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Abstract. Systems with counter-clockwise Input-Output
dynamics were recently introduced in order to study conver-
gence of positive feedback loops (possibly to many different
equilibrium states). The paper shows how this notion can be
used in order to perform bifurcation analysis and globally
predict multistability of a closed-loop feedback intercon-
netion just by using the knowledge of steady-state Input-
Output responses of the systems. To illustrate the theory
our method is then applied to a recently published model of
MAPK cascade. Furthermore, a library of examples (mainly
motivated by molecular biology) of systems which are
guaranteed to enjoy the property is presented and discussed.

I. INTRODUCTION AND MOTIVATIONS

Since the pioneering works by Delbrück, [4], bistability
and more in general multistability, have been recognized
as a fundamental dynamical behaviour associated to many
models in molecular biology and playing a crucial role
in phenomena such as cell differentiation, development,
and even in the insurgence of periodic behaviours due to
the combination of an hysteretic system interacting with
a (typically much slower) negative feedback loop around
it, thus giving rise to what is usually named “relaxation
oscillator”. One common class of models in molecular
biology, which also have the potential for multistability,
is that of nonlinear (positive) systems with sign-definite
jacobian, viz. systems of differential equations ẋ = f(x)
evolving in a subset of euclidean space (X ⊂ R

n, typically
the positive orthant) and such that the associated jacobian
matrix Df(x) is entry-wise sign-definite, throughout X . It
was first conjectured by Thomas, [14], and later proved
by several authors with different techniques and under
slightly different technical assumptions, [3], that for the
class of systems described above multiple equilibria are
only allowed provided that a positive feedback loop exists,
viz. a cycle in the graph associated to the system comprising
an even number of negative edges, where the sign of an edge
is determined according to the sign of the corresponding
entry of the Jacobian matrix. This condition, however, is
only necessary, and actually leaves completely aside the
problem of the dynamics of the system, in other words
it is rather a necessary condition for multistationariety

(viz. the presence of multiple steady states) rather than a
condition for multistability, for which not only the existence
of multiple steady states is required, but also the fact that
the stable states must be attractors for the whole state space
X , except possibly a set of measure zero which typically
would be at the boundary between the two (o more) basins
of attractions.
In this respect, it comes as no surprise that also the quest for
sufficient (possibly checkable) conditions for multistability
poses a challenging and interesting question in the long
term quest for a “reverse engineering” methodology. In
other words, understanding the basic principles behind a
specific observed dynamical behaviour, could potentially
open the way for the “synthesis” of that particular behaviour
in situations where it normally does not arise or to restore
the conditions which due to some pathology had prevented
that behaviour from showing up, [6].
Recently we developed a simple graphical method, based
on steady-state quantitative measures performed on an
open-loop system, which guarantees, under certain graph-
theoretical assumptions on the sign patterns of the jacobian,
that the corresponding unitary feedback system exhibit
bistability, [2] (see [9], [12] for related approaches). The
graph theoretical assumptions are needed in order to restrict
the class of dynamical behaviours potentially exhibited
by the system and basically amount to requiring that the
resulting flow be monotone with respect to initial conditions
according to some partial order sitting in the state space X .
In words this is saying that the more of certain chemical
compounds are present at time 0, the more will be there
at all future times (where the notion of “more” really
needs to be made precise mathematically). The class of
monotone system is however not as general as one would
like; first of all it is a subclass of sign-definite systems
(which already poses too strong a requirement in many
situations), secondarily, especially for high order random
graphs with + or − labels attached to edges, it is rather the
exception than the rule. The aim of this note is to illustrate
a new class of systems, introduced in [1], independent of
monotone systems, yet for which analysis can be performed
along the same lines as in the case of monotone systems and
dynamical behaviour inferred just by exploiting static Input-
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Output measuraments of the systems responses . In other
words, and modulo some technicalities, the same methods
applied in [2] to infer multistability of monotone systems,
would apply to this class of systems. These are the so called
systems with Counter Clockwise Input-Output Dynamics,
which will be illustrated in more detail in the next section.

