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I. INTRODUCTION

We survey recent results solving the classical problems of

linear optimal control and normalized coprime factorizations

for a wide class of infinite-dimensional linear systems called

integrated nodes. These include well-posed linear systems,

but form a subclass of operator nodes that were studied in

Staffans [16, Section 4.7]. These results were obtained using

the reciprocal approach introduced in Curtain [4], [5] and

illustrate its usefulness in solving system theoretic problems

for systems with unbounded input and output operators.

As is customary, a system has a state space Z, an input space

U and an output space Y ; we assume that all three spaces

are separable Hilbert spaces. An operator node is specified

by three generating operators A,B,C and a characteristic

function G. These are assumed to satisfy:

• A is a closed densely defined operator on Z with nonempty

resolvent set.

• C ∈ L(D(A), Y ) is bounded where D(A) is equiped with

the graph norm.

• B∗ ∈ L(D(A∗), U) is bounded where D(A∗) is equiped

with the graph norm.

• G : ρ(A) → L(U, Y ) satisfies the following for α, s ∈
ρ(A)

G(s) − G(α) = (α − s)C(sI − A)−1(αI − A)−1B. (1)

The dual of an operator node is specified by the operators

A∗, C∗, B∗, G(ᾱ)∗.

We remark that the above definition is purely algebraic and

to incorporate a concept of dynamics extra assumptions are

needed. There are several ways of doing this (for example as

in [16]), but for our purposes it is convenient to follow the

approach in Opmeer [14]), where he introduced the concept

of an integrated node and gave many p.d.e. examples.

Definition 1.1: An integrated node is an operator node for

which ρ(A) contains a right half-plane and there exist M > 0
and n ∈ Z such that

‖(sI − A)−1‖ ≤ M |s|n.

The above resolvent estimate is equivalent to the statement:

A generates an exponentially bounded integrated semigroup

(see Arendt et al. [1, Section 3.2]).

Note that (sI −A)−1B, C(sI −A)−1 and the characteristic

function of an integrated node are polynomially bounded on

the same right half-plane as the resolvent.
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We recall that the Laplace transform can be defined for

certain Banach space valued distributions and that the image

of the set of Laplace transformable distributions is exactly

the set of functions defined on some right half-plane that

are analytic and polynomially bounded (see Schwartz [15]).

This allows us to define the state and output of an integrated

node as Laplace transformable distributions (Z-valued and

Y -valued, respectively).

Definition 1.2: For an initial state z0 ∈ Z and a Laplace

transformable distribution u the state and output of an

integrated node are defined through their Laplace transforms

on some right half-plane by

ẑ(s) = (sI − A)−1z0 + (sI − A)−1Bû(s), (2)

ŷ(s) = C(sI − A)−1z0 + G(s)û(s). (3)

So the above definition defines the dynamics of the system

via the Laplace transforms, which is a neat way of avoiding

the technical complications inherent in state space defini-

tions.

The class of integrated nodes is significantly larger than

the much studied class of well-posed linear systems (see

[16]). In our approach we focus on the subclass of state

linear systems that was studied in Curtain and Zwart [2].

Σ(A,B,C, D) is a state linear system if A is the infinites-

imal generator of a strongly continuous semigroup T (·) on

Z, B ∈ L(U,Z), C ∈ L(Z, Y ), D ∈ L(U, Y ), i.e., B and C
are bounded operators. Although this class is very small,

it turns out that a detailed study of its system theoretic

properties allows us to analyse those of the very general class

of integrated nodes. This is a huge simplification, since the

mathematics involved in manipulating bounded operators is

much easier than that involved in unbounded operators. The

key is the concept of the reciprocal system that has been

studied recently in a series of papers by Curtain and Opmeer

[4], [5], [6], [7]. Under the generic assumption that 0 ∈ ρ(A)
an operator node can be related to a state linear system that

is called its reciprocal system.

Definition 1.3: Suppose that the operator node Σ with

generating operators A,B,C and characteristic function G
is such that 0 ∈ ρ(A). Its reciprocal system is the state linear

system Σ(A−1, A−1B,−CA−1,G(0)).

