
Equivalence of AR-Representations in the Light of the
Impulsive-Smooth Behavior

A.C. Pugh
Dept. of Mathematical Sciences, Loughborough University

Loughborough, Leics, LE11 3TU, England, UK

Email: A.C.Pugh@lboro.ac.uk

E.N. Antoniou and N.P. Karampetakis
Dept. of Mathematics, Aristotle University of Thessaloniki

Thessaloniki, Greece, 54006

Email: (antoniou,karampet)@math.auth.gr

Abstract— The paper presents a new notion of equivalence of
non-regular AR- representations, based on the coincidence of
the impulsive-smooth behaviors of the underlying systems. The
proposed equivalence is characterized by a special case of the
usual unimodular equivalence and a restriction of the matrix
transformation of full equivalence [21].

I. INTRODUCTION

An equivalence relation preserving the structures of ma-

trices, in a systems theory context, first appears in [22],

as strict system equivalence and its modification known

as Fuhrmann system equivalence [2]. These equivalences

guarantee the systems have the same finite frequency struc-

ture. Thus systems with the same finite structure exhibit the

same smooth behavior, while in [17] it is shown that strict

system equivalence implies the existence of an isomorphism

between the smooth solution spaces of the systems. To

analyze simultaneously the finite and infinite structures of

the system matrices Verghese [24] proposed, in the case

of generalized state space systems, the notion of strong
equivalence which took on a closed form description in

[20] as complete system equivalence. In [14] ([19]) an

interpretation of these equivalences as an isomorphism of

the corresponding behaviors was given.

Behaviors were introduced in [25], [26] and have

since been extensively studied. In this context, two AR-

representations are equivalent if they represent the same

smooth-behavior [18] or if they represent isomorphic

smooth-behaviors ([3], [4], [5]). In the first case, the polyno-

mial matrices that describe the AR-representations are shown

to be unimodular equivalent, whereas in the second case

they are Fuhrmann system equivalent [4]. The behavioral

approach, at least in its original form, is not concerned

with the infinite frequency (impulsive) behavior. During

recent studies (see [1], [7], [8], [9], [10]) the importance of

impulsive behavior in ”switched” or ”multimode” systems

is recognized, and relevant questions about minimality and

equivalence, in a behavioral framework, are addressed.

Our approach to the problem of equivalence of non-regular

AR-representations has, as a starting point, the relation

between the smooth-impulsive behaviors of such systems.

We should notice that the notion of fundamental equivalence
proposed here ensures the smooth-impulsive behaviors of

the two systems are identical. We establish that the matrix

conditions guaranteeing fundamental equivalence coincide

with those of full unimodular equivalence (presented in

section 3), which is a special case of full matrix equivalence
presented in [13]. This provides a natural connection between

the behavioral setting and the theory of polynomial matrix

transformations.

II. PRELIMINARY RESULTS

In what follows R, C denote the fields of real and complex

numbers, respectively, R[s] the ring of polynomials with

real coefficients and R(s) the field of real rational func-

tions. Following [11], [12], [1], [7]-[10] we adopt the class

of impulsive-smooth distributions (�imp), as the ”function

space” for our purposes. The class �imp consists of distri-

butions that are linear combinations of a smooth function

and a purely impulsive distribution. The purely impulsive

part is essentially any finite linear combination of the Dirac

delta distribution δ, and its (distributional) derivatives δ(i),
i ≥ 1. A smooth distribution corresponds to a function that

is smooth on R
+ and 0 elsewhere.

