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Abstract— The effect of delays in information exchange on
the stability of a formation is studied. Upper limits for allowable
delays are obtained through the use of two methods applicable
to a class of systems.

I. INTRODUCTION

Formations of vehicles may often be a means of ac-
complishing tasks which an individual vehicle would not
be capable of performing. Examples include a group of
space vehicles acting as a space antenna, a group of UAV’s
cooperating in a search mission, platoons of underwater
vehicles in a formation etc.

The information flow between a set of vehicles in a
formation may be considered the backbone of the formation
as it is this information flow that allows the individual
vehicles to coordinate their actions, be it to control their
relative positions or to accomplish some task which may be
the objective of the formation as a whole. The information
flow, and the actions individual vehicles take based on it,
must be such that the overall formation remains stable.

Several papers have recently addressed this issue. For
example in [4] the authors formulate the problem where the
vehicles possess potentials with respect to virtual leaders and
one another. The virtual leaders can be used to direct the
motion of the formation as a whole and the potential between
the vehicles allows for maintaining the overall shape of the
formation. In [5] structural potential functions are used to
stabilize formations, and in [6] graph-theoretic methods are
used to define formations and to study splitting and rejoining
formations of vehicles.

In [1] the role of the Laplacian of a graph on the stability
of a formation is studied and criteria for stability are derived.
These criteria are based on the assumption that each vehicle
has instantaneous and complete information about the states
of its neighbors.

Information flow among the vehicles in a formation is con-
sidered in [2]. In this work it is shown how the information
flow can be designed in such a way as to converge to a
steady state that can be used as a reference by all vehicles.
The results are based on a discrete model for the dynamics
of the vehicles as well as for the flow of information.

In the papers mentioned above, it is generally assumed
that each vehicle has full and up to date information about
its neighbors at any given instant. Even when this is possible,
however, there may be an interest in minimizing the rate of
information exchange. In addition, communication between
vehicles may be of limited precision due to e.g. limited

transmission power of vehicles. It is therefore important to
understand the dynamics of information flow in a formation
and how it relates to the dynamics of the vehicles of the
formation. Ultimately such understanding will enable the
design of “minimal” information exchange topologies that
result in stable formations.

Limited information flow under the assumption that ex-
change of information between vehicles takes place at spec-
ified discrete times was considered in [3], and the effect of
the resulting delay in information transfer on the stability of
the formation was considered.

In the current work a formation of vehicles is considered
where the transfer of information between vehicles takes
finite time. This information is assumed to be used by the
individual vehicles to maintain their positions with respect
to the formation. It is easy to convince oneself that too much
delay in the transfered information, i.e. large transfer times
for the information will lead to instability. On the other hand
some delay in the transfered information may sometimes be
unavoidable especially in the case where the information is
relayed between several vehicles before it reaches a vehicle
that needs to use it. The goal in this paper is to study how
the delay in information transfer affects the stability of a
formation and to obtain a limit on this delay for stability.

The problem is approached in two general ways. The first
approach makes use of the theory of retarded functional
differential equations and may be described as a direct
stability analysis. The other approach is to consider the Schur
transformation of a Laplace transform of the representative
dynamic equations. It turns out that this leads to the problem
of determining the stability of a number of disjoint linear
systems, the stability of which guarantees the stability of the
original formation.

The rest of this paper is organized as follows: In section
2, the main problem, a type of formation with delay in
information transfer, is described. In section 3 a method of
direct stability analysis is studied and an example is given
in section 3.1. In section 4 an indirect method of stability
analysis is described. An example of this is given in section
4.1 . Concluding remarks are given in section 5.