The power of this concept is that certain stability properties

of an integrated node are equivalent to the corresponding

stability properties of its reciprocal system which has

bounded generating operators. These stability concepts need

to be chosen with care. The most commonly used concept

of stability, exponential stability (||T (t)|| ≤ Me−αt), is not
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preserved. In fact, if T (·) is exponentially stable, eA−1t

will never be exponentially stable and eA−1t need not even

be uniformly bounded in norm in t. Although the strong

stability (T (t)z → 0 as t → ∞) of A does imply the

strong stability of A−1 in the case that T (·) is a contraction

semigroup, this is not known in general. So the first step

was to introduce new system-theoretic stability concepts

that are inherited by the reciprocal system (see Section II).

The second and hardest step was to generalize the classic

system theory results from [2] for state linear systems using

these weaker stability concepts. The results on the linear

regulator problem are summarized in Section III, and those

on coprime factorization in Section IV. The third step that

is explained in Section V was to show the preservation of

stability properties of the integrated node to corresponding

ones of the reciprocal system. The last step was to translate

the above mentioned system theoretic problems for an

integrated node into equivalent ones for its reciprocal

system. Since reciprocal systems are state linear systems,

the solutions to these problems are given in Sections II –

IV. In Section V we explain how these solutions can be

translated back to solutions for the original system node.

The reciprocal approach has also been used to solve spectral

factorization problems for well-posed linear systems (see

Curtain and Sasane [8]) and to solve the problem of robust

stabilization with respect to left-coprime factor perturbations

for integrated nodes (c.f. Curtain [7]).

Our standing assumption that 0 ∈ ρ(A) can be relaxed

to the assumption that ρ(A) ∩ iR is not empty. It is also

possible to eliminate all assumptions on the spectrum of

A by relating an integrated node to a discrete-time system

using a Cayley-type transform as in Opmeer [14]. However,

the nice feature about the reciprocal approach is that it is a

continuous-time system.

Finally, we remark that while the reciprocal approach is a

powerful technique for many system theoretic problems, it

is not a panacea. For example, it cannot be used to derive

the complete theory of Riccati equations in Mikkola [12].

II. NEW STABILITY CONCEPTS FOR STATE LINEAR

SYSTEMS

In this section, we review the properties of state linear

systems from [2], [5] and [6]. Σ(A,B,C, D) is a state

linear system if A is the infinitesimal generator of a strongly

continuous semigroup T (·) on Z, B ∈ L(U,Z), C ∈
L(Z, Y ), D ∈ L(U, Y ), where Z,U, Y are separable Hilbert

spaces.

For an input u ∈ Lloc
2 (R+;U) and initial state z0 ∈ Z the

state z(t) ∈ Z at time t ∈ R
+ is defined by

z(t) = T (t)z0 +
∫ t

0

T (t − s)Bu(s) ds. (4)

If u is continuously differentiable and z0 ∈ D(A), then z
as defined above is continuously differentiable and for each

t ∈ R
+ z(t) ∈ D(A) and satisfies

ż(t) = Az(t) + Bu(t), z(0) = z0. (5)

The output of the state linear system is defined by

y(t) = Cz(t) + Du(t). (6)

Definition 2.1: The transfer function G of the state linear

system Σ(A,B,C, D) is defined by: G − D equals the

Laplace transform of CT (t)B on some right half-plane.

The characteristic function G is defined for all s ∈ ρ(A) by

G(s) = D + C(sI − A)−1B.

Instead of using the concept of exponential stability, we work

with the following weaker stability concepts.

Definition 2.2: 1) A state linear system is input stable

if there exists a constant β > 0 such that for all u ∈
L2(0,∞;U)
‖ ∫ ∞

0
T (t)Bu(t) dt‖2 ≤ β

∫ ∞
0

‖u(t)‖2 dt;
2) A state linear system is output stable if there exists a

constant γ > 0 such that for all z ∈ Z∫ ∞
0

‖CT (t)z‖2 dt ≤ γ‖z‖2;

3) A state linear system is input-output stable if the

transfer function G ∈ H∞(L(U, Y )).
4) A state linear system is a system-stable if it is input,

output and input-output stable.

While the exponential stability of the semigroup implies

system-stability, strong stability does not. Similar definitions

can be found in Staffans [16], but the essential difference

in our definition to previous definitions is we have made

no stability assumptions on the semigroup at all and so it

may have spectrum in C
+. The concepts of input and output

stability are equivalent to the boundedness of the following

input and output maps.

Definition 2.3: The output map C : Z → L2(0,∞;Y ) of

an output stable state linear system Σ(A,B, C, D) is defined

by (Cz) (t) := CT (t)z and the observability Gramian by

LC := C∗C.

