−) with no reset: then X (t; t0,X 0, [1+, j−]) =
X (1)(t; t0,X 0, [1+]),

(+) with reset: then for t ∈ τ ′′
j ≤ t ≤ τ ′

j+1 we have to
calculate the union⋃

{X (j)(t; s,Z(j)
1 (s)) | s ∈ [τ ′

j , τ
′′
j ]} = X (t; τ ′′

j , Z̄(j)
1 [τj ]) =

X (t; t0,X 0, [1+, j+]), τ ′′
j ≤ t ≤ τ ′

j+1.

For t > τ ′′
j this union may be calculated as the level set for

the function

V(t, x | [1+, j+]) = min
s

{V (j)(t, s, x) | s ∈ [τ ′
j , τ

′′
j ]},
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wherein

V (j)(t, s, x) = min
u(j)

{V (j)(s, ζ(x(s)), x2(s), . . . , xn(s)) |

u(j)(ξ) ∈ P(i)(ξ), ξ ∈ [s, t], x(t) = x},

so that

X (t; t0,X 0, [1+, j+]) = {x | V(t, x | [1+, j+]) ≤ 0} =
⋃

{X (t, s,Z(j)
1 (s)) | s ∈ [τ ′

j , τ
′′
j ]} = X (j)[t],

and

X (j)[t] = ∪ {X (t, s,Z(j)
1 (s)) | s ∈ [τ ′

j , τ
′′
j ]},

X (t, s,Z(j)
1 (s)) = {x : V (j)(t, s, x) ≤ 0},

with X (j)[t] = {x : V(t, x | [1+, j+]) ≤ 0}.
The indicated union set may be nonconvex.

(d) Repeating the procedure for each new crossing, we obtain
the reach set X (t; t0,X 0, [1+, i

(s1)
1 , . . . , i

(sk)
k ]) for the branch

[1+, i
(s1)
1 , . . . , i

(sk)
k ].

This is the general scheme for successively applying the
transformations given above. We now consider the verifica-
tion problem.

V. THE VERIFICATION PROBLEM

Let M = E(m,M), M = M ′ > 0, be a given target set
and M∩ Hi = ∅, i = 1, . . . , k.

Problem 3. Given starting position {t0, {X 0, 1+}} , target
set M and time t > t0, verify whether there exists a branch
I(l) = [1+, i

(s1)
1 , . . . , i

(sl)
l ] such that one of the following

conditions is fulfilled:

(i) X (l)[t] = X (t; t0,X 0, [1+, . . . , i
(sl)
l ]) ∩M = ∅,

(ii) X (l)[t] = X (t; t0,X 0, [1+, . . . , i
(sl)
l ]) ∩M �= ∅,

(iii) X (l)[t] = X (t; t0,X 0, [1+, . . . , i
(sl)
l ]) ⊆ M.

Let us investigate the solution to this problem for a fixed
branch I(k) = [1+, i

(s1)
1 , . . . , i

(sk)
k ] , assuming l = k, t >

τ ′′
k .

Theorem 5.1: (A) Suppose the union set X (k)[t] is convex.
Then case (i) of Problem 3 will hold iff

max{−ρ(−l|M) − ρ(l|X (j)[t]) |

(l, l) ≤ 1} = δ > 0. (6)

Case (ii) will hold iff

max{−ρ(−l|M) − ρ(l|X (j)[t]) |

(l, l) ≤ 1} ≤ 0. (7)

Case (iii) will hold iff

min{ρ(l|M) − ρ(l|X (j)[t]) | (l, l) ≤ 1} ≥ 0. (8)

(B) Suppose the set X (k)[t] =
⋃
{X (j)[t, s] | s ∈

[τ ′
j , τ

′′
j ]} is nonconvex.