II. PROBLEM STATEMENT

Consider a set of n vehicles with vehicle i having dynam-
ics given by

ẋi = Axi + Bui, (1)

yi = C1xi, (2)
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zij = C2(xi − xj(t − τij)) (3)

where τij is the time delay in the transfer of information from
vehicle j to vehicle i. As in [1], each vehicle is assumed to
act on an error signal zi that is defined by

zi =
1

|Ji|

∑
j∈Ji

zij , (4)

where Ji is the set of vehicles that vehicle i obtains infor-
mation from. The control action is given through

v̇i = Fvi + G1yi + G2zi (5)

ui = Hvi + K1yi + K2zi (6)

Defining the formation-wide state vector x by

x =

⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦ (7)

and using the notation M̂ for a block diagonal matrix that
consists of the matrix M on its diagonal we obtain the
formation wide dynamic equation

ẋ = (Â + ̂BK1C1)x + B̂Hv + ̂BK2C2L̄x (8)

where the operator L̄ is defined through

L̄x =

⎡⎢⎢⎢⎢⎣
x1 −

1
|J1|

∑
j∈J1

xj(t − τ1j)

x2 −
1

|J2|

∑
j∈J2

xj(t − τ2j)
...

xn − 1
|Jn|

∑
j∈Jn

xj(t − τnj)

⎤⎥⎥⎥⎥⎦ (9)

In the case where all the τij’s are zero, i.e. when infor-
mation is exchanged instantaneously, the operator L̄ reduces
to the (dimensionally extended) Laplacian of the formation
(see [1]).

III. DIRECT STABILITY INVESTIGATIONS

A direct method of investigating the stability of a linear
system with delays has been described in [8]. This method
is applicable to a linear autonomous (and homogeneous)
retarded functional differential equation (RFDE) of the form

ẋ(t) = L(xt) (10)

where xt ∈ B is defined by

xt(θ) = x(t + θ), θ ∈ [−h, 0] (11)

and the functional L : B → R
n is continuous and linear,

where B denotes the vector space of continuous and bounded
functions mapping the interval [−h, 0] into R

n.
According to the Riesz Representation Theorem the RFDE

can be written in the form

ẋ(t) =

∫ 0

−∞

[dη(θ)]x(t + θ) (12)

where η is a matrix of functions of bounded variation on
(−∞, 0] and the integral is a Riemann-Stiltjes one.

The characteristic function corresponding to the linear
autonomous RFDE (10) is given by

D(s) = det(sI −

∫ 0

−∞

esθdη(θ)), s ∈ C (13)

where C is the set of complex numbers.
The definition of stability used in [8] is that the roots of

the characteristic function have strictly negative real parts. It
is also assumed that D(s) does not have any zeros on the
imaginary axis. This in turn assures the asymptotic stability
of the origin under the dynamics defined by the RFDE.
However (see also [1]) in the study of the stability of a
formation, it may happen that some of the roots of the
characteristic function are zero; these roots may correspond
to the “unobservable” part of the dynamics of the formation
which represents the motion of the formation “as a whole”.
For this reason, it is necessary to make an extension of the
result in [8] for it to be valid in the case of zero roots of the
characteristic function. The goal in this section is to make
this extension.

Using Cauchy’s argument principle and the fact that the
characteristic function D has no poles in the right hand plane
(see [8]) the number N of zeros of D in the right hand plane
can be expressed as

N =
1

2πi
lim

H→∞,ε→0

4∑
k=1

∮
(gk)

1

D(λ)

dD(λ)

dλ
dλ (14)

where (gk) (k = 1, 2, 3, 4) are given in the complex plane
as follows:

(g1) : s = Heiφ, H ∈ R+, φ ranges from −π
2 to +π

2 ;
(g2) : s = iω, where ω ranges from H to ε;
(g3) : s = εeiφ, ε ∈ R+, φ ranges from +π

2 to −π
2 ;

(g4) : s = iω, where ω ranges from −ε to −H;
For the first leg of the integration contour, (g1), we have

(see [8])
1

2πi

∮
(g1)

1

D(λ)

dD(λ)

dλ
dλ =

n

2
(15)

where n is the dimension of the state space.
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To determine the contribution from the third leg of the
integration contour (g3), one can make use of a Taylor
expansion of D(λ) for small λ under the assumption that
D(0) = 0. It is then straightforward to show that the
contribution is