The input map B : L2(0,∞;U) → Z of an input stable

state linear system is defined by Bu :=
∫ ∞
0

T (s)Bu(s) ds
and the controllability Gramian by LB := BB∗.

The Laplace transforms of the input and output maps play

an important role in the sequel.

Definition 2.4: For an output stable state linear system we

define Ĉ : Z → H2(Y ) by Ĉz := Ĉz.

For an input stable state linear system we define B̂ for u ∈
U, z ∈ Z, s ∈ C

+
0 by 〈B̂(s)u, z〉 := 〈u, B̂∗z(s̄)〉.

For an output stable system Ĉ is the analytic extension of

C(sI − A)−1 to C
+
0 and a similar remark applies to B̂.

The relation between the transfer and characteristic function

needs some clarification. While we always have that G = G
on some right-half plane, it is known that outside this region,

they may differ (see Curtain and Zwart [2, Example 4.3.8]

for a counter example).
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Lemma 2.5: 1) If the state linear system

Σ(A,B,C, D) is output stable, then

G(s) = D + Ĉ(s)B ∀s ∈ C
+
0 (7)

G(s) = D + C(sI − A)−1B (8)

= G(s) ∀s ∈ C
+
0 ∩ ρ(A).

2) If the state linear system Σ(A,B, C, D) is input stable,

then (9) holds and

G(s) = D + CB̂(s) ∀s ∈ C
+
0 . (9)

3) If Σ(A,B,C, D) is input or output stable, and either

σ(A) ∩ iR has measure zero, or U, Y are finite-

dimensional, then there exists an almost everywhere

defined function G0 : iR → L(U, Y ) such that for

almost all ω ∈ R and all nontangential paths we have

G0(iω) = lim
s→iω

G(s).

Moreover, for iω ∈ iR ∩ ρ(A) we have G0(iω) =
G(iω).

The properties input and output stability are related to the

existence of solutions to Lyapunov equations (see Grabowski

[10]) and the following lemma vindicates the choice of the

concept of output stability.

Lemma 2.6: The state linear system Σ(A,B, C, D) is

input stable if and only if the following controllability

Lyapunov equation has a bounded nonnegative solution L ∈
L(Z) :

ALz + LA∗z = −BB∗z for all z ∈ D(A∗). (10)

In this case, the controllability Gramian LB is the smallest

bounded nonnegative solution of (10) and L
1/2
B T (t)∗z → 0

as t → ∞ for all z ∈ Z.

The state linear system Σ(A,B,C, D) is output stable if and

only if the following observability Lyapunov equation has a

bounded nonnegative solution L ∈ L(Z) :

A∗Lz + LAz = −C∗Cz for all z ∈ D(A). (11)

In this case, the observability Gramian LC is the smallest

bounded nonnegative solution of (11) and L
1/2
C T (t)z → 0

as t → ∞ for all z ∈ Z.

III. THE LINEAR REGULATOR PROBLEM FOR STATE

LINEAR SYSTEMS

The linear regulator problem is a building block in sys-

tems theory. For the state linear system Σ(A,B,C, D) we

consider the optimal control problem

min
u∈L2(0,∞;U)

∫ ∞

0

‖ y(t) ‖2 + ‖ u(t) ‖2 dt,

where y is defined by (4), (6).

We say that Σ(A,B,C, D) satisfies the finite cost condition
if for all initial states z0 ∈ Z there exists an input u ∈
L2(R+;U) such that the output y ∈ L2(R+;Y ). It is well-

known that, under this assumption, for each z0 ∈ Z there

exists a unique uopt ∈ L2(R+;U) for which the minimum is

attained. Moreover, there exists a bounded nonnegative oper-

ator Qopt such that the minimal cost is given by 〈Qoptz0, z0〉.
The optimal input is a state feedback: uopt(t) = F optzopt(t),
where F opt := −S−1(D∗C + B∗Qopt), S = I + D∗D.

Qopt is the smallest bounded nonnegative solution to the

control algebraic Riccati equation on D(A)

A∗Q + QA + C∗C = (QB + C∗D)S−1(B∗Q + D∗C). (12)

Here we are interested in the properties of this control Riccati

equation and its dual.

