
Abstract— This paper is concerned with analysis of the 
asymptotic behavior of a Lagranian system with small noise 
effects. The domain of the system operation is supposed to be 
within the domain of attraction of an asymptotically stable 
point of the unperturbed system. If noise is weak, escape from 
the reference domain is a rare event associated with large 
deviations in the system. This paper uses an extension of large 
deviations theory to the degenerate systems to develop the 
escape time asymptotics for a weakly perturbed Lagrangian 
system. Estimation of the statistical quantities is reduced to 
minimization of an associated action functional. It is shown 
that, in the case of the Lagrangian system, the solution of the 
associated variational problem can be found in a closed form, 
as a function of the system and noise parameters. As an 
example, motion of a 2n-dimensional linear system in an 
ellipsoidal domain is studied. Application of the theory to the 
nonlinear systems is illustrated by estimation of the lifetime of 
the Henon-Heiles system. 

I. INTRODUCTION

tationary statistics of the Lagrangian dynamics can be 
found as a stationary solution of a relevant Kolmogorov 

equation [1]. However, calculation of the statistical 
quantities, associated with escape processes, encounters 
serious technical difficulties. The present paper focuses 
attention on estimation of escape time for a weakly 
perturbed Lagrangian system. In the problem of interest the 
unperturbed system is asymptotically stable, the noise 
effects are small and the escape time is large.  

Consider the unperturbed model   

X = f(X), X Rm                                                               (1) 

The point X = 0 is presumed to be asymptotically  stable 
fixed point of system (1) with the domain of attraction G0,
an admissible domain of motion G G0 is an open bounded 
set in Rm with smooth boundary .
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Consider random perturbation of system (1) 

X f(X) w (t), X(0)  0    (2) 

where 0 < << 1 is a small parameter, w(t) is standard 
Wiener process Rr, is an m r - matrix.  

Whatever small the noise perturbation may be, it induces 
deviations from the unperturbed equilibrium X  0 and 
escape of the process (2) from the reference domain with a 
non-zero probability.

A performance criterion of interest is the mean time ET
where T = inf (t : X(t) G) is the first moment the process 
X(t) escapes the reference domain G. The direct calculation 
of ET in the small noise limit requires consideration of a 
singular Dirichlet problem for an associated Fokker-Plank 
equation. Both analytic and computational approaches to the 
solution of a singular PDE are prohibitively difficult, see [2] 
and references therein. The appropriate mathematical basis 
to study the long-term behavior of system (2) is large 
deviations theory. We employ the main issues of the theory 
in the form presented by Kushner [3] and Freidlin and 
Wentzell [4].  

 Large deviations theory provides an alternative approach 
to the analysis of the weakly perturbed dynamics, opposed 
to the PDE solution; see [5] for a review and discussion of 
recent advances in theory and applications. Essentially, the 
estimates of ET and related quantities are obtained as the 
solution of a minimization or variational deterministic 
problem. Large deviations principle provides the cost 
(action) functional that must be minimized by the “most 
likely” exit path. The Hamilton-Jacobi equation associated 
with minimization of the action functional was derived. 
Formally, the mean escape time and escape probability can 
be found from this equation.  

Note that the diffusion model is only an approximation of 
more intricate phenomena. Freidlin and Wentzell [4] have 
considered large deviations principle for Markov processes; 
Kushner [4] has introduced the cost functional for systems 
excited by degenerate fast noise and examined Gaussian 
excitations. Gulinskii and Liptser [6], Liptser, Spokoiny and 
Veretennikov [7] have interpreted large deviations principle 
for the diffusion model as limiting for systems with wide-
band ergodic noise.   
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A similar approach is useful in escape control. Large 
deviations principle has been applied to minimization of 
escape probability [8] and risk-sensitive escape control [9], 
[10]. A combination of the large deviations and stochastic 
averaging methods was used in the problem of controlling 
large deviations for a quasi-Hamiltonian system in the plane 
[11], [12].  