Consider a non-regular linear time-invariant system de-

scribed by the AR - representation

Σ : A(∂)ξ(t) = 0, t ∈ [0, +∞) (1)

where ∂ = d/dt is the differential operator (interpreted

as right-hand differentiation at the origin), ξ(t) ∈ R
m

and A(∂) = Aq∂
q + . . . + A1∂ + A0 ∈ R

k×m[∂] has

rankR(s)A(s) = r and Aq �= 0. Non-regular is used here

either for non-square, or square but not invertible, polynomial

matrices (and AR- representations accordingly). In order

to conform with the distributional framework introduced in

[10], [1] we give the distributional version of (1)

A(p)ξ = Sq−1(p)XAξ̄0 (2)

where Sq−1(p) =
[

Ipq−1 · · · Ip I
]
,

ξ̄0 =

⎡
⎢⎣

ξ0,0
...

ξ0,q−1

⎤
⎥⎦ and XA =

⎡
⎢⎣

Aq · · · 0
...

. . .
...

A1 · · · Aq

⎤
⎥⎦ (3)

while ξ ∈ �m
imp are vector distributions in �imp and ξ0,j ∈

R
m are arbitrary real vectors which have to be interpreted

as the initial values of equations (2), i.e. the values of the

jth derivative of ξ(t) ”at t = 0− ”, immediately before

starting the dynamic process given by (1). The vector ξ̄0
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will be termed the initial value of ξ, while XAξ̄0 will be

termed the initial condition for ξ, for reasons which will

become apparent subsequently. Accordingly the real vector

space X = R(XA) will be termed the initial condition space
of (2). For each ξ̄0 ∈ R

qm we define the solution set

B
(
ξ̄0

)
:=

{
ξ ∈ �m

imp : A(p)ξ = Sq−1(p)XAξ̄0

}
and every ξ ∈ B

(
ξ̄0

)
is called a solution of (2) for ξ̄0. An

important feature of non-regular systems of the form (2) is

that they are not in general solvable for every initial value

(and thus initial condition) of ξ. This can be seen in the

following example.

Definition 1: [9]-[10] (1) is C-solvable (control-solvable)

for ξ ∈ �m
imp if

∀ξ̄0 ∈ R
qm (and thus XAξ̄0) : B

(
ξ̄0

) �= ∅

The solvability requirement is reasonable in our case

where we study equivalence of systems through their solution

spaces (behaviors). Let

�f :=
{
f ∈ �imp : f = f1f

−1
2 , f1, f2 ∈ �p−imp, f2 �= 0

}
be the subalgebra of fractional impulses. Then we have the

following basic result [6] :

Lemma 2: Let T (s) ∈ R
k1×k2 (s) , η (s) ∈

R
1×k1 (s) , w (s) ∈ R

k2×1 (s) and let T (p) , η (p) , w (p) be

the corresponding distributional matrices,then

η (s) T (s) = 0 ⇔ η (p) T (p) = 0
T (s) w (s) = 0 ⇔ T (p) w (p) = 0

A characterization of C-solvable systems is the following

Theorem 3: The non-regular AR- representation (2) is C-

solvable iff all the left minimal indices of A(s) are zero.

Proof: (if) Assume that (2) is C-solvable and

there exists a left minimal polynomial basis of A(s),
{v1(s), v2(s), . . . , vk−r(s)}, where the row vectors vj(s) =
vjηj

sηj + ... + vj0 ∈ R
1×k[s] and ηj are the left min-

imal indices of A(s). Furthermore we assume that the

vectors vj(s) are ordered in descending order, i.e. η1 ≥
η2 ≥ ... ≥ ηk−r. Then the polynomial matrix V (s) =[

vT
1 (s) · · · vT

k−r(s)
]T

has full normal row rank, no

finite zeros, is row proper and

V (s)A(s) = 0 (4)

Assume now that η1 > 0, i.e. that there exists at least one

left minimal index of A(s) of order greater than zero. We

look for a contradiction. Since (2) is C-solvable for every

initial condition it holds for every XAξ̄0. From Lemma 2,

we have that V (s)A(s) = 0 is equivalent to V (p)A(p) = 0.

