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Abstract— In this paper, an active Fault Tolerant Control
(FTC) strategy is developed to systems described by multiple
linear models to prevent the system deterioration by the
synthesis of adapted controllers. First, a Polytopic Unknown
Input Observer is synthesized for providing actuator fault
estimation. The actuator fault estimation is used in a FTC
scheme which schedules some predefined state feedback gains.
These gains are performed through LMI both in fault-free
and faulty cases in order to preserve the system performances
over a wide operating range. For each separate actuator, a
pole placement is designed by pole clustering. The effectiveness
and performances of the method have been illustrated in
simulation considering a hydraulic system: a three-tank system.

I. INTRODUCTION

The objective of Fault Tolerant Control system (FTC)
is to maintain current performances closed to desirable
performances and preserve stability conditions in the pres-
ence of component and/or instrument faults. Accommodation
capability of a control system depends on many factors such
as the severity of the failure, the robustness of the nominal
system, and the actuators redundancy. Various approaches
for FTC have been suggested in the literature [1], [2]
and [3] but often deal with linear systems. For nonlinear
systems, the design of Fault Tolerant controller is far more
complicated. Nonlinear systems based on multiple linear
models, represents an attractive solution to deal with the
control of nonlinear systems [4], [5] or Fault Detection and
Isolation (FDI) methods as in the chapter nine of [6] where
nonlinear dynamic systems are described by a number of
locally linearized models based on the idea of Tagaki-Sugeno
fuzzy models or as interpolated multiple linear models [7]. A
great number of gain scheduling strategies are developed in
fault-free case [4] and we proposed to develop one of them in
faulty-case. Various recent FDI/FTC studies, based on a mul-
tiple model method have been developed in order to detect,
isolate and estimate an accurate state of a system in presence
of faults/failures around an unique operating point [8] and
in chapter 7 of [2]. Multiple Model Adaptive Estimation
(MMAE) [8] or Interacting Multiple Model (IMM) introduce
a multi-model approach for FDI, but these techniques are
developed around an unique operating point (OP). Indeed,
these methods consider a particular multiple or multi-model
approach where each model is dedicated to a specified fault.
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A polytopic representation is sometimes used in multi-model
or piecewise linear models [9].
This paper addresses a more general method that could allow
to detect actuator fault in a nonlinear system. Compared to
multi-model based reconfigurable control method presented
by [10], this paper does not consider some redundant hard-
ware which is very useful when failures are supposed to
occur on the system. In this paper, an active fault tolerant
control strategy is developed so as to avoid actuator fault
effect on nonlinear system where faults are assumed to be
incipient, abrupt but not generate a total actuator fault i.e.
a failure. The developed method preserves the system per-
formances through an appropriate gain scheduling synthesis
in faulty case with a FDI module dedicated to actuator fault
estimation in multi-model framework. Compared to recent
work applied to similar nonlinear system [11], where a
multi-model representation is considered, the proposed FTC
strategy is not based on an additional control law but on the
redesign of appropriate gain in faulty case allowing stability
and performances of the system.

The paper is organized as follows. In section II, we intro-
duce a state space representation for nonlinear systems with
additive and multiplicative fault around predefined operating
points. A Polytopic Unknown Input Observer is synthesized
for estimating actuator fault in systems represented by multi-
models. In section III, we introduce a pole placement by
LMI region and then a gain synthesis for each actuator
generates an active global state feedback synthesis. A simula-
tion example is given in section IV to illustrate the proposed
method. Finally, concluding remarks are given in the last
section.

