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Abstract— The main goal of this paper consists in fault diag-
nosis of systems represented by a multi-model approach. Partial
knowledge of the system representation around operating points
must allow to obtain its dynamic behaviour under modeling
errors consideration. The goal of this paper is to decouple
modeling errors through a wide operating range by a dedi-
cated polytopic Unknown Input Observer (UIO). The robust
polytopic observer allows an optimization of modeling errors
matrix distribution and permits to develop a fault diagnosis
strategy on a wide operating range. Polytopic observer stability
is guaranteed by pole assignment established through Linear
Matrix Inequality (LMI). The effectiveness and performances
of the method are illustrated in simulation considering a CSTR.

I. INTRODUCTION

The increasing demands for good performance and higher
standards of safety and reliability result in more emphasis on
fault diagnosis. Fault detection and isolation (FDI) refers to
the task of inferring the occurrence of faults in a process and
finding the root causes of the faults. Fault diagnosis based
on analytical models is developed for exact and uncertain
linear mathematical description of the system, several books
are dedicated to these topics: [1] and [2]. FDI on nonlinear
systems remains a challenge due to the problem of discrimi-
nating between disturbances and faults through a wide range
of operating conditions. Different techniques based on an
exact knowledge of the nonlinear system allow to generate
residuals insensitive to fault by specific decoupling methods
[3], [4] or geometric approach [5], [6].
An attractive alternative to nonlinear modeling problem is
to use a multi-linear model approach. This approach is
successfully used for some nonlinear systems in control
field but rarely in FDI, and consists in partitioning the
operating range of a system into separate regions in order
to synthesize a global representation. The reader could refer
to [7] for a global review on multiple models strategy, and
also for well developed identification method and modeling
problems. A polytopic representation is sometimes used in
multi-model for nonlinear systems modeling as for example
in fault-free case in [8], [9], [10] and [11], and in faulty
case in [12]. Multiple Model Adaptive Estimation (MMAE)
[13] or Interacting Multiple Model (IMM) [14] introduce
a multi-model approach for FDI, but these techniques are
developed around an unique operating point (OP). Indeed,
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these methods consider a particular multi-model approach
where each model is dedicated to a specified fault. A fuzzy
logic development is also mentioned in [1] for diagnosis
but only with Kalman or Luenberger filters which do not
permit to deal with modeling errors. Moreover, the activation
functions for each model may be not robust to faults.
This paper addresses a different method that could allow
to detect both actuator or sensor fault in nonlinear systems
which are known and exploited around few local models,
i.e. we suppose only local identification as in some indus-
trial systems around specific operating point. Compared to
methods that could detect both operating conditions evolution
and detect, isolate and estimate faults in nonlinear system
as proposed by [12] and [15], this paper considers time
varying modeling errors. Thus, the main contribution of
this paper consists in the synthesis of a residual generator
based on a Polytopic Unknown Input Observer (PUIO)
which generates robust residual against error modeling under
fault occurrence. Another kind of UIO was developed in
[16] for communication purposes but not for fault diagnosis
and more over we would like to consider possible multiple
different unknown inputs matrices which can be re-designed
in a unique matrix in order to ensure fault detection during
models transitions.
The paper is organized as follows:
Section II deals with the nonlinear system representation
under a convex set through a multi-model approach with
taking into account modeling errors in the state space rep-
resentation. Section III presents an optimal representation
of modeling errors and the synthesis of the PUIO. In
Section IV, stability of the PUIO is performed by use
of Linear Matrix Inequalities (LMI) for observer gain
synthesis. In the last Section, the performances of the PUIO
are illustrated through a nonlinear CSTR simulation.