II. SYSTEMS WITH COUNTER-CLOCKWISE

INPUT-OUTPUT DYNAMICS

One of the main stumbling blocks when analyzing
nonlinear dynamical systems and their interconnections is
the lack of a notion of frequency response and phase-lag
introduced by the system. In this respect, it is useful
to recall that in the linear world, the “principle of
superposition of effects” allows to analyze Input-Output
maps on a frequency-by-frequency basis and this in
turn leads to a notion of frequency-dependent gain (the
amplification produced by the system for a sinusoidal
input at that specific frequency) and of phase-lag (viz.
the delay expressed in radians) introduced by the system.
When superposition principles do not hold (as is the case
of nonlinear systems) one can still try to define notions
of Input-Output gains; typically not on a frequency by
frequency basis, however, but with respect to some norm
of interest in input and output space. This has many useful
applications and leads to a very rich and deep theory
(see for instance [13]), but does not allow to generalize
the notion of phase-lag introduced by the system. One
remarkable exception to this situation is the property called
“passivity”; this property in fact has a precise frequency-
domain characterization for linear systems and also a
very meaningful and physically appealing interpretation
in the time-domain, which therefore can be adopted
also for nonlinear systems. This property, born in the
context of electrical (nonlinear) networks and Hamiltonian
systems, is very useful in analyzing “negative feedback”
interconnections. It is in fact preserved under parallel and
negative feedback. In this way, complex interconnected
systems built out of passive components are still passive.

Roughly speaking, the property of counter-clockwise
Input-Output dynamics, plays for positive feedback
interconnections the same role that passivity does for
negative feedbacks. It is therefore likely to be a very useful
and powerful tool; moreover, it seems more appropriate
for the study of multistable systems, which typically
arise when, at least locally in state-space, destabilization
is introduced around a certain equilibrium by means of
positive feedback loops. The intuitive idea behind the
property is very simple; a wide range of nonlinear systems
when excited by some time-varying input signal (say for
simplicity a periodic input) tend to produce an output
signal which, after a transient and modulo some “delay”
and typically some distortion and some smoothing which is
going on due to the dynamics of the system, will reproduce
the same qualitative behavior of the corresponding input

u

y

Fig. 1. The Input-Output plot for a System with CCW dynamics

(for instance it will be a periodic output signal of the same
period as the input). The amount of delay may vary a lot
between different systems; a way to quantify this “delay”
is to look at the curve described by u(t) and y(t) and ask
that the evolution happens in a counter-clockwise direction
in the (u, y)-plane. In other words that the area integral∫ T

0
ẏu dt be positive when computed over one period.

Now, this is not yet a precise mathematical definition, as
we only considered periodic inputs and disregarded the fact
that there might be transients due to the effect of initial
conditions, before the system settles to a periodic output.
However, this definition is good enough to understand the
basic idea behind the “positive feedback” convergence
theorem which will be illustrated later. In particular, a
positive feedback interconnection of two systems Σ1

and Σ2, with inputs (respectively ) u1, u2 and outputs
y1, y2 is characterized by the interconnections: u2 = y1

and u1 = y2. This means that the (u1, y1)-plane of Σ1

maps to the (y2, u2)-plane of Σ2 and in particular that
counter-clockwise rotations in the (u2, y2) plane, are seen
as clockwise when plotted in the (u1, y1) axis. This is
why persistent oscillations cannot arise in the closed-loop
system. In fact, they need to happen in a counter-clockwise
direction in the (u1, y1)-plane (by the counter-clockwise
I-O dynamics assumption on Σ1) and at the same time in
a clockwise direction, because of the same assumption on
Σ2. Precise definitions follow:

Definition 2.1: We say that a system has Counter-
Clockwise ( CCW ) Input-Output dynamics if, for any initial
condition ξ and any differentiable and uniformly bounded
input-output pair u − y, (with y(·) := h(x(·, ξ, u), u(·)) )
the following inequality holds:

lim inf
T→+∞

∫ T

0

ẏ(t)′u(t) dt > −∞. (1)

�
Restricting the attention at periodic input-output pairs con-
dition (1) really amounts to asking that the area encircled

3706



by the curve γ(t) := (u(t), y(t)) in the (u, y)-plane be
positive. For technical reasons it is of interest to consider a
slightly stronger notion of counter-clockwise I-O dynamics
(similarly to what is usually done in the passivity literature).