Despite the well-developed theory, explicit solutions for 
multidimensional systems are few in numbers. The 
asymptotic estimates of escape time have been found for 
linear systems [4], [13] and nonlinear non-degenerate 
diffusion systems with the drift coefficient f(x) )(xU +
l(x) provided ( )(xU , l(x)) = 0 [4]. The function U(x) is 
called quasipotential of the system.  

The Lagrangian or Hamiltonian-type systems do not allow 
separation of the quasipotential part. Wu [14] has 
established large deviations principle for stochastic 
Hamiltonian-type systems but the closed-form estimates of 
escape time and probability have not been derived.  

The objective of this paper is to investigate the escape 
processes in the multidimensional systems governed by the 
Lagrangian equations. For the sake of brevity, we consider 
small white noise model as an approximation. We derive the 
action functional for the stochastic Lagrangian system and 
construct the Hamilton-Jacobi equation for the associated 
variational problem. It is shown that, under some 
assumptions, this equation can be resolved analytically. The 
solution is found as a function of the system and noise 
parameters.  

The paper is organized as follows. Section 2 contains 
some background results concerning large deviation theory. 
We make use of Kushner’s definition of the action 
functional for a degenerate system and transform the mean 
escape time problem into a deterministic variational 
problem. The Hamilton-Jacobi equation is derived for the 
variational problem associated with calculation of the mean 
escape time for a degenerate diffusion.   

 In Section 3 we discuss the basic idea and derive the 
Hamilton-Jacobi equation associated with escape problem 
for the Lagrangian systems. We demonstrate that the 
properties of the solution are closely tied with the properties 
of the Hamiltonian function of the conservative part of the 
system. The systems allowing the closed-form solution are 
examined.  

Section 4 considers the illustrating examples. We estimate 
the meant time until escape of a multidimensional linear 
system from an n-dimensional ellipsoid. The boundary of 
the admissible domain is defined by the constraints to the 
system coordinates but there are no restrictions to the system 
velocities. The Henon-Heiles model illustrates an 
application of the theory to nonlinear systems. The mean 
time until escape through the potential barrier is estimated.  

II. BASIC METHODOLOGY

Consider systems (1) and (2) and assume that  
- (i) function f(X) in the right-hand part of systems (1) and 

(2) is continuous and satisfies the Lipschitz condition in 
G  ;

-  (ii) system (1) has a unique asymptotically stable fixed 
point X  0 in G, and all trajectories originating in the 
domain G tend to X  0.

-  (iii) the right hand sides of system (2) can be presented 
in the form   

22

1
0

00
,

)(
)(

)(
Xf
Xf

Xf                                            (3) 

the partition X = (X1, X2) is of the same dimension as f = (f1,
f2), dimensionalities of the vectors f2, w and the matrix 2 are
compatible.  

Following [3], we introduce a stochastic counterpart of 
the action functional.  At the first stage, we define an 
asymptotic cumulant function  

2
0

lim ln{E exp dttwXf

T

))]()(([

2/

0

}

(4)

=

T

XF

0

),( ds

where the partition = ( is of the same dimension as 
f = (f1, f2). Here and below the prime denotes transpose of a 
vector or a matrix. 

The function F takes the form 

F(X, ) = f1(X) f2(X) 22                        (5) 

The function F is to be assumed absolutely continuous, 
the matrix 22 = 2 2 is positive definite.  

Introduce the dual Cramer transformation (also called the 
Legendre transformation) C

C(X, ) = sup [ - F(X, )] 

where , and partition  have the same 
dimension as f1, f2. This yields

C(X, ) = ( f2(x)) 22
-1( f2(x)), if = f1(x)                 (6) 

 C(X, ) =  otherwise.
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Introduce the action functional    

S(T, ) = 2
1

T

C
0

),( dt , 1 = f1(          (7) 

where C( , ) is defined by formula (6), (t) C[0,T](Rm). If 
(t) is not absolutely continuous, then we take S(T, ) = .
Let t) be an extremal of the functional (7) leading from 

an origin 0 to a point X, that is  

S(X) = inf{S(T, ): (0) = 0, (T) = X}                            (8) 

In a deterministic system, an extremal depicts a trajectory, 
leading from an origin to a given point X. In a weakly 
perturbed stochastic system this extremal approximates, with 
probability close to 1, the trajectory of exit from the 
reference domain [3], [4].  