Premultiplying (2) by V (p) we have V (p)Sq−1(p)XAi
ξ̄0 =

0, ∀ξ̄0 or equivalently by Lemma 2,

V (s)Sq−1(s)XAi
= 0 (5)

Equating the coefficients of s0 in (4)-(5) implies V0A0 = 0
and V0Aj = 0, j = 1, 2, ..q. Thus V0Aj = 0, for all

j = 0, 1, 2, ...q. Equating successively the coefficients of

s1, s2, ..., sη1 in (4),(5) and making use of the corresponding

relations for coefficients of V (s) of lower order, we get

ViAj = 0, ∀i = 0, 1, ...η1,∀j = 0, 1, ..., q (6)

Now since V (s) is row proper we can write V (s) =
diag{sη1 , sη2 , ..., sηk−r}[V ]hr + {lower order terms}, where

[V ]hr is a constant full row rank matrix, with its ith row

being the ith row of Vηi
. In view of (6) it is obvious

that [V ]hr A(s) = 0. The matrix [V ]hr thus satisfies all the

properties of a left minimal polynomial basis of A(s) and

its row orders are obviously less than the corresponding

ones of V (s). This is a contradiction since V (s) is assumed

to be minimal. Thus η1 = 0 and ηj = 0 for every j =
0, 1, ..., k − r, which completes the proof of the (if) part.

(only if) Assume that ηj = 0 for every j = 0, 1, ..., k − r.
Then ∃ a constant left minimal polynomial basis of A(s),
V ∈ R

(k−r)×k. Thus ∃ a constant square, invertible matrix

W having as its last k − r rows the rows of V such that

WA(s) =
[

Ā(s)
0

]
(7)

where Ā(s) ∈ R
r×m[s] is a full row rank rational matrix.

We can also write

A(s) = W̄ Ā(s) ⇔ Aj = W̄ Āj , j = 0, 1, ..., q (8)

where W̄ ∈ R
p×r is the matrix consisting of the first r

columns of W−1. Consider now the equation

Ā(p)ξ = S̄q−1(p)XĀξ̄0 (9)

where S̄q−1(p) = [pq−1Ir, ..., Ir] and XĀ, ξ̄0 as in (3).

The above equation is C-solvable simply because Ā(p)
has full row rank and thus the fractional impulse space

(rational vector space) spanned by S̄q−1XĀ is always con-

tained in the corresponding space spanned by Ā(p) (see

Proposition 2.7, [10]). Premultiplying both sides of (9)

by W̄ and using (8), we get A(p)ξ = W̄ S̄q−1(p)XĀξ̄0.
Now W̄ S̄q−1(p) = Sq−1(p)diag{W̄ , W̄ , ....W̄}, where

Sq−1(p) = [pq−1Ip, ..., Ip]. Using again (8) we have

A(p)ξ = Sq−1(p)XAξ̄0 (10)

Thus every solution of (9) is also a solution of (10). Since

(9) is solvable for every initial condition so is (10).

The above result gives a characterization of solvability of

non-regular AR- representations in terms of the structural

invariants of the polynomial matrix A(s), and is a gener-

alization of the corresponding conditions appearing in [9],

[10].

Corollary 4: Every C-solvable system of the form (2) can

be replaced to an equivalent full row rank system, which has

the same solution space as (2).

Proof: The proof is straightforward in view of the proof

of the ’only if’ part of theorem 3.

It follows that the full row rank assumption can be made

without loss of generality for solvable systems. Thus we

restrict ourselves in the sequel to the case, rankA(s) = k =
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r. Following the terminology of [10] we denote by B the

solution space or behavior of Σ, i.e.