Definition 2.2: We say that a system has Strictly CCW
Input-Output dynamics if, for any initial condition ξ and
any differentiable and uniformly bounded input-output pair
u−y, with y(·) = h(x(·, ξ, u), u(·)) the following inequality
holds:

lim inf
T→+∞

∫ T

0

ẏ(t)′u(t) − δ(|ẏ(t)|)/[1 + γ(|x(t)|)dt > −∞.

(2)
for some positive definite function δ and some class K
function γ. �
It is worth pointing out that the notion of counter-clockwise
I-O dynamics is, unlike standard passivity, invariant with
respect to translations in u and y. This is already a very
interesting fact, as there is no pre-fixed zero input (or
output) value. The convergence theorem will only imply
u̇, ẏ → 0, but, a priori, there is not a specific value to which
inputs and outputs need to converge. This is important as
in uncertain systems the equilibria may vary according to
the uncertainty; moreover, in biological applications, the
position of the equilibrium typically depends upon the
strength and shape of the steady-state response curves of
the system in feedback. In traditional nonlinear control
this problem is usually disregarded as both the system and
the controller have or are designed so that the zero-output
steady-state response corresponds to a zero-input signal.

Several other versions of the property are possible;
for instance, in a nonlinear set-up, there is no special
reason for considering inputs and outputs measuraments
with respect to a linear scale, (in particular measures could
be in logarithmic scale); more in general one could think
of measuring the area in the (u, y)-plane with respect
to a certain density function ρ(u, y) > 0. In this respect
taking a separable density function ρ(u, y) = ρ1(u) · ρ2(y)
is in fact equivalent to working in an auxiliary plane
ũ =

∫ u

0
ρ1(µ) dµ and ỹ =

∫ y

0
ρ2(η) dη. The precise

definitions are reported below:
Definition 2.3: We say that a system has Counter Clock-

Wise Input-Output dynamics with respect to all (some)
density function ρ(u, y) > 0 if, for any initial condition ξ
and any differentiable and uniformly bounded input-output
pair u − y, (with y(·) := h(x(·, ξ, u), u(·)) ) the following
inequality holds:

lim inf
T→+∞

∫ T

0

ẏ(t)′
∫ u(t)

0

ρ(µ, y(t)) dt > −∞. (3)

�
Strict versions of the property are also possible, while the
convergence Theorem keeps its validity in the present set-
up provided that the two systems are CCW with respect to
specular density functions (ρ1(u, y) = ρ2(y, u)): i. e. if the

first one is CCW for all ρ and the second one is CCW
with respect to some ρ.

III. HOW TO CHECK THE PROPERTY

Checking counter-clockwise I/O dynamics, without actu-
ally knowing the explicit expressions of the input u and of
the corresponding solution x is not always an easy task.
Similarly to passivity we need to consider a Lyapunov-like
characterization of the property. A system is [strictly] CCW
provided that there exists a C1 function V : X → R so
differentiating along trajectories of the system ẋ = f(x, u),
y = h(x) it holds for all x ∈ X and all u:

DxV (x) f(x, u) ≤ Dxh(x) f(x, u)u
[−δ(|Dxh(x) f(x, u)|)/{1 + γ(|x|)}] (4)

Finding Lyapunov functions as in (4) is unfortunately a
very difficult task and there is no general algorithm for
performing such a choice of a function, especially if we are
dealing with large uncertainties on parameter values as is
often the case in biological systems. It is therefore important
to have a catalog of systems (for instance characterized by
the sign of the entries of the corresponding jacobians) for
which the property holds regardless of the uncertainties
involved. In this Section we will provide a library of
“low-dimensional” building blocks which enjoy the CCW
property together with a couple of rules which allow to
compose the simple blocks and build higher dimensional
examples with the same property.