II. NONLINEAR REPRESENTATION AND FDI FOR

POLYTOPIC SYSTEMS

A. Nonlinear representation

Consider a discrete-time nonlinear dynamical system in
fault-free case described by:{

xk+1 = g
(
xk, uk

)
yk = h

(
xk, uk

) (1)

where xk ∈ X ∈ R
n represents the state vector, uk ∈

U ∈ R
p is the input vector and y ∈ R

m is the output
vector. Functions g

(
xk, uk

)
and h

(
xk, uk

)
are continuously

differentiable.
It is assumed that dynamic behaviour of the system oper-

ating at different operating points can be approximated by a
set of N linear time invariant models as presented in [12],
[13]. Consider the following state space representation of a
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nonlinear system around j-th operating point, ∀j ∈ [1 . . . N ],
with additive actuator faults:

xk+1 − xj
e = Aj(xk − xj

e) + Bj(uk − uj
e) + Fjfk

yk − yj
e = Cj(xk − xj

e) + Dj(uk − uj
e)

(2)
Matrices (Aj , Bj , Cj ,Dj) are invariant matrices defined
around the jth operating point (OPj) generally obtained
from a nonlinear system using a first-order Taylor expansion
around (xj

e, u
j
e) with yj

e = Cjx
j
e + Dju

j
e or by an identi-

fication procedure of a nonlinear system around predefined
operating points as for example in chemical processes in
[9]. Fault distribution matrix is represented by Fj ∈ R

n×p.
fk ∈ R

p represents the actuator fault magnitude vector
which in fault-free case it is obviously equal to zero. In the
following, we consider that Dj = 0. This linear system (2)
can be specified by the set of system matrices:

Mj =

[
Aj Bj Fj

Cj

]
,∀j = [1, 2, ..., N ] (3)

Let Mk be a matrix sequence varying within a convex set,
defined as:

Sk :=

{∑N

j=1
ρ

j
kMj : ρ

j
k ≥ 0,

∑N

j=1
ρ

j
k =1

}
(4)

In the multi-model framework, Mk characterizes at each
sample the nonlinear system and consequently, the dynamic
behavior of nonlinear system can be defined by a convex
set of a multiple LTI models through interpolation or acti-
vation functions ρ

j
k. These activation functions ρ

j
k ∀j ∈

[1, 2, .., N ] lie in a convex set Ω = {ρj
k ∈ R

N , ρk =

[ρ1
k ....ρN

k ]T , ρ
j
k ≥ 0 ∀j and

∑N

j=1
ρ

j
k = 1} and

these functions are directly generated via works of [14]
which permit to generate insensitive residual to faults and
some uncertainties. We will use these works for providing
the activation functions as scheduling variable. So, activation
functions are robust against faults and the dynamic system
behaviour is well represented. based on (2) and around an
operating point, the nonlinear system can be represented by
the following way as:

xk+1 = Ajxk + Bjuk + Fjfk + ∆xj

yk = Cjxk

(5)

with the term ∆xi, around an jth operating point, equals to:
∆xj = −Ajx

j
e − Bju

j
e + xj

e (6)

As referred in (3), a new set of matrices is designed with the
additional term ∆xj such that:

Sj =

[
Aj Bj Fj ∆xj

Cj

]
,∀j ∈ [1 . . . N ] (7)

In this paper, a diagnosis procedure is developed to detect
and isolate a particular fault among several others. In the
following a unique matrix B is considered: some plants can
be modelled in such way as presented in the last section.
While a single residual is sufficient to detect a fault, a set
of structured residuals is required for fault isolation. Several
approaches have been proposed by [6] to generate structured
residuals. Here, a residual generation using unknown input
observer scheme is considered in order to be sensitive to

fault vector f∗
k and insensitive to fd

k . We consider that only a
single actuator fault may occur at a given time, simultaneous
faults are not considered. Hence, vector fd

k is a scalar and it
is considered as an unknown input. In case of an i-th actuator
fault, the system can be represented by:
xk+1 =

∑N

j=1
ρ

j
k

[
Ajxk + Buk + Fdf

d
k + F ∗

x f∗
k + ∆xj ]

yk = Cxk

(8)
with matrix Fd equals to Bi which is the ith column of B,
and matrix F ∗

x equals to B̄i which is the matrix B without
the ith column. In the following, we will consider only one
output matrix C for all OPj .