The mean time needed to reach the boundary of the 
domain G from an initial point X = 0 satisfies the estimate 
[3], [4]  

0
lim  2 ln (ET )

X
inf S(X) S0                                      (9) 

Estimation of escape time is thus reduced to minimization 
of criterion (7) for system (6). The variational problem (6) – 
(8) can be resolved in a standard way.

The Hamilton–Jacobi equation associated with the 
variational problem (6) – (8) takes the form  

(f1(X),
1X

S ) + (f2(X),
2X

S ) +
2
1 ( 2

2X
S

, 2
2X

S )  0

(10)
S(0) = 0

where the brackets (a, b) denote scalar product.  
We assume that 
- (iv) equation (10) has a unique continuous and 

continuously differentiable solution S(X) > 0. 
It follows from the previous consideration that, under 

assumptions (i) – (iv), estimate (9) holds for the solution 
S(x) of Eq. (10).

Remark 1. Formally, exit from an arbitrary initial point 
X(0)= x G should be examined. However, it is reasonable 
to consider exit from a small neighborhood of the origin. If 
assumption (ii) holds, a trajectory of system (3) starting at 
X(0) x is trapped into a small neighborhood of the origin X

 0, and motion evolves within this locality until the burst-
like exit from the admissible domain. The time of attraction 
to the origin, as well as the time of exit along the exit paths 
are of (1) and negligibly small compared with the period 
of motion near the asymptotically stable the origin. The last-

mentioned time interval is estimated as the time until escape.  

III. ESCAPE TIME ESTIMATES FOR LAGRANGIAN SYSTEMS

Write Eq. (10) for a Lagrangian system. Here and below 
we make use of the notations and definitions accepted in 
classic mechanics. 

The equation of motion is  

)(),(
twqB

q
L

q
qqL

dt
d                                      (11) 

where L(q, q ) is the Lagrangian of the system, w(t) Rr is
standard Wiener process, is such that the matrix A  is 
symmetric and positive definite. The parameter  << 1 is the 
small parameter of the system.  

The Lagrangian L(q, q ) is defined as 

L(q, q )  T(q, q ) – (q)   (12) 

where T(q, q )  ( q , M(q) q )/2 and (q) are kinetic and 
potential energy of the system, respectively. The matrices 
M(q) and B are symmetric positive definite square matrix. 
An admissible region G is an open domain in R2n with 
boundary . The point q = 0 is assumed to be a unique 
minimum of the function (q) in G such that (0) = 0. 
Under these assumptions, the point q = 0 is the 
asymptotically stable fixed point of the unperturbed system 
(  0) . The reference domain G is assumed to be within 
the domain of attraction of the stable equilibrium.  

Reduce system (11) to the form (3). Using the 
transformation  

p L(q, q )/ q                                                              (13) 

we define the impulse p. Construct the function  

H(q, p)  ( q , p) L(q, q ), q (q, p) M 1(q)p (14)

It follows from formulas (12) - (14) that 

H(q,p) T(q, q ) (q) = T
~ (q,p) + (q)                      (15) 

where T
~ (q,p) = T(q, M 1(q)p).  Using formulas (13) - (15), 

we transform Eq. (11) into the system 

)(tw
p
H

B
q
H

p

p
H

q
                                              (16) 
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Let the assumptions of Section 2 hold for system (16).  
Making use of the notations  

X1  q,  X2  p, f1(X)
p
H

, f2(X) = 
q
H

B
p
H

, 2 = 

we transform Eq.(10) into the Hamilton-Jacobi equation  
associated with system (16)   