A. Scalar static nonlinearities

A nonlinear static function y = h(u) can of course be
interpreted as a dynamical systems which associates to any
input signal u(·) the corresponding output y(·) = h(u(·)).
Any SISO piecewise differentiable function h(·) enjoys
the CCW I-O dynamics property with respect to arbitrary
density functions ρ. The case of multiple inputs and multiple
outputs is more complex.

B. One-dimensional systems

Systems of the following type:

ẋ = f(x, u) y = h(x)

with x ∈ X ⊂ R, u ∈ U ⊂ R and Duf(x, u) > 0
for all u ∈ U and all x ∈ X and Dxh > 0 have
strictly counter-clockwise dynamics with respect to arbitrary
density functions ρ.

C. Two-dimensional systems

The following nonlinear planar system:

ẋ = f1(x, y, u)
ẏ = f2(x, y) (5)

with output y and input u has counter-clockwise dynamics
with respect to some density function ρ(u, y) > 0. We
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Fig. 3. Interconnection rules: (a) parallel; (b) feedback.

assume that f1 and f2 are C1 functions and that the
following sign pattern holds for the jacobian:

∂f1

∂u
> 0

∂f2

∂x
< 0 (6)

Moreover if the system is linear in u, then ρ can be taken
equal to 1. Standard changes of coordinates lead to the
catalog of relative degree 2 planar systems which have
counter-clockwise Input-Output dynamics among those with
sign definite jacobians (see Figure 2).

D. Interconnection rules

Very little is known as for interconnections of systems
with counter-clockwise Input-Output dynamics with respect
to some or all density functions ρ. If ρ = 1, however the
following composition rules apply:

1) The parallel interconnection of systems with CCW
dynamics is itself a system with CCW dynamics.
Parallel interconnections are characterized by the fol-
lowing equations:

u = u1 = u2 y = y1 + y2

2) The positive feedback interconnection of CCW sys-
tems is itself a system with CCW dynamics. Positive
feedback interconnections are characterized by the
following equations:

u1 = u + y2 y = y1 = u2

These interconnection rules are illustrated in Figure 3.

IV. DETECTING MULTISTABILITY IN FEEDBACK

INTERCONNECTIONS

A. Convergence theorem

Consider the following positive feedback interconnection:

ẋ1 = f1(x1, u1)
y1 = h1(x1)

ẋ2 = f2(x2, u2)
y2 = h2(x2)

u1 = y2 y2 = u1

(7)

Assume that:

1) Each of the individual subsystems has strictly
Counter-Clockwise I-O dynamics

2) Each of the subsystem admits a well-defined I-O
characteristic

Then, if trajectories are bounded, they converge to equi-
libria. Moreover if characteristics are hyperbolic and the
intersections of k1◦k2 transversal to the diagonal, almost all
trajectories converge to the asymptotically stable equilibria
corresponding to the intersections for which [k1 ◦ k2]′ < 1.

B. Practical significance

An I-O characteristic k(·) is the map, k : U → Y that
associates to each constant input, the corresponding steady-
state value of the output. We say that a system admits an
I-O characteristic if for all us there exists a unique globally
asymptotically stable equilibrium. The characteristic is hy-
perbolic if for each equilibrium point the Jacobian matrix
computed at the equilibrium has all eigenvalues outside
the imaginary axis (hence, by the stability assumption,
in the open left half plane). Plotting in the same plane
the characteristic k1 and k−1

2 , the stable equilibria can be
identified, by virtue of the previous theorem, by looking at
the intersection points in which the slope of k1 is strictly
less than the slope of k−1

2 . If some parameter is varied,
“saddle-node” bifurcation occur at the tangency point of
the two characteristics. Some of the assumptions of the
Convergence theorem can be relaxed; for instance, one of
the two subsystems could enjoy the property in a non-strict
sense (for instance being a static nonlinearity). We illustrate
its application by means of the example in the following
Section.