B. Polytopic UIO synthesis for actuator fault estimation

In a general way, the UIO allows to vanish undesirable in-
formation by decoupling unknown input. In this FDI scheme,
the UIO is used to isolate an actuator fault.

Definition 1: (Polytopic Unknown Input Observer)[15] A
polytopic observer is defined as a polytopic unknown input
observer (PUIO) for the system described by (8) without
fault (fd

k , f∗
k = 0), if the estimation error tends asymptoti-

cally to zero despite unknown disturbances on the system.�
This polytopic unknown input observer is defined such that:

zk+1 =
N∑

j=1

ρ
j
k

[
Sjzk + TBuk + Kjyk + ∆zj

]
x̂k+1 = zk+1 + Hyk+1 (9)

where x̂ is the state space estimation of x. The estimation
error is equivalent to

ek+1 = xk+1 − x̂k+1 (10)

where, with notation (�)(ρ) stands for
∑N

j=1
ρ

j
k(�)j , K(ρ) =

K1(ρ) + Π(ρ). S(ρ), T,K(ρ) and H are designed so as to
ensure the stability and the convergence of the estimation
error ek = xk − x̂k without fault on the system (fk = 0). To
obtain an exact decoupling, the following conditions should
be satisfied:
S(ρ) = TA(ρ) − K1(ρ)C Π(ρ) = S(ρ)H

(I − HC)Fd = 0 T = I − HC T∆x(ρ) = ∆z(ρ)
(11)

The robust polytopic UIO design is realized when relations
(11) hold true and S(ρ) is stable. So, estimation error without
fault occurrence, denoted ēk, tends asymptotically to zero
if all these conditions (11) are satisfied. The necessary and
sufficient conditions for the existence of a PUIO are:
(i) Rank(CFd) = Rank(Fd)
(ii) (TAj , C) are detectable pairs, ∀j ∈ [1, 2, .., N ]. These
conditions are related in linear case [6]. If condition (i) is
true, the synthesis of matrix H , which can permit to avoid
unknown input effects, is performed by:

H = Fd(CFd)
+ (12)

It should be noted that the matrix Fd is a constant matrix
∀j ∈ [1, . . . , N ]. If conditions (11) hold true, the estimation
error ek and the residual rk are described as:

ek+1 = S(ρ)ek + TF ∗
x f∗

k

rk = Cek
(13)
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If conditions (11-12) are fulfilled, an unknown input observer
provides an estimation of the state vector , used to generate a
residual vector rl

k = yk − Cx̂k (l ∈ [1, . . . , p]), independent
from fd

k . This means that rk = 0 if f∗
k = 0 and rk �= 0 if

f∗
k �= 0 whatever uk and fd

k (see (13)). The fault isolation is
realized by a common bank of p polytopic unknown input
observers. Each residual vector rl

k = yk −Cx̂k, produced by
the l-th polytopic unknown input observer, may be used to
detect a fault according to a statistical test: Page-Hinkley
test, limit checking test, generalized likelihood ratio test.
The reader could see [16] for more details about residual
generation and isolation purposes. Some relations have to be
verified for detection purposes, ensuring that such synthesis
do not affect fault detection:

Rank[TF ∗
x ] = rank[F ∗

x ] (14)

This condition allows to verify that de-coupling do not affect
fault detection by the estimation error [15]. This condition
can be translated in a geometric way such as:

Im(F ∗
x ) ⊆ Im(TT ) (15)

If the union image F ∗
x is included in the image of de-

coupling matrix TT , then fault detection is possible over
all the operating range. It is equivalent to:

Im(F ∗
x )

⋂
Ker(T ) = {0} (16)

If condition (16)(which can be checked off-line) is fulfilled, it
ensures that de-coupling do not affect fault detection. It could
be noticed that F ∗

x is supposed to be full column rank in order
to avoid fault compensation of non-independent columns.