1

2πi

∮
(g3)

1

D(λ)

dD(λ)

dλ
dλ = −

1

2
. (16)

Lastly, for legs (g2) and (g4) we have

1

2πi

∮
(g1)∪(g4)

1

D(λ)

dD(λ)

dλ
dλ =

1

π
lim

H→∞,ε→0
∆[ε,H]ζ

(17)
where ζ is the argument of D(iω). Putting together (15),
(16), and (17) one obtains

N =
n − 1

2
+

1

π
lim

H→∞,ε→0
∆[ε,H]ζ (18)

The last term in (18), i.e. the value of the change in the
argument of ζ, can be evaluated in much the same way as
the method used in [8]. One starts by denoting the real and
imaginary parts of the zeros of D(iω) by R(ω) and S(ω). It
is assumed that the dimension of the state space n is even (a
similar approach can be used for the case where n is odd).

If one denotes the number of zeros of R in the range
[0,∞) by r, it can be shown (see [8]) that when n is
even r is finite. Next, let the zeros of R be denoted by
ρr = 0, ρr−1, ρr−2, ..., ρ1 where 0 < ρr−1 < ρr−2 < ... <

ρ1. In the interval [0, ρ1] the zeros of S are denoted by
σ1 ≥ σ2 ≥ ... ≥ σs = 0 where ρ1 > σ1. Now, defining
r∗ such that ρr∗ > σs−1 and ρr∗ + 1 < σs−1, and using
Lemma 2.7 in [8] one has

∆[σs−1,∞]ζ = πsgnR(ρ1 + 0)

r∗∑
k=1

(−1)k+1sgnS(ρk) (19)

Also, we note that

lim
ε→0

∆[ε,σs−1]ζ = lim
ε→0

ζ(ε) − ζ(σs−1), (20)

or,

lim
ε→0

∆[ε,σs−1]ζ] = lim
ε→0

arctan(
S(ε)

R(ε)
) − ζ(σs−1). (21)

This gives the final formula for the total number of zeros
in the right hand plane

N =
n

2
−

1

2
+ sgnR(ρ1 + 0)

r∗∑
k=1

(−1)k+1sgnS(ρk) + . . .

1

π
(lim
ε→0

arctan(
S(ε)

R(ε)
) − ζ(σs−1)). (22)

A. Example

Consider a one-dimensional formation of three vehicles
that has dynamics given by

ẋi = Axi + Bui; xi ∈ R2 (23)

where

A =

(
0 1
0 0

)
(24)

and

B =

(
0
1

)
. (25)

The control ui is defined through

ui =
∑
j∈Ji

bij(xi − xj(t − τ)), (26)

where each bij is a 1 × 2 matrix.
Defining the formation-wide state vector by

x =

⎡⎣ x1

x2

x3

⎤⎦ (27)

the overall dynamic system can be written

ẋ = Ax + Bx(t − τ) (28)

where the matrices A and B are defined through

A =

⎡⎢⎢⎢⎢⎣
0 1 0∑

j∈J1

b1j(1)
∑

j∈J1

b1j(2) 0

0 0 0
0 0

∑
j∈J2

b2j(1)

0 0 0
0 0 0

. . .

0 0 0
0 0 0
1 0 0∑

j∈J2

b2j(2) 0 0

0 0 1
0

∑
j∈J3

b3j(1)
∑

j∈J3

b3j(2)

⎤⎥⎥⎥⎥⎦ (29)

and

B =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 −b12(1)
0 0 0

−b21(1) −b21(2) 0
0 0 0

−b31(1) −b31(2) −b32(1)

. . .

0 0 0
−b12(2) −b13(1) −b13(2)

0 0 0
0 −b23(1) −b23(2)
0 0 0

−b32(2) 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (30)
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For the above system D(s) will take the form

D(s) = det(sI − A − Be−τs). (31)

Thus the determinant will have a parametric dependence on
the time delay τ . Denoting the real and imaginary parts of
D(iω) by R(ω; τ) and S(ω; τ), respectively, (18) can now
be used to determine the values of τ for which N = 0.