B = {ξ ∈ �m
imp : A(p)ξ = Sq−1(p)XAξ̄0, (11)

∀ξ̄0 =
(

ξT
00 ξT

01 · · · ξT
0(q−1)

)T

∈ R
qm} (12)

In the case where A(p) is square and non-singular, B is finite

dimensional and its dimension is equal to the total number

of finite (n) and infinite zeros (q̂) of A(p) (multiplicities

accounted for) [23] i.e.

dimB = n + q̂

In the more general case, where A(p) contains a right null

space structure, B infinite dimensional. This is easy to see

if we consider any fractional impulse lying in ker A(p).
Obviously the fractional impulse vector distribution satisfies

(2) and ker A(p) is an infinite dimensional vector space over

�f . Let

Z = {ξ ∈ B : XAξ̄0 = 0} (13)

i.e. the subspace of B which contains the solutions having

zero initial conditions. The fact that there are solutions cor-

responding to zero initial conditions is somehow unnatural,

since what is usually expected from a system of homoge-

neous differential equations is its non-trivial solutions to

be triggered by non-zero initial conditions. An alternative

interpretation to the question of what constitutes the solution

space of non-regular systems, which overcomes this problem,

has been proposed in [15]. According to this approach, the

trajectory space B can be partitioned according to the relation

ξ ∼ ξ′ ⇔ XAξ̄0 = XAξ̄
′
0 (14)

It is easy to see that ’∼’ is an equivalence relation and

the resulting equivalence classes consist of distributional

solutions of (2) that correspond to the same initial condition

vector XAξ̄0. If ξ ∈ B, write

[ξ] = ξ + Z (15)

where Z = [0B] and [ξ] is the equivalence class of ξ. By

B/Z we denote the quotient space of B with Z, i.e. the set

of all equivalence classes of B. It can be proved [15], that

B/Z is a finite dimensional vector space over R which can

be decomposed as follows

B/Z = (BC⊕B∞⊕Bε)/Z = BC/Z⊕B∞/Z⊕Bε/Z (16)

where BC,B∞,Bε are finite dimensional distributional

spaces corresponding to the finite zero structure, the infi-

nite zero structure and the right minimal indices of A(s).
Actually B/Z , is the finite dimensional sectional of the

infinite dimensional vector space B. The dimensions of the

BC/Z,B∞/Z,Bε/Z spaces are n, q̂ and ε respectively,

where n, q̂ and ε are the total number of finite zeros, infinite

zeros and right minimal indices of A(s) (multiplicities ac-

counted for). Furthermore it can be shown that the dimension

of B/Z is

dimB/Z [15]
= n + q̂ + ε

[24]
= δM (A (s)) (17)

where δM (A (s)) = rankRXA denotes the McMillan degree

of A (s). In the general case, where A (s) has not necessarily

full row rank then it is known [24] that δM (A (s)) =
n + q̂ + ε + η where η denotes the total number of left

minimal indices (multiplicities accounted for). As a result

of this discussion we call B/Z � B̄ the quotient solution
space of (2). Notice that according to the above definitions,

there is a one to one correspondence between the initial

condition vectors XAξ̄0 and the elements of B̄, and thus an

isomorphism between the initial conditions space X and the

quotient solution space. On this basis the quotient solution

space is a finite dimensional view of the actual solution space

(behavior) of the AR- representation (2). The behavior itself

is of course, an infinite dimensional and complete view of

the solution space.

III. FUNDAMENTAL EQUIVALENCE

The aim of this section is to establish a connection

between the existing theory of matrix equivalence and the

behavioral framework. In the case where both the smooth-
impulsive solution set is of interest, we need a restriction of

the unimodular equivalence transformation.

Definition 5: P1(s), P2(s) ∈ R [s]r×m
are said to be fully

unimodular equivalent (FE) if ∃ a unimodular matrix U(s) ∈
R [s]r×r

such that

U (s) P1(s) = P2(s)

where the compound matrix
[

U (s) P2(s)
]

i) has no infinite zeros

ii) δM

[
U(s) P2(s)

]
= δM [P2(s)] where δM (·) indi-

cates the McMillan degree of the indicated matrix.