II. NONLINEAR REPRESENTATION AND FDI FOR

POLYTOPIC SYSTEMS

A. Nonlinear Representation

Consider a discrete-time nonlinear dynamical system in
fault-free case described by:{

xk+1 = g
(
xk, uk

)
yk = h

(
xk, uk

) (1)

where xk ∈ X ∈ R
n represents the state vector, uk ∈

U ∈ R
p is the input vector and y ∈ R

m is the output
vector. We assume that functions g

(
xk, uk

)
and h

(
xk, uk

)
are continuously differentiable.
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It is assumed that dynamic behaviour of the system
operating at different operating points can be approximated
by a set of N linear time invariant models. Consider the
following state space representation of a nonlinear system
around i-th operating point, ∀i ∈ [1, . . . , N ], with additive
actuator faults:

xk+1 − xi
e =Ai(xk − xi

e) + Bi(uk − ui
e) + Eidk + Fifk

yk − yi
e = Ci(xk − xi

e) + Di(uk − ui
e)

(2)
Matrices (Ai, Bi, Ci,Di) are invariant matrices defined
around the ith operating point (OPi) generally obtained
from a nonlinear system using a first-order Taylor expansion
around (xi

e, u
i
e) with yi

e = Cix
i
e + Diu

i
e or identification

of a nonlinear system around predefined operating points
as for example in chemical processes in [11] and [10].
The fault distribution matrix is represented by Fi ∈ R

n×p.
fk ∈ R

p represents the actuator fault vector and in fault-
free case it is obviously equal to zero. The modeling errors
matrix are noted as Ei ∈ R

n×q and are supposed to be full
column rank for each operating point and dk ∈ R

q is the
associated modeling error vector. These matrices Ei can be
obtained from a second-order Taylor expansion or through an
identification procedure as treated in [1]. In the following, we
consider that Di = 0. As proposed in fault-free case in [7],
[9] and in faulty-case in [17](where Ei was not considered),
(2) can be specified by the set of system matrices:

Mi =

[
Ai Bi Ei Fi

Ci

]
,∀i ∈ [1 . . . N ] (3)

Let Sk be a matrix sequence varying within a convex set,
defined as:

Mk :=

{ ∑N

i=1 ρi
kMi : ρi

k ≥ 0,
∑N

i=1 ρi
k =1

}
(4)

So, Mk characterizes at each sample the nonlinear system
from an OP to another. Consequently, the dynamic behavior
of nonlinear system can be defined by a convex set of a
multiple LTI models, noted Υ

(
Υ :=

{
[M1, . . . ,MN ]

})
.

The representation (4) under a convex set can be considered
as a conventional modeling approach for nonlinear smooth
plant where ρi

k is an appropriate weighting function. The
function ρi

k embodies the nonlinearity of the plant and
ρi

k ∀i ∈ [1 . . . N ] lie in a convex set Ω = {ρi
k ∈ R

N , ρk =

[ρ1
k ....ρN

k ]T , ρi
k ≥ 0 ∀i and

∑N
i=1 ρi

k = 1} and
these functions are directly generated via works of [15] and
[12], which permit to generate insensitive residual to faults.
Under the assumptions that these weighting functions ρi

k are
considered as scheduling variables which are not affected by
faults or modeling errors as proposed by [15] and [12], the
nonlinear system (1) can be described by the following state
space representation:

xk+1 =
∑N

i=1 ρi
k

[
Aixk + Biuk + Eidk + Fifk + ∆xi

]
yk =

∑N
i=1 ρi

k

[
Cixk

]
(5)

with the term ∆xi, around an ith operating point, equals to:

∆xi = −Aix
i
e − Biu

i
e + xi

e (6)

As referred in (3), a new set of matrices is designed with the
additional term ∆xi such that:

Si =

[
Ai Bi Ei Fi ∆xi

Ci

]
,∀i ∈ [1 . . . N ] (7)

Based on the representation (5), we focus our attention on
the synthesis of the Polytopic Unknown Input Observer. In
order to realize an efficient FDI, a decoupled residual against
modeling errors should be generated and modeling errors
matrices definition must be reconsidered.