Theorem 3.1: If the state linear system Σ(A,B,C, D)
satisfies the finite cost condition, then there exists a bounded

nonnegative solution Q of the control Riccati equation (12).

Moreover, the right-factor system

Σ(AQ, BS−1/2, [C + DF ;F ], [D; I]S−1/2), (13)

where AQ = A + BF , F = −S−1(D∗C + B∗Q), is

output and input-output stable. If, in addition, the dual system

Σ(A∗, C∗, B∗, D∗) satisfies the finite cost condition, then the

right-factor system is system-stable.

If Σ(A∗, C∗, B∗, D∗) satisfies the finite cost condition, then

there exists a bounded nonnegative solution to the filter

Riccati equation on D(A∗)

AP + PA∗ + BB∗ = (PC∗ + BD∗)R−1(CP + DB∗), (14)

where R = I + DD∗ and L = −(PC∗ + BD∗)R−1.

Moreover, the left-factor system

Σ(AP , R−1/2[B + LD, L], C, R−1/2[D, I]), (15)

where AP = A+LC, is input and input-output stable. If, in

addition,

Σ(A,B,C, D) satisfies the finite cost condition, then the left-

factor system is system-stable.

The optimal right-factor system (with Q = Qopt) has a

special property.

Theorem 3.2: Suppose that the state linear system

Σ(A,B,C, D) satisfies the finite cost condition, and let Qopt

denote the smallest bounded nonnegative solution to the

control Riccati equation (12). Then the optimal right factor

system

Σ(AQopt , BS−1/2, [C + DF opt;F opt], [D; I]S−1/2) (16)

corresponding to Qopt has an inner transfer function.

Dually, the optimal left-factor system

Σ(AP opt , R−1/2[B + LoptD,Lopt], C,R−1/2[D, I]) (17)

corresponding to P opt, the smallest bounded nonnegative

solution to the filter Riccati equation (14), has a co-inner

transfer function.

It is clear that the control Riccati equation is the same as the

observability Lyapunov equation of the right-factor system
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(12). Its controllability Lyapunov equation has solutions

connected to those of the two Riccati equations.

Theorem 3.3: Suppose that the state linear system

Σ(A,B,C, D) and its dual satisfy the finite cost condition

and P,Q are arbitrary bounded nonnegative solutions of the

Riccati equations (14), (12), respectively.

1) The controllability and observability Lyapunov equa-

tions of the right-factor system (13) have solutions

L1 = (I + PQ)−1P and L2 = Q, respectively.

2) The observability gramian LC of the right-factor sys-

tem (13) is Qopt, the smallest bounded nonnegative

solution of the control Riccati equation (12).

3) The controllability gramian LB of right-factor system

(13) is P opt(I + QP opt)−1, where P opt is the small-

est bounded nonnegative solution of the filter Riccati

equation (14).

4) r(LBLC) ≤ r(L1L2) < 1, where r denotes the

spectral radius.

IV. COPRIME FACTORIZATIONS FOR STATE LINEAR

SYSTEMS

In this section we collect various properties of the transfer

function [NQ;MQ] of the right factor (13) and of the transfer

function [Nopt;Mopt] of the optimal right factor (16). First

we recall some definitions of coprimeness.

Definition 4.1: [N;M] ∈ H∞(L(U, Y ⊕ U)) is right

coprime if there exist X̃, Ỹ such that [X̃, Ỹ] ∈ H∞(L(U ⊕
Y, U)) and for all s ∈ C

+
0 there holds

X̃(s)M(s) − Ỹ(s)N(s) = I. (18)

[Ñ, M̃] ∈ H∞(L(Y ⊕ U, Y )) is left coprime over C
+
0 if

there exist X,Y such that [X;Y] ∈ H∞(L(Y, Y ⊕U)) and

for all s ∈ C
+
0 there holds

M̃(s)X(s) − Ñ(s)Y(s) = I. (19)

Of particular interest are normalized pairs.

Definition 4.2: We call [N;M] ∈ H∞(L(U, Y ⊕ U)
normalized if it is inner, i.e., for almost all ω ∈ R the

following holds

M(iω)∗M(iω) + N(iω)∗N(iω) = I. (20)

We call [Ñ, M̃] ∈ H∞(L(Y ⊕ U, Y ) normalized if it is co-

inner, i.e., for almost all ω ∈ R the following holds

M̃(iω)M̃(iω)∗ + Ñ(iω)Ñ(iω)∗ = I. (21)

We now define coprime factorizations of a function G.