Full unimodular equivalence is a special case of full
system equivalence [21] and thus has the nice property of

preserving the finite and infinite zero structure of polynomial

matrices (see [13]) in contrast to unimodular equivalence

which preserves only the finite aspects.

We now introduce a notion of equivalence using a solution

space approach, and in this way we provide a direct dynamic

interpretation of the conditions appearing in definition 5. We

give the following definition

Definition 6: Let the systems be described by

Σi : Ai (∂) ξi(t) = 0, t ∈ [0, +∞), i = 1, 2

where ∂ = d/dt is the differential operator, ξi(t) ∈ R
m and

Ai(∂) = Aiq∂
q + . . . + Ai1∂ + Ai0 ∈ R

r×m[∂], i = 1, 2 is

a polynomial matrix with rankR(s)Ai(s) = r and Aiq not

both identically zero, and let the distributional version of the

above systems be the following [10]

Σi : Ai(p)ξi = Sq−1(p)XAi ξ̄
i
0

where ξi ∈ �mi
imp are vector distributions in �imp. Define also

as

Bi :=
{

ξi ∈ �mi
imp : Ai(p)ξi = Sq−1(p)XAi

ξ̄
i
0

}
, i = 1, 2

The systems Σi are fundamentally equivalent iff B1 = B2.
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Fundamental equivalence extends the notion of [18] to the

”smooth-impulsive” solution set. We are interested in the

conditions under which B1 ⊆ B2. We need the following

Lemma 7: If U(s), A1(s),A2(s) are polynomial matrices

of appropriate dimensions such that

U(s)A1(s) = A2(s) (18)

then

XUXA1 = 0 and ŪXA1 = XA2 − XU Ā1 (19)

where

XP =

⎡
⎢⎣

Pq · · · 0
...

. . .
...

P1 · · · Pq

⎤
⎥⎦ , P̄ =

⎡
⎢⎣

P0 · · · Pq−1

...
. . .

...

0 · · · P0

⎤
⎥⎦

and P (s) = Pqs
q + . . . + P0 is any of the matrices

A1(s), A2(s), U(s) (assuming without loss of generality that

all the above matrices have the same degree q).

Proof: The proof is straightforward by equating like

powers of s in (18).

Theorem 8: The following statements are equivalent:

(i) B1 ⊆ B2

(ii) ∃U(s) ∈ R
r×r[s] : U(s)A1(s) = A2(s) and

δM [U(s), A2(s)] = δM (A2(s)).
Proof: Assume B1 ⊆ B2. Then the same inclusion

property will hold for B̂1 ⊆ B̂2 where

B̂i :=
{

ξi ∈ �mi
sm : Ai(p)ξi = Sq−1(p)XAi

ξ̄
i
0

}
, i = 1, 2

Thus from [16] (p. 36, lemma 3.7) we have ∃U(s) ∈
R

r×r[s] : U(s)A1(s) = A2(s). Furthermore let

ξ1 ∈ B1. Then ξ1 satisfies A1(p)ξ1 = Sq−1(p)XA1 ξ̄
1
0.

Since B1 ⊆ B2 holds, ξ1 must satisfy A2(p)ξ2 =
Sq−1(p)XA2 ξ̄

2
0, which gives A2(p)ξ1 = Sq−1(p)XA2 ξ̄

2
0

or equivalently U(p)A1(p)ξ1 = Sq−1(p)XA2 ξ̄
2
p and finally

U(p)Sq−1(p)XA1 ξ̄
1
0 = Sq−1(p)XA2 ξ̄

2
0. Now equating pow-

ers of p in the last equation we obtain

(XUXA1)ξ̄
1
0 = 0 and XA2 ξ̄

2
0 = (ŪXA1)ξ̄

1
0 (20)

which in view of (19), reduce to XA2 ξ̄
2
0 = (XA2−XU Ā1)ξ̄

1
0.