III. MODELING ERRORS REPRESENTATION

Modeling errors Ei are likely different for each operating
point with different distribution matrices. One way to achieve
a fault diagnosis robust to modeling errors is to make
disturbance de-coupling conditions hold true (in an optimal
sense) for all disturbance distribution matrices. This can
be done by using a single optimal disturbance distribution
matrix E∗ to approximate all of them as proposed by [1].
This optimal matrix E∗ with full column rank makes possible
de-coupling residual from modeling errors between different
OP . An exact de-coupling for each OP is robust against
modeling errors around the OP but not during transitions
between the different OP .

Let consider a set R which contains N modeling errors
modeling matrices such that

[E1 E2 . . . EN ] = R (8)

An optimal matrix E∗ that can approximate the set R is
equivalent to the following optimization problem:

min
R∗

‖R − R∗‖2
F (9)

subject to rank(R∗) ≤ m

where ‖.‖2
F denotes the Frobenius norm. The matrix R∗

is thus chosen so that the sum of the squared distances
between the columns of R and R∗ is minimized subject
to the constraint R∗ ≤ m. Moreover, the rank condition is
due to the fact that FDI scheme can distinguish faults and
modeling errors with all most m independent outputs. This
optimization problem can be solved by using Singular Value
Decomposition (SVD) on the set R∗.

The second step is to obtain the required distribution
matrix E∗ with appropriate dimension by decomposing the
rank deficient matrix R∗ as:

R∗ = R1R2 (10)

where R1 ∈ R
n×q is full column rank and R2 ∈ R

q×(N×q).
An optimal approximation for the modeling errors distribu-
tion matrix is R1 with rank q equivalent to matrix E∗.

Consequently, the following state space representation
could be considered to describe the dynamic behaviour of
the nonlinear system:

xk+1 �

N∑
i=1

ρi
k

[
Aixk + Biuk + E∗dk + Fifk + ∆xi

]
yk = Cxk (11)

Moreover, it is often possible to consider only one output
matrix C if there is no nonlinearity on the outputs.
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So, based on equation (11), a robust polytopic unknown input
observer against modeling errors is developed in the next
section.

IV. POLYTOPIC UNKNOWN INPUT OBSERVER DESIGN

Definition 1: (Polytopic Unknown Input Observer) A
polytopic observer is defined as a polytopic unknown input
observer for the system described by (11) without fault
(fk = 0), if the estimation error tends asymptotically to zero
despite unknown disturbances on the system. �

This polytopic unknown input observer is defined such that:

zk+1 =

N∑
i=1

ρi
k

[
Sizk + TBiuk + Kiyk + ∆zi

]
x̂k+1 = zk+1 + H∗yk+1

where x̂ is the state space estimation of x. The estimation
error is equivalent to

ek+1 = xk+1 − x̂k+1

= xk+1 − (zk+1 + H∗yk+1)
= xk+1 − H∗(Cxk+1) − zk+1

= [I − H∗C]xk+1 − (S(ρ)zk + TB(ρ)uk

+ K(ρ)yk + ∆z(ρ))
(12)

with notation (�)(ρ) stands for
∑N

i=1 ρi
k(�)i. By taking into

account gain decomposition K(ρ) such as K(ρ) = K1(ρ)+
Π(ρ), the equation (12) leads to:

ek+1 = [I − H∗C](A(ρ)xk + B(ρ)uk + E∗dk + F (ρ)fk

+ ∆x(ρ)) − ∆z(ρ) − TB(ρ)uk

− S(ρ)(xk − ek − H∗yk) − K1(ρ)Cxk − Π(ρ)yk

(13)
The estimation error is equivalent to:

ek+1 = S(ρ)ek − [S(ρ) − (I − H∗C)A(ρ) − K1(ρ)C]xk

+ (I − H∗C)E∗dk − [Π(ρ) − S(ρ)H∗]yk

+ [I − H∗C]∆x(ρ) + (I − H∗C)F (ρ)fk

− ∆z(ρ) − [T − (I − H∗C)]B(ρ)uk

(14)
S(ρ), T,K(ρ) and H∗ are designed so as to ensure the
stability and the convergence of the estimation error ek =
xk − x̂k without fault on the system (fk = 0). To obtain
an exact decoupling, based on an optimal modeling errors
distribution matrix E∗, the following conditions should be
satisfied:

S(ρ) = TA(ρ) − K1(ρ)C Π(ρ) = S(ρ)H∗ (15)

(I − H∗C)E∗ = 0 T = I − H∗C T∆x(ρ) = ∆z(ρ)

The robust polytopic UIO design is realized when equations
(15) hold true and S(ρ) is stable. So, estimation error without
fault occurrence, denoted ēk, tends asymptotically to zero if
all these conditions (15) are satisfied. The gain design K1(ρ)
is addressed in the next section. The necessary and sufficient
conditions for the existence of a polytopic UIO are:
(i) Rank(CE∗) = Rank(E∗)
(ii) (TAi, C) are detectable pairs, ∀i ∈ [1, 2, . . . , N ]. These
conditions are related in linear case [1].

If condition (i) is true, the synthesis of matrix H∗, which
can permit to avoid unknown input effects, is performed by:

H∗ = E∗(CE∗)+ (16)

It should be noted that the matrix E∗ is a constant matrix
∀i ∈ [1, 2, . . . , N ]. If conditions (15) hold true, the estima-
tion error ek and the residual rk are described as:

ek+1 = S(ρ)ek + (I − H∗C)F (ρ)fk

rk = Cek
(17)

Moreover, condition (ii) ensures that a gain K1(ρ) can be
synthesized in order to obtain a Hurwitz matrix S(ρ) =
TA(ρ) − K1(ρ)C and an estimation error which tends to
zero without fault. E∗ is a fixed matrix over the operating
range and for detection and isolation purposes, it is important
to constraint q + f < m, i.e. the rank q of modeling errors
matrix and the rank f of the faulty distribution matrix have
to be smaller than the number m of the outputs. For an
actuator fault isolation, a bank of p polytopic UIO has to be
used where each polytopic UIO is computed with a different
unknown input such as Enew = [E∗ F j(ρ)](with rank of
Enew equals to q + f ), with F j(ρ) is the jth column of
matrix F (ρ).

If (15) and (16) are fulfilled, the estimation error ek and
residual rk lead to:

ek+1 = S(ρ)ek + TF (ρ)fk

rk = Cek
(18)

with an exact de-coupling on E∗. However, it is essential
to examine faulty distribution matrices Fi with modeling
error matrix E∗ which have to generate different spaces.
Indeed, de-coupling can reject perturbations through the term
TE∗ in equation (15), whereas fault are represented by the
term TF (ρ). If it is very important in FDI scheme to cancel
perturbation on a system, it is widely important to be able
to detect and isolate fault through estimation error ek and
rk. Thus, some relations have to be verified around all the
operating points:

Rank[TF (ρ)] = rank[F (ρ)],∀ρ ∈ Ω (19)

This condition allows to verify that de-coupling do not affect
fault detection by the estimation error. This condition can be
translated in a geometric way such as:

N⋃
i=1

Im(Fi) ⊆ Im(TT ) (20)

If the union image Fi is included in the image of de-
coupling matrix TT , then fault detection is possible over
all the operating range. It is equivalent to:

N⋃
i=1

Im(Fi)
⋂

Ker(T ) = {0}

= Im([F1 . . . Fi . . . FN ])
⋂

Ker(T ) = {0} (21)

If condition (21), which can be checked off-line, is fulfilled,
de-coupling do not affect fault detection. It could be noticed
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that all Fi are supposed to be full column rank in order
to avoid fault compensation of non-independent columns.
The estimation error is not corrupt by modeling errors
based on an approximated matrix E∗ over the all operating
range; but there should remain a little difference due to the
minimization criterion (9).

V. GAIN SYNTHESIS BY LMI

A. Introduction on LMI Region

Pole assignment by LMI is dedicated for convex sets
[18]. The main objective is to ensure, at first, polytopic
observer stability and in a second time to constraint its poles
in a specified region of the complex plane. The observer
dynamic is performed by decomposing complex plane in
LMI region.