It is straightforward to show (through numerical calcu-
lations) that 1

π
(limε→0

S(ε;τ)
R(ε;τ) − ζ(σs−1)) = − 1

2 for all τ .
Then, with m=3, the condition for N = 0 is that

sgnR(ρ1 + 0; τ)

r∗=2∑
k=1

(−1)k+1sgnS(ρk; τ) = 2 (32)

To study this last condition contour plots of S(ω; τ) and
R(ω; τ) in the ωτ -plane are used as shown in Figure 1.
S(ω; τ) = 0 on the dashed curve and R(ω; τ) = 0 on the
solid curves. Both S(ω; τ) and R(ω; τ) are also zero for
ω = 0 for all values of τ . In addition R(ωτ) < 0 in the
shaded region and R(ωτ) > 0 in the non-shaded region. It
then follows directly from (32) that D(iω) is stable for all
τ < 1.5.

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

ω

τ

Fig. 1. Plots of R(ω) = 0 and S(ω) = 0 in τω-plane. The system is
unstable for τ > 2.2

As an illustration of the result above, the x-coordinates of
the vehicles as functions of time are shown in Figure 2 for
the case τ = 0.5, i.e. the stable case. In Figure 3, the same x-
coordinates are shown for the case τ = 1.6which is unstable

as expected. The initial values used for the x−coordinates
of the vehicles are in both cases x1(0) = 1, ẋ1(0) = −0.1,
x2(0) = 0, ẋ2(0) = 0, x3(0) = 0, ẋ3(0) = 0.1.
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0
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0.8

1

t

x

Fig. 2. Plots of x1 (solid) and x2 (dashed) and x3 (dashed-dotted as
functions of time for τ = .5
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Fig. 3. Plots of x1 (solid) and x2 (dashed) and x3 (dashed-dotted) as
functions of time for τ = 1.6

IV. INDIRECT STABILITY DETERMINATION:
NYQUIST CRITERION

It is shown in [2] how the stability of a formation may
be determined indirectly after a Schur transformation of the
original linear dynamic system. In the case where there
are delays in the information transfer this cannot be done
directly. However a similar method can be used on the
Laplace-transformed system. This approach is the subject of
this section.
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A Laplace transform of (8) gives

sIX = (Â + ̂BK1C1)X + B̂HV + BK2C2LX (33)

sIV = Ĝ1C1X + F̂ V + Ĝ2C2LX (34)

where LX is the Laplace transform of L̄x.
To further analyze (34) we define the “delay-sensitive”

adjacency matrix A(τ) such that A
(τ)
ij = eτij if there is an

arc between nodes i and j and and τij is the delay in the
information transfer along that arc, and A

(τ)
ij = 0 otherwise.

Now let D be the matrix of the in-degree of each vertex along
the diagonal. The delay-sensitive Laplacian can be defined
through

L(τ) = I − D−1A(τ) (35)

Note that with the above definition of the delay sensitive
Laplacian, the matrix L in (34) is a dimensional extension
of L(τ), i.e. L = L

(τ)
(n). The dimensional extension of an

N ×N matrix A denoted by A(n) is defined such that A(n)

is an n×n matrix of N×N diagonal matrices. The diagonal
elements of component matrix ij of An are equal to Aij .

Next, denoting the Schur transformation of of L(τ) by T ,
i.e.