Then case (i) of Problem 3 will hold for all s iff

min
s

max
l

{−ρ(−l|M) − ρ(l|X (j)[s]) | (l, l) ≤ 1,

s ∈ [τ ′
j , τ

′′
j ]} = δ > 0. (9)

Case (ii) will hold for some s iff

min
s

max
l

{−ρ(−l|M) − ρ(l|X (j)[s]) | (l, l) ≤ 1,

s ∈ [τ ′
j , τ

′′
j ]} ≤ 0. (10)

Case (iii) will hold for some s iff

min
s

min
l
{ρ(l|M) − ρ(l|X (j)[s]) | (l, l) ≤ 1,

s ∈ [τ ′
j , τ

′′
j ]} ≥ 0. (11)

Finally, if we want to verify the same properties for
nonconvex sets X (k)[ϑ′, ϑ′′] =

⋃
{X [t] | t ∈ [ϑ′, ϑ′′]},

reachable within a given interval [ϑ′, ϑ′′], ϑ ≥ τ ′′
j , we have

to perform additional operations similar to (9)-(11) over sets
X [t] with t ∈ [ϑ′, ϑ′′].

If we have more than one crossing, then each crossing adds
a new parameter s = sj , with range in an interval of type
[τ ′

j , τ
′′
j ], related to this crossing. Thus, after k such intervals,

we will have to calculate the related nonconvex unions of
convex sets by optimizing parametrized value functions over
k parameters sj , j = 1, . . . , k.

We have now observed that the necessary numerical pro-
cedures require operations over convex sets, their geometric
and algebraic sums and their intersections. This brings us
to the use of the ellipsoidal calculus in approximating the
solution elements by parametrized families of ellipsoids.

VI. ELLIPSOIDAL TECHNIQUES—REACHABILITY

We first calculate the reach set after a one-stage crossing.
Here we consider external ellipsoidal approximations.

(a) Starting with X 0 = E(x0, X0), i = 1, the reach set
X (t; t0,X 0, [1+]) is described by the set-valued integral (4),
for which there is external ellipsoidal approximation [6], [8]:

X (t; t0,X 0, [1]) ⊂ E(x(1)(t), X(1)
+ (t)),

in which

Ẋ
(1)
+ = A(1)(t)X(1)

+ + X
(1)
+ A(1)′(t)+

π(t)X(1)
+ + (π(t))−1B(1)(t)P (1)(t)B(1)′(t), (12)

ẋ(1) = A(1)(t)x(1) + B(1)(t)p(1)(t) + C(1)(t)f (1)(t),

X
(1)
+ (t0) = X

(1)
− (t0) = X0, x(1)(t0) = x0,

and π(t) > 0 are parametrizing functions. These approxima-
tions will be tight along a given direction l(t) = G(1)′(t0, t)l,
l ∈ IRn, (G(i)(t0, t) is the transition matrix of the homoge-
neous subsystem i), if π(t) = πl(t) (see [8]), and

πl(t) = (l(t), B(1)(t)P (1)(t)B(1)′(t)l(t))
1
2 (l, X(1)

+ (t)l)−
1
2 .
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This yields the important equality

X (t; t0,X 0, [1]) =
⋂

{E(x(1)(t), X(1)
+ (t)) | (l, l) ≤ 1}.

(13)
Each of the matrices X

(1)
+ (t) and therefore each of the

ellipsoids E(x(1)(t), X(1)
+ (t)) depends on the parametrizing

function π which, for the tight ellipsoids that we need, in its
turn depends on l ∈ IRn. To emphasize this dependence, we
include l in the arguments, e.g. X

(1)
+ (t) = X

(1)
+ (t|l)).

(b) We now discuss the crossing E(x(1)(t), X(1)
+ (t|l)) ∩Hj .

Let {e(i)} be the orthonormal basis of the original coordinate
system and c(j) =

∑n
i=1 α

(j)
i e(i), assuming, without loss of

generality, that α
(j)
j �= 0. Then there exists a nondegenerate

linear map T, such that

Tc(j) = e(j), Te(i) = e(i),

Te(i) = e(i), i = 2, . . . , k, i �= j,

wherein {e(i)} is the basis for the new coordinate system.
The hyperplane Hj then transforms into {x : xj = γj}.

Now, in the new coordinates, keeping the former notations,
we have

E
(j)
1 (t|l) = E(z(j)(t), Z(j)

1+(t|l)) =

E(x(1)(t), X(1)
+ (t|l))∩Hj = {x : V

(1)
+ (t, x|l) ≤ 1, xj = γj},

where

V
(1)
+ (t, x|l) = (x − x(j)(t), (X(1)

+ )−1(t|l)(x − x(j)(t))).
(14)

and xj = γj .
The intersection E

(j)
1 (t|l) is a degenerate ellipsoid with

support function

ρ(q |E(j)
1 (t|l)) = (q, z(j)(t)) + (q, Z(j)

1+(t|l)q) 1
2 ,

and z(j)(t), Z(j)
1+(t|l) is found with a standard calculation.