{H,S}  (B
p
H ,

p
S )

2
1 (

p
S ,

p
S ) = 0

 (17) 
S(0,0) = 0 

where the Poisson bracket {H, S} is

{H, S}   (
p
H ,

q
S )  (

q
H ,

p
S )

It is easy to prove that Eq. (17) is satisfied if  

p
S  = K

p
H ,

q
S

K
q
H

(18)
K = 2A 1B,  A 

Since potential energy is independent of p, the first 
equation of systems (18) can be rewritten in the form 

p
S

K
p
T
~

= KM 1(q)p

that is  

S(q, p)  (p, KM 1(q) p)/2 Q(q)                                      (19) 

From Eqs. (18) and (19) we find  

q
Q

K
q

, Q(0) = 0                                                    (20) 

Formulas (19) and (20) define the solution of Eq. (17) and 
the associated estimate (9). Consider some special cases 
allowing the closed-form solution.  

1. The matrix K In, where In is the identity matrix of 
the n-th order, is a scalar. We obtain from Eqs. (18)  

S(q,p) H(q,p)     (21) 

2. The matrix K = diag{k1,…,kn} = Ink, where the vector k

 (k1,…, kn). Let potential energy (q) be in the form  

(q)
n

i
iqif

1
)( , fi(0) = 0                                               (22) 

This yields 

Q(q)
n

i 1
kifi(qi)  (k, f(q))                                               (23) 

where the vector f = (f1,…, fn). Formulas (19), (20) and (23) 
yield  

S(q,p) (p,KM 1p)/2  (k, f(q))                                       (24) 

3. In a number of applications, the boundary of the 
admissible domain is identified through the limiting values 
of the variable q  Gq where Gq: {q  Gq} is a bounded 
open set in Rn with boundary q. There are no particular 
restrictions to the impulse p. However, assumptions of 
Section II imply some constraints on the impulse vector p.
Then, it is implicitly supposed that an unperturbed orbit (q,
p) starting within the domain Gq Gp does not leave the sub-
domain Gq.

From our consideration it follows that the admissible 
cylindrical domain G and its boundary  can be defined as  

G: Gq Gp , : q Gp                                                   (25) 

where Gp: {p  Gp} is an open set in Rn. The domain G
satisfies conditions of Section II and the additional 
assumption 

 (ii –a) all trajectories originating in G tend to the 
stable point not leaving the sub-domain Gq.

In general, the domains Gp and G cannot be found in an 
explicit form. However, the low bound (9) can be calculated. 
Since the first term of function (19) is a positive definite 
quadratic form, and the limiting values of p are not fixed, the 
lowest value of function (19) is achieved if p  0 for any 
function Q(q). This yields

),(inf pqS ),(inf pqS
pGq

= )0,(inf qS
q

= )(inf qQ
q

Substitution of the last equality into formula (9) gives 

0
lim  2 ln (ET ) ),(inf pqS )(inf qQ

q
 = S0         (26) 

Estimate (22) implies that kinetic energy of the system is 
unsubstantial in the leading order term of the logarithmic 
asymptotics.  
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IV. APPLICATIONS AND EXAMPLES

A. Motion of a linear system in an ellipsoidal domain 
There arise a number of problems where a system should 

be kept in a given domain G until some particular job is 
finished. For example, in the problem of pointing of a 
telescope on a satellite, the domain G and the duration of the 
process are determined by the object to be photographed and 
the time required. The problem of controlled pointing of a 
telescope on a point moving within a circular or rectangular 
domain in the plane has been discussed in [15] and [16], 
respectively.

Now we estimate the mean time until escape from an n-
dimensional ellipsoid for a MDF linear system. 