Definition 4.3: The function G has a right-coprime fac-

torization if there exist [N;M] ∈ H∞(L(U, Y ⊕U) that are

right coprime, M has an inverse on some right half-plane

and G(s) = N(s)M(s)−1 on some right half-plane.

It has a left-coprime factorization if there exist [Ñ; M̃] ∈
H∞(L(Y ⊕ U, Y ) that are left coprime, M̃ has an inverse

on some right half-plane and G(s) = M̃(s)−1Ñ(s) on some

right half-plane.

We remark that some authors require that the inverses of

M and of M̃ are well-posed, i.e., bounded in norm on some

right-half plane. In fact, if G is well-posed and it has a right-

coprime factorization according to our definition, then from

(18) we obtain M−1 = X̃ − ỸG, which is well-posed.

Definition 4.4: A transfer function has a doubly co-

prime factorization if it has a right-coprime factoriza-

tion [N;M] ∈ H∞(L(Y ⊕ U,U) with Bezout factor

[X̃, Ỹ] ∈ H∞(L(U⊕Y,U)) and a left-coprime factorization

[Ñ, M̃] ∈ H∞(L(Y ⊕ U, Y ), with Bezout factor [X;Y] ∈
H∞(L(Y, Y ⊕ U)) such that[

X̃ −Ỹ
−Ñ M̃

]−1

=
[

M Y
N X

]
(22)

holds on C
+
0 .

The obvious candidates for normalized right- (left-) coprime

factors are the transfer functions of the right (left) factor

system (13), respectively (15). While they are always in H∞,

they are not necessarily normalized and the coprime property

is not that obvious. The following properties do follow fairly

easily from the Riccati equation theory in Section III.

Theorem 4.5: If Σ(A,B,C, D) is output stabilizable with

transfer function G, then

1) [NQ;MQ] ∈ H∞(U, Y ⊕ U).
2) MQ is invertible on some right half-plane and its

inverse is the transfer function of the state linear system

Σ(A,B,−S1/2F, S1/2).
3) on some right half-plane there holds G = NQMQ−1

.

4) [Nopt;Mopt] is a normalized factorization of G.

5) If the spectrum of A on the imaginary axis has measure

zero, then [NQ;MQ] is a normalized factorization of

G.

The following condition for coprimeness is important.

Lemma 4.6: Let G be a transfer function with a normal-

ized right factorization [N;M]. Then it is coprime if and

only if the Hankel norm of [N;M] is strictly less than 1.

Combined with Theorem 3.3 , it leads to the main exis-

tence result on coprime factorizations (see [6]).

Theorem 4.7: If the state linear system Σ(A,B,C, D) and

its dual satisfy the finite cost condition, then its transfer

function has a normalized right-coprime factorization given

by [Nopt;Mopt], the transfer function of the optimal right

factor system (16). The transfer function [NQ;MQ] of an

arbitrary right factor system (13) is also a right-coprime

factorization. If σ(A) ∩ iR has measure zero, then it is also

normalized.

This theorem has an obvious dual and so we deduce the

existence of a doubly coprime factorization for an input and

output stabilizable system. However, in the Youla-Bongiorno

parameterization of all stabilizing controllers one needs ex-

plicit formulas for the Bezout factors. These were obtained

in Curtain and Opmeer [6] by solving the Nehari problem

for [−NQ,MQ].
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Theorem 4.8: Suppose that the state linear system

Σ(A,B,C, D) and its dual satisfy the finite cost condition

and σ is any number satisfying 1 > σ > r1/2(PQ(I +
PQ)−1.

1) If either σ(A)∩ iR has measure zero or Q = Qopt, the

smallest nonnegative solution to the control Riccati

equation, then the transfer function [NQ;MQ] is a

normalized right-coprime factorization of G with

Bezout factors [X̃, Ỹ], the transfer function of the

system-stable state linear system

Σ(ÃL, [B + L̃D, L̃], S−1/2B∗Q,S−1/2[I,−D∗]),
where ÃL = A+L̃C, L̃ = −(σ−2W̃PC∗+BD∗)R−1

and W̃ = (I + PQ − σ−2PQ)−1.