Definition 2: LMI region [19]
A subset D of the complex plane is called an LMI region
if there exists a symmetric matrix α ∈ R

m×m and a matrix
β ∈ R

m×m, such that
D = z ∈ C : fD(z) < 0 (22)

with fD(z) = α + zβ + z̄βT where fD(z) is called the
characteristic function. �

Eigenvalues of a real matrix A lie in D [19], if and only if
there exists a symmetric positive definite matrix P > 0, such
that
MD(A,P ) = α ⊗ P + β ⊗ (AP ) + βT ⊗ (AP )T < 0 (23)

Then, it is both possible to constraint poles of the observer
to a prescribed region and ensure it stability.

B. Poles Placement of the Robust Polytopic UIO under
LMI Constraints

According to (18), the estimation error ēk, without fault,
is expressed as

ēk+1 = S(ρ)ēk =
(
(I − H∗C)A(ρ) − K1(ρ)C

)
ēk

=
(
Ā(ρ) − K1(ρ)C

)
ēk

(24)
Proposition 1: Let D(r) a LMI region defining a disk

(included in the unit circle) with a center (0, 0) and a radius
0 < r < 1. The estimation error (24) is called quadratically
D-stabilizable (all the complex poles lie in LMI region D)
if there exists matrices Ri for i = [1 . . . N ] and a positive
symmetric matrix X > 0 with appropriate dimensions such
that ∀i ∈ [1 . . . N ]:(

−rX ĀT
i X − CT RT

i

XĀi − RiC −rX

)
< 0 (25)

with Ri = XK1
i . �

Proof:
If (25) is fulfilled ∀i ∈ [1 . . . N ], then by using notation
Ri = XK1

i , it follows that(
−rX (Āi − K1

i C)T X

X(Āi − K1
i C) −rX

)
< 0 (26)

The poles of the matrix (Āi − K1
i C) lie in a circle with a

center (0, 0) and a radius 0 < r < 1 (Cf. Definitions of such
elementary LMI regions in [19]). By weighting each LMI

(26) by ρi and summing all of them with
∑N

i=1 ρi = 1, the
inequality (26) leads to(

−rX
∑N

i=1 ρi(Āi − K1
i C)T X

X
∑N

i=1 ρi(Āi − K1
i C) −rX

)
< 0

(27)
where matrix

∑N
i=1 ρi(Āi−K1

i C) can be written as (Ā(ρ)−
K1(ρ)C) under the convex set Ω, ensuring that poles of
the estimation error ēk in (24) lie in region D with gains
K1(ρ) =

∑N
i=1 ρiX

−1Ri, ∀i ∈ [1, . . . , N ]. The estimation
is said quadratic D-stable. �

Remark: if parameter r = 1 then LMI in (25) expresses
quadratic stability in discrete case with notation Ri = XK1

i

and with a Schür Complement, we find after some compu-
tations:
(Āi − K1

i C)T P (Āi − K1
i C) − P < 0 and P > 0 that is

the quadratic stability of estimation error with respect to
X−1 = P > 0 at each vertex ∀i ∈ [1, . . . , N ].

We should note that using LMI, observer gain synthesis
is made through a polytopic form and estimation error (24)
satisfies to the condition of quadratic D-stability with X > 0
for the Lyapunov matrix. This proposed solution allows
to ensure a quadratic D-stability for the estimation error
(without fault) and to fixe the dynamic of the polytopic UIO
for the considered system. Poles constraints are specified
with LMI defining a prescribed region of the complex plan.