According to the fault isolation, the fault magnitude es-
timation of the corrupted element is extracted directly from
the l-th polytopic unknown input observer which is built to
be insensitive to the l-th fault (f∗

k = 0).
Proposition 1: If (9) is a Polytopic Unknown Input Ob-

server, then fault estimation can be done by:

f̂d
k = F+

d

(
x̂k+1 − A(ρ)x̂k − Buk − ∆x(ρ)

)
(17)

�Proof :
Then, if (9) is a polytopic unknown input observer, x̂k will
coincide either asymptotically or in finite time with xk when
f∗

k = 0. Thus, substituting xk by x̂k in (8), multiplying left
by F+

d leads to (17). �

Note that in the presence of an actuator fault, Fd is a
matrix of full column rank. The stability condition of the
polytopic unknown input observer can be performed through
the use of LMI.

C. Pole placement of the polytopic UIO

According to (13), the estimation error ēk, without fault,
is expressed as

ēk+1 = S(ρ)ēk =
(
TA(ρ) − K1(ρ)C

)
ēk

=
(
Ā(ρ) − K1(ρ)C

)
ēk

(18)

Proposition 2: The estimation error (18) is called quadrat-
ically stabilizable if there exists matrices Rj and if there
exists a positive symmetric matrix X > 0 such that ∀j ∈
[1, . . . , N ] : (

X ĀT
j − CT RT

j

XĀj − RjC X

)
> 0 (19)

with gain matrices K1
j equal to X−1Rj . �

Proof: By weighting each LMI defined in (19) by in-
terpolation functions ρj defined in the previous section,
using notation Rj = XK1

j and summing all of them with∑N

j=1
ρj = 1, (19) becomes ∀j ∈ [1, . . . , N ] equivalent to⎛⎜⎜⎜⎜⎜⎝

X
N∑

j=1

ρj(Āj − K1

j C)T X

X

N∑
j=1

ρj(Āj − K1

j C) X

⎞⎟⎟⎟⎟⎟⎠ > 0 (20)

With a Schür Complement, LMI in (20) expresses quadratic
stability and we find after some computations:
(Āj − K1

j C)T P (Āj − K1
j C) − P < 0 and X−1 = P > 0

that is the quadratic stability in discrete case of the estimation
error. �

III. FAULT TOLERANT CONTROL SYNTHESIS

The equation (8) considers additive fault representation but
there exists multiplicative representation for specific actuator
fault. So, a local multiplicative actuator fault representation
is defined as:{

xk+1 = Ajxk + Bj(I − γa)uk + ∆xj

yk = Cjxk
(21)

with γa � diag[γa
1 , . . . , γa

p ], γa
1 ∈ R, such that γa

i = 1
represents a failure of i-th actuator and γa

i = 0 implies that i-
th actuator operates normally. The relationship between state
space representations (2) and (21) is equivalent to

Fjfk = −Bjγ
auk (22)

where the faulty matrix distribution Fj is equal to matrix
Bj in an actuator fault case. The estimation of γ̂a is
obtained from fault estimation f̂k provided by the PUIO
and availability of nominal control inputs unom

k (in fault-
free case). We attract attention that the system has to be
observable in all around each operating points and we will
now only consider linear models and not affine models, i.e.
∆xj = 0.

A. Nominal case

Let consider the state space representation (21) of non-
linear system defined around the Equilibrium Points (OPj),
∀j = 1, . . . , N

xk+1 =
N∑

j=1

ρ
j
k

[
Ajxk +

∑
i∈I

Bi
j(I − γa)uk

]
yk =

N∑
j=1

ρ
j
k[Cjxk] (23)

with I : i = 1, . . . , p the actuators for each OPj and
matrices (Aj , Bj , Cj) ∈ Sk defined in (4). Consider the
matrix representing total faults in all actuators but the i-th:

Bi
j = [0, . . . , 0, bi

j , 0, . . . , 0] (24)

and Bj = [b1
j , b

2
j , . . . , b

p
j , ] with bi

j ∈ R
n×1. It is assumed

that each column of Bj is full column rank whatever the
OPj . The pairs (Aj , b

i
j),∀i = 1, . . . , p are assumed to be

controllable for all ∀j = 1, . . . , N . Let D, a LMI region
defining a disk with a center (−q, 0), and a radius r with
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(q + r) < 1 for defining pole assignment in the unit circle
[17]. Assume that for each Bi

j , there exist matrices Xi =
XT

i > 0 and Yi, ∀j = 1, . . . , N,∀i = 1, . . . , p such as:(
−rXi qXi + (AjXi − Bi

jYi)
T

qXi + AjXi − Bi
jYi −rXi

)
< 0

(25)
It can be noticed that if q = 0 and r = 1, the previous
equation (25) is equivalent to solve a classical quadratic
stability problem. Due to space limitation basic principes
in LMI are omitted. Thus, for more details in LMI
pole placement, the reader could refer to [17]. Based on
the assumptions that for each OPj each pairs (Aj , b

i
j) are

controllable, it is possible to find a Lyapunov matrices Xi >

0 and state-feedback Ki with Yi = KiXi.
Theorem 1: Consider the system (23) in fault-free case

(γa = 0) defined for all OPj , j = 1, . . . , N : it is possible
to develop a mixing of pre-designed state-feedback gains
matrices Ki = YiX

−1
i for each actuator i with i = 1, . . . , p

such that (25) holds for all j = 1, . . . , N . The state feedback
control for each operating point is given by:

uj
nom = −(

p∑
i=1

GiYi)(

p∑
i=1

Xi)
−1xk (26)

= −Y X−1xk = −Knomxk

with
∑p

i=1
GiYi = Y , X =

∑p

i=1
Xi and Gi = Bi+

j Bi
j is

matrix that has zeros everywhere except in entry (i, i) where
it has a one. The general control law for all OPj could be
defined as:

uk =

N∑
j=1

ρ
j
kuj

nom = −

N∑
j=1

ρ
j
kKnomxk = −Knomxk (27)

�

Proof: Summation of (25) for i = 1, . . . , p gives for one
equilibrium point j

p∑
i=1

(
−rXi qXi + (AjXi − Bi

jYi)
T

qXi + (AjXi − Bi
jYi) −rXi

)
< 0

(28)
related to the quadratic D-stability in a prescribed LMI
region. Next, denote X =

∑p

i=1
Xi (with X = XT > 0) to

obtain⎛⎜⎜⎜⎜⎝
−rX qX + (AjX −

p∑
i=1

Bi
jYi)

T

qX + (AjX −

p∑
i=1

Bi
jYi) −rX

⎞⎟⎟⎟⎟⎠ < 0 (29)

Now, denote the l-th row of the matrix Yi as Y l
i , i = 1, . . . , p

and l = 1, . . . , p, i.e.
Y l

i = GlYi (30)

Therefore,
p∑

i=1

Bi
jYi =

p∑
i=1

[0, . . . , 0, bi
j , 0, . . . , 0]Y i

i = Bj

p∑
i=1

Y i
i (31)

leading to p∑
i=1

Bi
jYi = Bj(

p∑
i=1

GiYi) (32)

Thus, taking Y =
∑p

i=1
GiYi, equation (32) becomes

p∑
i=1

Bi
jYi =

∑
i∈I

Bi
jYi = BjY (33)

which, substituted into LMI (29), finally makes(
−rX qX + (AjX − BjY )T

qX + (AjX − BjY ) −rX

)
< 0 (34)

for all OPj , j = 1, . . . , N . By multiplying each LMI (34)
by ρ

j
k and summing all of them, we obtain⎛⎜⎜⎜⎜⎜⎝

−rX qX +
N∑

j=1

ρj

k
(AjX − BjY )T

qX +
N∑

j=1

ρj

k
(AjX − BjY ) −rX

⎞⎟⎟⎟⎟⎟⎠ < 0 (35)

it is equivalent to(
−rX qX + (A(ρ)X − B(ρ)Y )T

qX + (A(ρ)X − B(ρ)Y ) −rX

)
< 0

(36)
with A(ρ) =

∑N

j=1
ρ

j
kAj ∈ Sk and B(ρ) =

∑N

j=1
ρ

j
kBj ∈

Sk. Hence quadratic D-stability is ensured by solving (35)
and Y = KnomX quadratically stabilizes the system (23)
under the set Sk by solving (36) with a state feedback law
uk =