Since the last equation is solvable for ξ̄
2
0, we conclude that

R(XU Ā1) ⊆ R(XA2) (21)

Notice that since A1(s) has full row rank the same will hold

for [Ā1, XA1 ] (see [23]). Thus R(XU ) = R(XU [Ā1, XA1 ])
= R(XU Ā1) +R(XUXA1) = R(XU Ā1). Thus, we obtain

R(XU ) ⊆ R(XA2), which implies that rank[XU , XA2 ] =
rankX, i.e.

δM [U(s), A2(s)] = δM (A2(s)) (22)

which proves that (i) implies (ii).

The converse follows easily from the above analysis.
An interesting map connects the initial condition spaces

of the two systems as described by the following

Corollary 9: If B1 ⊆ B2 then an induced injective map-

ping between the initial conditions of the two systems is

given by

XA2 ξ̄
2
0 = Ū

(
XA1 ξ̄

1
0

)
(23)

and thus

ŪR(XA1) ⊆ R(XA2) (24)

Proof: Equation (23) is simply the second equation of

(20). Obviously (24) must hold since (23) is solvable with

respect to ξ̄
2
0.

According to the theorem 8 if additionally B2 ⊆ B1

then ∃V (s) ∈ R
r×r[s] : V (s)A2(s) = A1(s)

and δM [V (s), A1(s)] = δM (A1(s)) and thus

V (s)A2(s) = A1(s) ⇔ V (s)U(s)A1(s) = A1(s) ⇔
(V (s)U(s) − I) A1 (s) = 0. Since A1 (s) has full row

rank then U(s) ∈ R
r×r[s] defined in the above Theorem is

unimodular (see also [16]). According to Corollary 9 we have

from the above relation that R(XA2) ⊆ R(XA1) and thus

R(XA1) = R(XA2) or otherwise δM (A1(s)) = δM (A2(s)).
Therefore, an isomorphism exists between the initial

condition spaces of the two systems. The inclusion (24)

ensures that the image of every initial condition of Σ1

is mapped through Ū , to an initial condition of Σ2. The

following corollary guarantees that every solution of Σ1

starting from the zero initial condition will be mapped to a

zero initial condition solution of Σ2.
Corollary 10: If B1 ⊆ B2 then

Z1 ⊆ Z2 (25)

where Zi =
{

ξi ∈ Bi : XAi
ξ̄

i
0 = 0

}
, i = 1, 2.

IV. INDUCED MAPS OF FUNDAMENTAL EQUIVALENCE

Suppose that B1 ⊆ B2 and thus from Corollary 10 Z1 ⊆
Z2. Then there exists a unique mapping between the quotient

solution spaces

I∗ : [ξ1] ∈ B1/Z1 �→ [ξ1] ∈ B2/Z2 (26)

such that the diagram

B1
I−→ B2

↓IB1
↓IB2

B1/Z1
I∗
−→ B2/Z2

is commutative, where I is the unit map and I∗ is its

restriction to Bi/Zi. IB1 , IB2 are the natural projections.

Note that I∗ is injective iff Z1 = I−1 (Z2) and surjective

iff Z2 + imI = B2. Furthermore B1 ⊆ B2 implies that

restriction of the I to Z1, denoted I∗, maps Z1 into Z2.

We need the conditions for I∗ to be a bijection. Note that

B1,B2 are infinite dimensional and it turns out to be easier to

study the properties of I through the structures of I∗ and I∗.
The map I is injective by definition. We note the following.

Theorem 11: Let I∗, I∗ be the maps defined above, then

I∗, I∗ are surjective ⇒ I is bijective

Furthermore we have

Theorem 12: Let I∗, I∗ be the maps defined above, then

i) If I is surjective then I∗ is surjective.
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ii) If I∗ is surjective then I∗ is injective.

iii) The map I∗ is injective.

iv) If I is surjective and I∗ is injective then I∗ is surjective.