2) If either σ(A) ∩ iR has measure zero or P = P opt,

the smallest nonnegative solution to the filter Riccati

equation, then the transfer function [ÑP , M̃P ] is a nor-

malized left-coprime factorization of G with Bezout

factors [X;Y], the transfer function of the system-

stable state linear system Σ(ÃF , PC∗R−1/2, [C +
DF̃ ; F̃ ], [I,−D∗]R−1/2), where ÃF = A + BF̃ and

F̃ = −S−1(σ−2B∗QW̃ + D∗C).

Remark 4.9: If AQ generates an exponentially stable

semigroup, then with σ = 1 the Bezout factors are in H∞,

and they reduce to the usual finite-dimensional formulas. But,

in general, we only know that the candidate Bezout factors

are in H2 (modulo a constant).

Remark 4.10: If [NQ;MQ] is not normalized, then it is a

right-coprime factorization, but in general, we do not know

if the candidate Bezout factors from Theorem 4.8 will be in

H∞. Although we can always deduce suitable Bezout factors

from those for the optimal right factor, this leads to messy

formulas.

Remark 4.11: In Curtain [7] an interesting interpretion

to the Bezout factors is given in Theorem 4.8. The con-

troller K = YX−1 stabilizes G robustly with respect

to left-coprime factor perturbations with robustness mar-

gin
√

1 − σ2 (see Glover and MacFarlane [9]). The sta-

bility referred to here is in the input-output sense: (I −
KG)−1,G(I − KG)−1, (I − KG)−1K and (I − GK)−1

are all in H∞.

V. INTEGRATED NODES AND RECIPROCALS

First we introduce some stability concepts for integrated

nodes in terms of the frequency domain maps (2), (3) from

Section I.

Definition 5.1: An integrated node is output stable if

C(sI −A)−1z has an analytic extension to a function Ĉz ∈
H2(Y ) for all z ∈ Z ;

input-output stable if G has an analytic extension to a transfer

function G ∈ H∞(L((U, Y ));
input stable if its dual node is output stable.

An integrated node is called system-stable if it is input,

output and input-output stable.

Remark 5.2: In finite-dimensional systems theory, the

concepts of characteristic function and transfer function

coincide. As remarked in Section 1, for infinite-dimensional

systems, this is not always the case.

Remark 5.3: Of course, through the Paley-Wiener theo-

rem Definition 5.1 is equivalent to our earlier Definition 2.2

of stability for state linear systems.

In Grabowski [10] it is shown that in the case that A is the

generator of a strongly continuous semigroup, output stabil-

ity is equivalent to the existence of a bounded nonnegative

solution LC ∈ L(Z) to the observation Lyapunov equation

(11)

A∗LCz + LCAz = −C∗Cz for all z ∈ D(A).

Moreover, the observability gramian LC = C∗C is the

smallest nonnegative solution. The key step in the developing

the concept of a reciprocal system is to notice that if 0 ∈
ρ(A), then (11) has a solution if and only if the following

Lyapunov equation does

A−∗L + LA−1 = −A−∗C∗CA−1.

This is the observability Lyapunov equation for the pair of

bounded operators A−1, CA−1. Similarly, the control Lya-

punov equation for the infinite-time admissible B operator

has a solution if and only if the control Lyapunov equation

for the pair of bounded operators A−1, A−1B has. Next, we

substitute β = 0 in (1) and obtain

G(s) = G(0) + sC(sI − A)−1A−1B

= G(0) − CA−1(
1
s
I − A−1)−1A−1B,

which is the characteristic function of the state linear sys-

tem Σ(A−1, A−1B,−CA−1,G(0)). This is the motivation

behind the Definition 1.3 of a reciprocal system that was

introduced in [4] for well-posed linear systems. It applies

equally well to operator nodes.

The power of this concept is that the stability properties of

an operator node are equivalent to the stability properties of

a state linear system with bounded generating operators.

Theorem 5.4: Suppose that A,B,C are the generating

operators of an integrated node Σ with transfer function G
and zero is in the resolvent set of A. Denote the characteristic

function of its reciprocal system by Gr and the transfer

function of its reciprocal system by Gr. Then

1) G(s) = Gr( 1
s ) whenever s is in the resolvent set of

A.

2) Σ is output stable if and only if its reciprocal system

is output stable.

3) Σ is input stable if and only if its reciprocal system is

input stable.

4) The integrated node is a system-stable if and only if

its reciprocal system is a system-stable. In this case,

we have G(s) = Gr( 1
s ) for s ∈ C

+
0 .