The equations of motion are written in the form 

M q  + B q Cq w (t)                                             (27) 

where q Rn, M, B, C are symmetric positive definite n n
matrices, w(t) is r-dimensional standard Wiener process, is
an n r matrix such that the matrix A  is positive 
definite. Kinetic and potential energy of the system are, 
respectively,

T( q )  ( q ,M q )/2 , (q)  (q,Cq) /2                             (28) 

We identify the admissible domain of motion Gq and the 
boundary q by formulas 

Gq : (q, Lq) < 1 , q : (q, Lq)  1                                       (29) 

where L is a symmetric positive definite n n matrix. This 
implies that the admissible domain is independent of the 
system’s velocity. 

Equations (22) – (28) determine the action functional

S(q,p) = (p, KM 1p) /2  (q, KCq)/2                                 (30) 

Substituting functions (29) and (30) into formula (22), we 
find

0
lim 2 ln (ET )

1),(
min
Lqq

(q, Qq) /2 , Q =KC               (31) 

Minimization of the quadratic form in the left-hand side 
of equality (31) can be performed in the standard way.

As an example, we estimate escape time for a system in 
the plane. Equations of motion are  

iq bi iq ki
2qi i )(twi , i  1, 2                              (32) 

where wi(t) are standard Wiener processes. The domain Gq

and the boundary q are defined as 

2
2

2
2

2
1

2
1 qq  < 1, q1, 2 G q

(33)

2
2

2
2

2
1

2
1 qq  1, q1, 2 q

Equations (32) are mutually independent but the variables 
q1, q2 are interconnected through the boundary condition 
(33). From Eqs. (32) we find the matrix Q  2diag{ 2

i },
2
i  biki

2/ i
2. Then, by formula (31) we obtain 

0
lim  2ln (ET ) )][(min 2

2
2
2

2
1

2
1

2,1
qq

qqq
= l 2               (34) 

where l2  min[( 1 1)2, ( 2 2)2] . If 1 2 , then l
min( 1, 2). This implies that the exit path reach the 

boundary at the point of intersection with the minimal semi-
axis of ellipsis (33) (see [4] for discussion).

B. Motion of a particle in the Henon-Heiles potential  
The Henon-Heiles potential was introduced to describe 

dynamics of a star in a gravitational potential of a galaxy. It 
has been shown [17] that escape from the potential well is 
associated with the passage from regular to irregular motion. 
From this viewpoint, estimation of the mean escape time can 
be interpreted as estimation of the lifetime of the system.  

The equations of motion have the form  

iq b iq
iq

qq ),( 21 )(twi , i  1, 2                   (35) 

with the potential

(q1, q2) 2
1 (q1

2 q2
2  2q1

2q2 3
2 q2

3)                           (36) 

Potential (36) has the equipotential curves (q1,q2)
Const < 1/6; the equality (q1,q2) = 1/6 determines the 
separatrix [17].  

We consider the admissible domain Gq as the domain 
encircled by the separatrix, that is

Gq: {  (q1, q2) < 1/6}
(37)

q : {  (q1, q2) = 1/6}

Formulas (21), (36) and (37) entail the estimate  

0
lim  2 ln (ET ) = ),(min 21 qqk

q
= 26

bc                    (38) 
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V. CONCLUSIONS

Theory of large deviations is applied to the problem of 
escape from the reference domain for a weakly perturbed 
Lagrangian system. Formally, the system is interpreted as a 
nonlinear degenerate diffusion. The techniques employed 
involve the reduction of the escape problem to a 
deterministic variational problem for the action functional, 
and the solution of an associated Hamilton-Jacobi equation. 
It is shown that, in some special cases, the solution can be 
found in the closed form, and the mean escape time can be 
defined as a function of the system and noise parameters.  

The approach proposed is of potential use in the dynamics 
and control problems for a wide class of mechanical and 
physical systems. As an illustration, the pointing problem 
for an n-degrees-of-freedom linear system is discussed. The 
time until escape from an ellipsoidal domain is estimated.  

The lifetime of a number of physical systems is related to 
the time until escape through the potential barrier. 
Estimation of this quantity for the system with the Henon-
Heiles potential is presented as an example.  
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