V. A NEW MECHANISM FOR BISTABILITY IN MAPK
CASCADES

A. Kholodenko’s model: the qualitative picture

Recently a new model for MAPK cascades was presented
by Kholodenko and coworkers in [11]. In its simplest
version the model takes into account 3 forms of different
MAPK, these are the dephosphorylated MAPK denoted
by M1, the MAPK phosphorylated at one site denoted
M2 and the MAPK phosphorylated on both residues M2.
Since no distinction is made between phosphorylation on
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threonine or on tyrosine, one can regard this model as a
first approximation in which the phosphorylation follows a
strictly ordered mechanism. Interestingly this model allows
for multistability without a positive feedback loop from
stage n > 1 to stage 1 of the cascade. We discuss here
a method for analyzing Kholodenko and possibly higher
dimensional such examples. The equations introduced by
Kholodenko read as follow:

Ṁ1 = θ1(M1,M2,M3) − θ2(M1,M2)
Ṁ2 = −θ1(M1,M2, M3) + θ2(M1,M2)

− θ3(M1,M2) + θ4(M1,M2,M3) (8)

Ṁ3 = θ3(M1,M2) − θ4(M1,M2,M3)

where θis are C1 functions with the following monotonicity
properties:

∂θ1
∂M1

< 0 ∂θ1
∂M2

> 0 ∂θ1
∂M3

< 0
∂θ2
∂M1

> 0 ∂θ2
∂M2

< 0 ∂θ2
∂M3

= 0
∂θ3
∂M1

< 0 ∂θ3
∂M2

> 0 ∂θ3
∂M3

= 0
∂θ4
∂M1

< 0 ∂θ4
∂M2

< 0 ∂θ4
∂M3

> 0

(9)

Actually in [11], explicit expressions of the functions θis are
provided, as well as parameters value which fit experimental
data. To our purposes, at least at this stage, it is enough to
concentrate on the qualitative shape of the functions only.
Notice, for instance, that ∂θ4

∂M1
and ∂θ3

∂M1
have the same

sign; therefore the system jacobian is not sign-definite, or
at least is not such for all possible choices of θis (nor, in
the case of parameterized θis, for all possible choices of
kinetic constants ). In particular, then, we cannot apply the
analysis machinery developed in [2].

Hereby we are interested in applying the machinery of
counter-clockwise dynamical systems (recently developed
in [1] ) in order to understand, by means of a simple
graphical test involving quantitative static information on
the system, precise conditions which give rise to multi-
stable behaviour. Going back to the equations in (8), we
notice that Mtot = M1(t)+M2(t)+M3(t) is constant along
trajectories, and therefore we may replace M2 everywhere
in the equations by Mtot − M1 − M3, thus bringing down
dimension by 1:

Ṁ1 = θ1(M1,Mtot − M1 − M3,M3)
−θ2(M1,Mtot − M1 − M3)

Ṁ3 = θ3(M1,Mtot − M1 − M3)
−θ4(M1,Mtot − M1 − M3,M3).

We may regard this system as the closed-loop unitary
feedback interconnection (u = y ) of the following system:

Ṁ1 = θ1(M1,Mtot − M1 − M3,M3)
−θ2(M1,Mtot − M1 − M3)

Ṁ3 = θ3(u,Mtot − u − M3)
−θ4(M1,Mtot − u − M3,M3)

y = M1. (10)

Notice that system (10) falls into the class of systems
considered in Section 3; in particular it has strictly counter-
clockwise input/output dynamics with respect to some
density function ρ. Since scalar static maps also exhibit
counter-clockwise I/O dynamics with respect to any density
function, though not strictly (basically they encircle a zero
area , regardless of the density function ρ), static feedback
interconnections of (10) can be analyzed by exploiting the
main convergence theorem in [1].