In the hyperplane Hj = {x | xj = γj} we may consider
an array of ellipsoids E(z(j)(t), Z(j)

1+(t)), t ∈ [τ ′
j , τ

′′
j ] = T =

∩{Tl|(l, l) ≤ 1}, and

Tl = {t : (x−x(1)(t), (X(1)
+ )−1(t|l)(x−x(1)(t)) ≤ 1, xj = γj }.

Thus, for all l ∈ IRn, t ∈ Tl we have

E(z(j)(t), Z(j)
1+(t|l)) ⊇ Z(j)

1 (t).

Moreover, formula (13) implies⋂
{E(z(j)(t), Z(j)

1+(t|l)) | (l, l) ≤ 1} = Z(j)
1 (t).

When propagated after the reset along the new subsystem
j, each ellipsoid E(z(j)(t), Z(j)

1+(t|l)) evolves as

X (j)
+ [ϑ, t | l] = X (j)

+ (ϑ, t, E(z(j)(t), Z(j)
1+(t|l))) =

G(j)(ϑ, t)E(z(j)(t), Z(j)
1+(t|l))+

∫ ϑ

t

G(j)(ϑ, s)(B(s)E(p(j)(s), P (j)(s)) + C(s)f (1)(s))ds.

Here ϑ ≥ τ ′′. Though generated by an ellipsoid, the set
X (j)

+ [ϑ, t | l] need not be an ellipsoid. It requires, in its turn,
to be approximated by an array of ellipsoids. Namely, the
exact reach set

X (j)
+ [ϑ, t | Z(j)

1 (t)] =
⋂

{X (j)
+ [ϑ, t | l] | (l, l) ≤ 1},

and for each l the set

X (j)
+ [ϑ, t | l] ⊆ Eq(x(j)(ϑ), X(j)

+ (ϑ|l, q)), ∀q ∈ IRn.

Elements x(j), X
(j)
+ satisfy equations

Ẋ
(j)
+ = A(j)(t)X(j)

+ + X
(j)
+ A(j)′(t)+

πq(t)X
(j)
+ + (πq(t))−1B(j)(t)P (j)(t)B(j)′(t), (15)

ẋ(j) = A(j)(t)x(j) + B(j)(t)p(j)(t) + C(j)(t)f (j)(t),

with starting condition

X
(j)
+ (t) = Z

(j)
1+(t|l), x(j)(t) = z(j)(t).

Functions πq are for subsystem j of (15) and are defined
similarly to πl. Note that matrices X

(j)
+ (ϑ) = X

(j)
+ (ϑ|l, q)

depend on two parameters: l ∈ IRn (through the starting
condition) and q ∈ IRn (through the parametrizing function
πq).

We thus come to the conclusion.
Theorem 6.1: The following equality holds:

X (j)
+ [ϑ, t | Z(j)

1 (t)] = (16)

⋂
{E(x(j)(ϑ), X(j)

+ (ϑ, t | l, q)) | (l, l) ≤ 1, (q, q) ≤ 1}.
The last formula indicates the possibility of parallel calcu-
lation through identical modules.

Finally the nonconvex reach set after one crossing is

X (ϑ, t0,X 0) =
⋃

{X (j)
+ [ϑ, t | Z(1)

j (t)] | t ∈ [τ ′
j , τ

′′
j ]},

(17)
which is the union of an intersection of ellipsoids.

Since

E(x(j)(ϑ), X(j)
+ (ϑ, t | l, q)) = {x : V (t, ϑ, x|l, q) ≤ 1}

and
V (t, ϑ, x|l, q)

= {x : (x − x(j), X
(j)
+ (ϑ, t | l, q))(x − x(j)) ≤ 1}, (18)

we may define

V(ϑ, t0, x) = min
t

max
l,q

{V (t, ϑ, x|l, q) |

(l, l) ≤ 1, (q, q) ≤ 1, t ∈ T }. (19)

Theorem 6.2: The reach set X (ϑ, t0,X 0) is the level set

X (ϑ, t0,X 0) = {x : V(ϑ, t0, x) ≤ 1}. (20)
Having described the schemes for reachability, we now
propagate them to the verification problem.
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VII. ELLIPSOIDAL TECHNIQUES – VERIFICATION

In section V we described the optimization problems
which solve the problem of verification, when X (k)[t] is
the union over variable s of convex sets X (k)[t, s]. We
now specify these solutions bearing in mind that the latter
are intersections of ellipsoids and the target set is also an
ellipsoid.