∑N

j=1
ρ

j
kuj

nom = −Y X−1xk. �

Remark 1: If all local models have the same Bj matrices, i.e.
Bj = B for all j = 1, . . . , N , it is also possible to use the
following parameter-dependent state feedback law instead of
(4):

uk =

N∑
j=1

ρ
j
kuj

nom = −

N∑
j=1

ρ
j
kKjxk (37)

with Kj = YjQ
−1. The resulting matrices remain the same

except that Kj replaces K, B replaces Bj and Yj replaces
Y .

B. Active Fault Tolerant Control design

By considering the system (23) and based on the previous
synthesis control law, the FTC method can be developed in
this section under assumptions that fault occurrence and fault
magnitude γa are known, provided by the PUIO.

Theorem 2: Consider the system (23) in faulty case (γa �=
0) coupled with regulators with gains Ki = YiX

−1
i for all

equilibrium point j = 1, . . . , N and for each actuator i with
i = 1, . . . , p. Let introduce the set of indexes of all actuators
that are not completely lost, i.e.

Θ � {i : i ∈ (1, . . . , p), γa
i �= 1}

The control action is

u
j
FTC = −(I − γa)+

(∑
i∈Θ

GiYi

(∑
i∈Θ

Xi

)−1)
xk (38)

where Gi = Bi+
j Bi

j , applied to the faulty system allows to
constrain pole placement in prescribed LMI region. �

Proof: Applying the new control law (38) to the faulty
system (21), leads to the following equation

Bj(I − γa)uj
FTC = BjΓ

a(
∑
i∈Θ

GiYi)(
∑
i∈Θ

Xi)
−1xk

with Γa =

(
Ip−h 0

0 Oh

)
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Γa is a diagonal matrix which contains only entries zero
(representing total faults) and one (no fault). Due to the fact
that only the set Θ is considered and since BjΓ

a =
∑
i∈Θ

Bi
j

models only the actuators that are not completely lost, then
performing the summations in the proof of Theorem (1)
over the elements of Θ shows that (

∑
i∈Θ

GiYi)(
∑
i∈Θ

Xi)
−1

is the state-feedback gain matrix for the faulty system
(Aj ,

∑
i∈Θ

Bi
j , Cj). �

The control law in equation (38) implies that

u
j
FTC = −KFTCxk

with KFTC = (I − γa)+
∑
i∈Θ

GiYi(
∑
i∈Θ

Xi)
−1

The global control law UFTC of the system is realized as:

uk =
∑N

j=1
ρ

j
ku

j
FTC

= −
∑N

j=1
ρ

j
kKFTCxk = −KFTCxk

(39)

IV. APPLICATION

A. Process description

The approach presented in this paper has been applied
to the well known three tanks system as in [11]. As all
the three liquid levels are measured by level sensors, the
output vector Y is [l1 l2 l3]

T . The control input vector
is U = [q1 q2]

T . The goal is to control the system around
three equilibrium points. Thus, 3 linear models have been
identified around each of these equilibrium points and the
operating conditions are given in Table (I). The linearized

TABLE I

OPERATING POINT DEFINITION

Operating point no1 no2 no3
0.20; 0.50; 0.50;

yj
e(m) 0.15; 0.15; 0.405;

0.175 0.325 0.45

uj
e 1.7509; 4.6324; 2.4761;

(m3/s) × 10−5 4.0390 1.1574 6.9787

system is described by a discrete state space representation
with a sampling period Ts = 1s. For each OP , each
control matrix pair (Aj , b

i
j) is controllable. Controllers have

been designed for levels l1 and l2 to track reference input
vector Y r ∈ R

2. Nominal controllers have been designed
through Theorem (1), leading to two state feedback gain
matrices K1,K2 (due to 2 actuators) for the three OP
in order to achieve satisfying tracking performances. The
simulation of actuator faults on the system does not affect
the controllability and observability of the system such as
assumption l1 > l3 > l2 is assumed to be always true.