B. Kholodenko’s model: the actual parameters

More in detail, the following numerical set-up is consid-
ered in [11]:

θ1(M1,M2,M3) = kcat
4 MKP3totM2

Km4(1+
M3

Km3
+

M2
Km4

+
M1

Km5)

;

θ2(M1,M2) = kcat
1 MAPKKtotM1

Km1(1+
M1

Km1
+

M2
Km2

)
;

θ3(M1,M2) = kcat
2 MAPKKtotM2

Km2(1+
M1

Km1
+

M2
Km2

)
;

θ4(M1,M2,M3) = kcat
3 MKP3totM3

Km3(1+
M3

Km3
+

M2
Km4

+
M1

Km5
)
.

(11)

where the kinetic constants are given in the table below:

Par. Value Par. Value Par. Value
k1 0.02 k−1 1 k2 0.01
k3 0.032 k−3 1 k4 15
h1 0.045 h−1 1 h2 0.092
h3 1 h−3 0.01 h4 0.01
h−4 1 h5 0.5 h6 0.086
h−6 0.0011

and the following expressions hold:

kcat
1 = k2

kcat
2 = k4

kcat
3 = h2/(1 + h2/h3)

kcat
4 = h5/(1 + h5/h6 + h−3(h−4 + h5)/(h3 h4))

Km1 = (k−1 + k2)/k1

Km2 = (k−3 + k4)/k3

Km3 = (h−1 + h2)/(h1 + h1h2/h3);
Km4 = h−4+h5

h4(1+h5/h6+h−3(h−4+h5)/(h3 h4))

Km5 = h6/h−6.
(12)

Moreover, MAPKKtot = 50 and MKP3tot = 100 and
Mtot = 500 . For the considered parameters values the
system admits a well-defined I/O characteristics. Solving
the equations, it turns out that the σ-shaped curve in Fig. 4
represents the input-output static characteristic u → M(u).
This can be obtained by solving symbolically the system of
equations:

θ1(M1,Mtot − M1 − M3, M3) =
= θ2(M1,Mtot − M1 − M3)

θ3(M1,Mtot − M1 − M3) =
= θ4(M1,Mtot − M1 − M3,M3).

(13)

The next step for the application of the method is to make
sure that the equilibria on the characteristic are globally
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asymptotically stable. Local asymptotic stability is straight-
forward by results on sign-stability, in fact the jacobian has
the following sign-pattern:

Dxf(x, u) =
[ − +

− −
]

which is a stable configuration no matter what the entries of
the matrix are, [8]. Moreover, since in original coordinates
M1(t) + M2(t) + M3(t) = Mtot, by forward invariance
of the positive orthant, solutions are uniformly bounded.
In order to conclude GAS at the unique equilibrium we
only need to rule out the possibility of periodic solutions.
Since the system is planar, this trivially follows from the
fact that divf(s, u) = tr(Dxf(x, u)) < 0. Thus the closed-
loop system has three equilibria, each corresponding to one
intersection of the diagonal with the I/O static characteristic,
two of which are stable (those for which the slope k

′
(u) < 1

and the middle one is exponentially unstable. Almost all
solutions, except possibly for a zero measure set of initial
conditions, converge to the asymptotically stable equilibria.
Performing the above analysis for different values of the
parameters allow to obtain the bifurcation diagram reported
in Fig. 5, where we let the parameter k−1 vary.

VI. CONCLUSIONS

This paper illustrates how the recently developed notion
of system with counter-clockwise I-O dynamics can be used
in order to investigate convergence and multistability in
dynamical systems. Few qualitative informations (relative
for instance to the sign pattern of the jacobian), combined
with static I-O measurements performed on a pair of open-
loop systems with counter-clockwise I-O dynamics allow to
conclude convergent (and possibly multistable) behaviour of
their closed-loop feedback interconnection. Applications to
MAPK models are illustrated as an example.
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