L(τ) = TUT−1 (36)

where U is upper triangular with the eigenvalues of L(τ)

along the diagonal, and using Lemma 2 in [1], it follows
that

[
sIX̃

sIṼ

]
=

[
Â + ̂BK1C1 + ̂BK2C2U(n) B̂H

Ĝ1C1 + Ĝ2C2U(n) F̂

] [
X̃

Ṽ

]
(37)

where X̃ = T−1
(n)X and Ṽ = T−1

(m)V All the terms in the
above coefficient matrix are either block diagonal or upper
triangular. Stability of the system therefore only depends
only on the diagonal elements of U , i.e. the eigenvalues
of L. Introducing the diagonal matrix λ consisting of the
eigenvalues of L(τ) one can conclude that the stability of
(37) is equivalent to the stability of the system[

sIX̃

sIṼ

]
=

[
Â + ̂BK1C1 + ̂BK2C2λ B̂H

Ĝ1C1 + Ĝ2C2λ F̂

][
X̃

Ṽ

]
(38)

Note that this last system is stable if for each i, the system[
sIX̃i

sIṼi

]
=

[
Â + ̂BJ1C1 + ̂BJ2C2λi B̂H

Ĝ1C1 + Ĝ2C2λi F̂

][
X̃i

Ṽi

]
(39)

is stable.

A. Example

The Schur transformation of L in (34) generally leads to
a complicated set of equations that is not readily solved. For
that reason we study, as an example, the stability of a one-
dimensional formation of two vehicles with dynamics given
by

ẋ = Ax + Bx(t − τ) (40)

where the right hand side of (40) corresponds to the term̂BK2C2L̄ in (8), i.e. all other terms in that equation are zero.
We assume that the matrices A and B have the form

A =

⎡⎢⎢⎣
0 1 0 0
k1 d1 0 0
0 0 0 1
0 0 k2 d2

⎤⎥⎥⎦ (41)

and

B =

⎡⎢⎢⎣
0 0 0 0
0 0 −k1 −d1

0 0 1 0
−k2 −d2 0 0

⎤⎥⎥⎦ (42)

Note that in this case the procedure described above
involving the Schur transformation of L is equivalent to the
diagonalization of the coefficient matrix of X on the right
hand side of the Laplace transformed system. The diagonal
elements can subsequently be studied from the point of view
of the Nyquist Stability Criterion. The four Nyquist diagrams
for the system are shown in Figure 4. The value of τ used is
1.95 i.e. just above the bifurcation value which is reflected
by the fact that one branch of the diagram just encircles
s = −1.
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Fig. 4. Nyquist plots of the four “eigensystems” for τ = 1.95. (The arrows
show direction of motion with increasing ω.)
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We also use the directed method described in section
2 to determine the stability region for this problem. The
characteristic equation is given by

D(s, τ) = Det[sI − A − Be−sτ ] (43)

An evaluation of the determinant and its real and imagi-
nary parts and the use of (22) now allows us to obtain the
contour plot shown in Figure 5. From Figure 5 we conclude

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

ω

τ

Fig. 5. Contour plots of R(ω) = 0 (dashed) and S(ω) = 0 (solid). S(ω)¡0
in the dashed region.

that the system is stable for τ < 1.95.

V. CONCLUSIONS

The amount of information flow between the vehicles
in a formation, i.e. for example how many neighbors a

given vehicle has, how often the information is updated,
whether there are delays in the information, etc. is crucial in
determining the stability of a formation. On the other hand,
the design of the information flow itself may need to obey
certain constraints, e.g. the maximum number of vehicles a
given vehicle may communicate with, the rate of update of
information etc. This may be due to band-width constraints,
power constraints, or even for the sake of minimizing the
risk of interception of communication. For these reasons it
is important to study the interplay between the information
flow, the dynamics of the vehicles, and the stability of the
formation. A good understanding of this interplay allows for
the design of efficient communication channels that furnish
just the right amount of information to each vehicle.

The results in this paper, regarding the determination of
the maximum amount of allowable delay that does not lead
to instability, can be used in the design of the information
flow architecture of a formation.

It is apparent, however, that the calculations involved to
get the allowable delay as presented in this paper (though
straightforward in principle) are very complicated in im-
plementation. Additional work to study other possible ap-
proaches for the determination of the allowable delay would
therefore be of interest.

Another issue that has not been addressed in this paper
is that the delay in information exchange between vehicles
may not be uniform, i.e. different pairs of vehicles may
experience different amounts of delay in their respective
communications. This is also a subject that requires further
study.
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