VI. CSTR: CONTINUOUS STIRRED TANK REACTION

A. System Description

The performance of the robust polytopic UIO is illus-
trated through a Continuous Stirred Tank Reaction simulation
(CSTR). A full description of the CSTR could be found in
[20]. This system is a nonlinear chemical reactor that exhibits
many interesting properties like input multiplicity, a gain sign
change, asymmetric response and both minimum and non-
minimum phase behavior [21]. The, so called van der Vusse
reaction, is summarized by the following reaction scheme:
A � B with B � C and 2A � D.
The dynamic behaviour of the reactor is classically described
by the following nonlinear differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĊA = V̇
Vr

(CA0 − CA) − k1(v)CA − k3(v)C2

A

ĊB = V̇
Vr

CB + k1(v)CA − k2(v)CB

v̇ = V̇
Vr

(v0 − v) − 1

ρCp

(
k1(v)CA∆HRAB + k2(v)CB

× ∆HRBCk1(v) + k3(v)C2

A∆HRAD

)
+ kwAr

ρCpVr
(v − vk)

v̇k = 1

mkCP K
× ((Q̇k − vk) + kwAr(v − vk))

(28)

with ki(v) = ki0e
Ei

v+273.15 . The model has four states:
concentration of A (CA) with an initial concentration CA0,
concentration of B (CB), temperature v with a fixed value
for the feed temperature v0 and cooling jacket temperature
vk. It is assumed that states are directly measurable except
for vk. The input variables are the flow rate normalized by
the reactor volume V̇

Vr
and the heat removal Q̇k.

B. Operating Conditions

A specific condition, reported in the benchmark [20],
underlines the fact that concentration of B should be taken
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into the range [0.8; 1.09] mol.l−1 for manipulated variables
V̇
Vr

lying in [3h−1; 35h−1] and [−9000kJ.h−1; 0] for Q̇k.
The feed temperature v0 is considered as a fixed value
at 105oC as proposed in [20]. In the proposed study, the
CSTR is controlled in an open-loop way with multiple
desirable concentrations of product B, each of them defining
an operating point. Thus, CSTR could produce different
concentrations CB and the system is described around pre-
defined operating points. By taking into account the static
characteristic illustrated in figure (1) and in order to exploit
the nonlinear system in a wide range, concentrations of B are
CB1, CB2, CB3 with respectively 0.85, 1.00, 1.09mol.L−1.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

C
B

(m
o
l.
L
−

1
)

Flow rate V̇
Vr

CB1

CB2

CB3 CB2

Fig. 1. Steady state gains

It can be noted that concentration CB2 = 1.00mol.L−1

could be obtained for two different control values V̇
Vr

: two
operating points are associated to this concentration.

10 20 30 40 50 60
0

2

4

C A

10 20 30 40 50 60
0.6

0.8

1

1.2

C B

10 20 30 40 50 60
108

110

112

114

116

V

Time (min)

Fig. 2. Dynamic evolution of the measurable states

Figure (2) shows the dynamic evolution of the measurable
states with a flow rate, in the nominal case, presented in
figure (4) that permits to cover the wide operating range
conditions. It could be noticed that there is non-minimum
phase behaviour appearing on concentrations of A and B

during a transition.

C. Experiments and Results

Based on the physical dynamic equation of the system,
linear state space models were obtained around four OP
using a first order linearization. These four operating points
developed are: CB1 = 0.85mol.L−1, CB3 = 1.09mol.L−1

and CB2 = 1.00mol.L−1 with V̇21

Vr
= 7.8570h−1 and

CB2 = 1.00mol.L−1 with V̇22

Vr
= 27.90h−1. The nonlinear

model has been discretized through a Tustin method in order

to provide discrete linear models represented in equation
(11). Disturbance matrices of modeling error Ei are directly
obtained by a second order linearization and an unique matrix
E∗ is computed through an optimization technique based on
Singular Value Decomposition as proposed in [1]. An unique
actuator fault on the manipulated variables V̇

Vr
is considered,

fault matrices Fi are related with the column of Bi. Accord-
ing to the four linear models and under the assumptions that
the interpolation functions ρi are insensitive to faults , figure
(3) shows the sequence of activation functions ρi generated
from [17].

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (min)

ρ1 ρ2 ρ3 ρ4

Fig. 3. Weighting functions

Based on the unique disturbance matrice E∗ ∈ R
4×2,

the polytopic observer gain synthesis is performed by pole
placement developed in the previous paragraph by a LMI
region defined with r = 0.5. The different matrices are given
in the Appendix.