Let X (k)[t, s] =
⋂
{E[t, s, l] | (l, l) ≤ 1}, where E[t, s, l]

stands for a continuous ellipsoid-valued function defined for
s ∈ [τ ′, τ ′′], (l, l) ≤ 1.

For fixed s the intersection X (k)[t, s] ∩ E(m,M) = ∅ iff

d1[t, s] = max
l

max
q

{−ρ(−q | E[t, s, l]) − ρ(q | M) |

|(q, q) ≤ 1, (l, l) ≤ 1} ≥ δ > 0

and X (k)[t] ∩ E(m,M) = ∅ for all s iff

d1[t] = min
s

{d1[t, s] | s ∈ [τ ′, τ ′′]} ≥ δ1 > 0. (21)

For fixed s the intersection X (k)[t, s] ∩ E(m,M) �= ∅ iff

d2[t, s] = max
l

max
q

{−ρ(−q | E[t, s, l]) − ρ(q | M) |q = l,

(q, q) ≤ 1, (l, l) ≤ 1} ≤ 0

and X (k)[t] ∩ E(m,M) �= ∅ for some s iff

d2[t] = min
s

{d2[t, s] | s ∈ [τ ′, τ ′′]} ≤ 0. (22)

For fixed s the intersection X (k)[t, s] ⊆ E(m,M) if

d3[t, s] = min
l

min
q

{ρ(q|M)−ρ(q|E[t, s, l]) | (l, l) ≤ 1} ≥ 0,

and X (k)[t] ⊆ E(m,M) for all t if

d3[t] = min
t
{d3[t, s] | s ∈ [τ ′, τ ′′]} ≥ 0. (23)

These formulas thus allow calculation of the union (17).
Remark 7.1: If the objective is to calculate⋃

{X (ϑ, t0,X 0) | ϑ ∈ [ϑ′, ϑ′′]} , ϑ′ ≥ τ ′′,

the previous schemes have to be applied once more with yet
a new array of external ellipsoids. The total procedure has to
be repeated at each new crossing, thus forming a branching
process that could be effectively parallelized.

A possible algorithmic scheme.
1. Starting with position {t0,X0, [1+]}, with nearest cross-

ing Hj , find approximations

X (τ ′
j ; t0,X 0, [1]) ⊆ E(x(1)(t), X(1)

+ (t|l)) = E
(j)
1 (t|l), (24)

which are tight along directions l(t) generated by selected
l ∈ IRn, (l, l) = 1.

2. Calculate the one-stage crossing transformation
T s

j E+(t|l):
for s = −, there is no reset and we continue with formulas

(12);
for s = +, calculate for t ∈ Tl the array

T s
j E+(t|l) = E(z(j)(t), Z(j)

1+(t|l)).

3. Proceed further on, so that:
if s = −, continue with formulas (12),
if s = +, calculate the arrays

{E(x(j)(ϑ), X(j)
+ (ϑ, t | l, q))}.

4. Calculate the set X (ϑ, t0,X 0) through (18)-(20).
5. Apply results to verification, following the discussion

at the beginning of this section.
Remark 7.2: Proceeding in parallel with arrays of ellip-

soids corresponding to arrays of directions l, q, an increase
in number of directions would allow eventually to approach
the exact solution with any degree of accuracy.

VIII. CONCLUSION

This paper studies the reachability problem for a hybrid
system whose dynamics at each instant of time is governed
by one of the linear subsystems in a given array, with possible
resets from one subsystem to another when crossing any of
the given “guards” specified as hyperplanes.

The paper introduces the state space variable for such
a hybrid system and describes its reach sets through a
branching process.

This description further allows to solve the verification
problem, through an array of operations on ellipsoids in-
tertwined with solution of some optimization problems for
quadratic functions. The approach permits parallel calcula-
tion of an array of ellipsoidal approximations. Lastly, by
increasing the number of elements in the array, one may
approach the exact solution to any degree of accuracy.
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