Moreover, the regulator problem for an integrated node is

equivalent to the regulator problem for its reciprocal system.

The finite cost condition for an integrated node is defined

naturally in frequency domain terms: for every z0 ∈ Z there

exists a û ∈ H2(U) such that ŷ ∈ H2(Y ), where û, ŷ are
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defined by (2), (3).

This is equivalent to the time-domain definition given in

Section III by the Paley-Wiener theorem.

The following theorem was stated in [13] for well-posed

linear systems, but its proof applies to integrated nodes as

well.

Theorem 5.5: An integrated node Σ with 0 ∈ ρ(A)
satisfies the finite-cost condition if and only if its reciprocal

system does. Moreover, if the finite-cost condition is satis-

fied, then there exist unique optimal controls for Σ and its

reciprocal system and the optimal costs are equal.

Since the reciprocal system is a state linear system, the

results stated earlier in this article are applicable to it. First

we consider the regulator problem. If we apply Theorem 3.1

to the reciprocal system, we obtain the optimal cost operator

for its regulator problem as the smallest bounded nonnegative

solution to the following reciprocal control Riccati equation.

A−∗Q + QA−1 + A−∗C∗CA−1 =
(QA−1B − A−∗C∗Dr)S−1

r (B∗A−∗Q − D∗
rCA−1),

where Dr = G(0) and Sr = I + D∗
rDr. According the

Theorem 5.5, the optimal cost operator for the regulator

problem for an integrated node is the smallest bounded

nonnegative bounded solution to the above reciprocal control

Riccati equation. This is in stark contrast to the theory for

the smaller class of well-posed linear systems, where one

obtains very abstract Riccati equations with odd additional

terms (see Mikkola [12]). The reciprocal Riccati equation

has bounded operators and is easy to work with. The dual

filter Riccati equation is

A−1P + PA−∗ + A−1BB∗A−∗ =
(PA−∗C∗ − A−1BD∗

r)R−1
r (CA−1P − DrB

∗A−∗),

where Rr = I + DrD
∗
r .

Next we consider the problem of coprime factorizations for

an integrated node.

Theorem 5.6: Let Σ be an integrated node with 0 ∈ ρ(A).
Assume that the finite-cost condition for Σ and for its dual

system are both satisfied. Then the characteristic function of

Σ has a normalized doubly coprime factorization.

Proof: It follows from Theorem 5.5 that the reciprocal

system Σr of Σ and its dual satisfy the finite-cost condition.

So we can apply Theorems 4.7 and 4.8 to the reciprocal

system Σr to show that its transfer function has a normalized

doubly coprime factorization. Denote the coprime factors

and Bezout factors by Mr, Nr, M̃r, M̃r, Xr, Yr, X̃r,

Ỹr and define M(s) = Mr(1/s), N(s) = Nr(1/s),
M̃(s) = M̃r(1/s), M̃(s) = M̃r(1/s), X(s) = Xr(1/s),
Y(s) = Yr(1/s), X̃(s) = X̃r(1/s), Ỹ(s) = Ỹr(1/s). Note

that Qr ∈ H∞ if and only if Q ∈ H∞. Moreover, [Mr;Nr]
is normalized if and only if [M;N] is normalized. So it

follows that [M;N] provides a normalized doubly coprime

factorization of the characteristic function of Σ.

Remark 5.7: From the proof of Theorem 5.6 and Theorem

4.8 one can deduce explicit formulas for the coprime factors

and Bezout factors. These are in terms of the generating

operators of the reciprocal system. The leads to a complete

Youla-Bongiorno type parameterization of all stabilizing

controllers (c.f. Curtain, Weiss and Weiss [3]).

Remark 5.8: We remark that the solutions to the problems

for integrated systems have been given in terms of the

generating operators of the reciprocal systems. For some

systems it is possible to give formulas for the solutions to the

problems considered here which look exactly like the finite-

dimensional ones. We have seen that this is the case for state

linear systems and it will also be true for well-posed linear

systems which are exponentially stabilizable and detectable

and for which B and C operators are not too unbounded

(c.f. [17], [3]). However, in general, these formulas will not

make any sense. On the other hand, the reciprocal formulas

we have derived are comprised of bounded operators that are

always well-defined.
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[15] Laurent Schwartz. Théorie des distributions. Publications de l’Institut
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