In a first experiment, the polytopic UIO is evaluated
without fault with the control input illustrated in figure
(4). This residual norm is presented in figure (5). It can
be observed that this norm is different from zero around
operating points because polytopic UIO is synthesized in
order to obtain an exact decoupling against E∗, but this
matrix is just an optimal approximation of modeling errors.
During transitions, uncertainties are minimized and the norm
is very closed to zero. The magnitude of the residual norm is
almost constant through all operating points and represents
the modeling errors due to approximations of modeling
error representation. We should underline that an adaptive
threshold could be taken into account the specificities of the
polytopic UIO synthesis in order to generate an efficient
residual evaluation.

In a second experiment, an actuator fault with a loss of
65% from the nominal value, is introduced as in figure (4)
during the second and the third operating point. The faulty
control input is sent to the system and the computed control
input is exploited by the polytopic UIO. This experiment
simulates an actuator fault that would be stuck between OP1

and OP2, then, a partial lost of an actuator fault is simulated
during transitions of OP2 and OP3. At the last change of
operating point OP3-OP4, the actuator fault disappears. Due
to the fact that we consider only one actuator fault which can
occur into the system, the fault detection is equivalent to a
fault isolation result. According to the synthesis of the robust
polytopic UIO, the residual norm is sensitive to the fault
occurrence. As illustrated in figure (5), the residual norm of
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Fig. 4. Faulty control input and nominal control input

the polytopic UIO is sensitive to actuator fault and robust
to modeling errors. The actuator fault is detected easily due
to the magnitude of the residual norm.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
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Time (min) 
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fault-free case

Fig. 5. Residual norms evolution with and without fault

VII. CONCLUSION

In this paper, a new residual generator robust against
modeling errors was developed. This residual generation is
dedicated to fault diagnosis of systems based on a multi-
model approach which operate around specific and prede-
fined OP . The modelling errors approximation over a set of
OP allows an unique decoupling for all the system range
even during transitions. Our contribution is underlined by
a polytopic UIO that generates decoupled residuals from
modeling errors. The observer gain synthesis is realized by
LMI so as to ensure both stability and pole assignment
of the polytopic UIO. Actuator fault diagnosis of nonlinear
systems is realized under modeling errors. The illustration
is made through a CSTR simulation around multi operating
conditions.

APPENDIX

E
∗

=

⎡⎢⎢⎣
−0.8142 1.3831

−0.0032 −1.6090

11.7210 0.0956

0 0

⎤⎥⎥⎦ H
∗
=

⎡⎢⎢⎣
0.42 −0.49 −0.03

−0.49 0.57 −0.03

−0.03 −0.03 0.99

0 0 0

⎤⎥⎥⎦

K
1
1 =

⎡⎢⎢⎣
0.43 0.51 0.03

0.54 0.24 0.02

0.04 0.03 −0.19

3.78 3.27 0.79

⎤⎥⎥⎦ K
1
2 =

⎡⎢⎢⎣
0.38 0.47 0.02

0.50 0.20 0.02

0.04 0.03 −0.19

3.64 3.21 0.78

⎤⎥⎥⎦

K
1
3 =

⎡⎢⎢⎣
0.41 0.50 0.03

0.52 0.23 0.02

0.04 0.03 −0.19

3.81 3.25 0.79

⎤⎥⎥⎦ K
1
4 =

⎡⎢⎢⎢⎢⎣
0.30 0.41 0.02

0.43 0.15 0.02

0.03 0.02 −0.19

3.84 3.12 0.75

⎤⎥⎥⎥⎥⎦

X = 10
3

×

⎡⎢⎢⎢⎢⎣
1.50 0.24 0.01 −0.06

0.24 1.42 0.01 −0.05

0.01 0.01 1.21 −0.01

−0.06 −0.05 −0.01 0.01

⎤⎥⎥⎥⎥⎦ C =

⎡⎣ 1 0 0 0

0 1 0 0

0 0 1 0

⎤⎦

Matrices R1, R2, R3, R4 are not reported. It could be done
by the relation Ri = XK1

i .
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