B. Results and comments

Simulations have been performed such as the 3 operating
conditions described in Table (I) are reached and weighting
functions for each local model are presented in figure (1(b))
always close to the dynamic behaviour of the nonlinear
system according to the considered operating regimes [14].
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Fig. 1. System dynamic behaviour in fault-free case :(a) system outputs,
(b) activation functions ρj

k
, (c) system inputs

Figure (1) shows the outputs with respect to set-point
changes occur at time instant 300s and after at time instant
1200s. In the simulation, gaussian noises (N(0, 1e−42

)) are
added to each output signal. The reference inputs correspond
to step changes for l1 and l2. The consequence of an
actuator fault is illustrated in figure (2). A gain degradation
of pump 1 (clogged or rusty pump) equivalent to 80% loss
of effectiveness is supposed to occur at time instant 600s.
Consequently, the dynamic behaviour of the other levels is
also affected by this fault and control system tries to cancel
the static error created by the corrupted input. Consequently,
the real output is different from the reference input and
the control law is different from its nominal value. The
controller tries to cancel the fault effect with the signal
qs1 on figure (2(b) but the real available control signal is
described by variable q1. Since an actuator fault acts on the
system as a perturbation, and in spite of the presence of an
integral controller, the system outputs can not reach again
their nominal values. The presence of an integrator in the
control law allows the system to reach the nominal values
as illustrated in the third operating point (after time instant
1200s) in spite of fault persistence as illustrated in figure (4).

The PUIO is synthesized as in first section. The fault
is detected, estimated and depicted on figure (4) where we
can see its effectiveness. In the same way, the actuator Fault
Tolerant Control method’s ability to compensate faults is
illustrated in the presence of the same fault. Once the fault
is isolated and simultaneously estimated, a new control law
(39) is computed in order to reduce the fault effect on the
system. Indeed, since the effect of an actuator fault is quite
similar to the effect of a perturbation, the system outputs
reach again their nominal values, as illustrated in figure (3).
There exists a little time delay between fault occurrence and
fault compensation due to FDI module. Computation of the
tracking error norm in fault-free case, in faulty case without
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and with FTC underlines the performances of this approach
as seen in Table (II). With FTC, the tracking error norm for
output l1 is a bit larger than with the fault-free case but it still
widely smaller than the one without FTC. The actuator Fault
Tolerant Control is able to maintain performances as close
as possible to nominal ones and to ensure the closed-loop
stability despite the presence of instruments malfunction.
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Fig. 4. Actuator fault magnitude and its estimation

TABLE II

ERROR NORM COMPARAISON

Error Fault-free case Actuator fault
norm without FTC with FTC
el1 1.1063 3.3365 1.1176

Remark: This proposed scheme could have an interesting
development in aeronautic, for example, where redundant
actuators are available and where a wide operating range
is considered.

V. CONCLUSION

The method developed in this paper emphasises the impor-
tance of the active Fault Tolerant Control for systems based
on multi-model representation. This method is suitable for
partial actuator faults on a wide operating range of the sys-
tem. Actuator faults are estimated with a Polytopic Unknown
Input Observer. A robust controller is designed for each
separate actuator through an LMI pole placement in fault-
free case and faulty case. It allows the system to continue
operating safely, to avoid stopping it immediately and to
ensure stability. The synthesis of this active state feedback
control takes into account the information provided on-line
by the PUIO. The performances and the effectiveness of
this active Fault Tolerant Control based on a multiple model
approach have been illustrated through an hydraulic system.
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