The above theorems give a complete picture of the

conditions for I∗, I∗ to be bijections. It is clear that the

injectiveness of I∗ (surjectiveness of I∗) is not a direct

consequence of the injectiveness (surjectiveness) of the unit

map I. Nevertheless the following is true.

Corollary 13: Let I : B1 → B2 and I∗, I∗ be the maps

defined above, then

I is bijection ⇔ I∗ and I∗ are bijective

We establish the properties of I, I∗ and I∗, in terms of

the matrices of the Σ1 and Σ2.

Theorem 14: For Ū of (23) the following hold

(i) I∗ is injective iff ker Ū ∩R(XA1) = {0}
(ii) I∗ is surjective iff R(XA2) = ŪR(XA1)

Proof: (i) Injectiveness of I∗ means that I∗[ξ1] = Z2

⇒ [ξ1] = Z1 or equivalently ξ1 ∈ Z2 ⇒ ξ1 ∈ Z1. If XA2 ξ̄
2
0

are the initial conditions corresponding to ξ2 = ξ1 then the

fact that ξ2 ∈ Z2 means that XA2 ξ̄
2
0 = 0, which in view of

(23) implies

ŪXA1 ξ̄
1
0 = 0 (27)

Now obviously the requirement ξ1 ∈ Z1 gives XA1 ξ̄
1
0 = 0.

Thus I∗ is injective iff equation (27) implies XA1 ξ̄
1
0 = 0 for

every ξ1, which establishes (i).

(ii) We first notice that ŪR(XA1) ⊆ R(XA2) holds from

(24). We thus need the reverse inclusion. Now I∗ is surjective

iff for every ξ2 ∈ B2 there exists ξ1 ∈ B1 such that [ξ2] =
I∗[ξ1] or equivalently ξ2 − ξ1 ∈ Z2. Following the proof

of theorem 8 we conclude that (23) should be solvable for

every initial condition XA2 ξ̄
2
0, hence the condition in (ii).

If U (s) is unimodular then ker Ū = {0}, since

det U (0) = det (U0) �= 0. Thus (i) in Theorem 14 holds

and so I∗ is injective. For the surjectiveness of I∗ (and thus

bijectiveness, since it is an injective map), notice that Z1,Z2

are isomorphic to ker A1(p), ker A2(p) respectively, which

are finite dimensional vector spaces over �f having the same

dimension i.e. m − r. Thus I∗ is always surjective. Now I
is always injective according to its definition.

Lemma 15: Let T (s) ∈ R
k×(k+r)[s], V (s) ∈ R

(k+r)×r

be polynomial matrices with rankR(s)T (s) = k and

rankR(s)V (s) = r, such that T (s)V (s) = 0. Furthermore

let V (s) have no zeros in C∪{∞} and denote by ε =
r∑

i=1

εi

the sum of right minimal indices of T (s). Then

ε = δM (V (s)) (28)

Proof: If V (s) is column proper then it forms a minimal

basis of ker T (s) and its column degrees are the orders of

the poles at s = ∞ of V (s) (see [23]). The theorem then

holds since the only poles of V (s) are those at s = ∞.

Assume that V (s) is not column proper and let

S∞
V (s) (s) = diag{sq1 , sq2 , . . . , sqr} be its Smith - McMillan

form at s = ∞. It is known [23] that the orders of the poles at

s = ∞ can be obtained from the formula qi = mi−mi−1 ≥
0, i = 1, 2, . . . r where m0 = 0 and mi = max deg{minors

of order i of V (s)}, i = 1, 2, . . . r. It is easy to see that

q =
r∑

i=1

qi = mr and since V (s) is polynomial

δM (V (s)) = q = mr (29)

Consider now the unimodular matrix W (s) which re-

duces V (s) to V̄ (s), which is column proper, i.e.V̄ (s) =
V (s)W (s). Then V̄ (s) is a minimal basis of ker T (s), with

column degrees equal to the right minimal indices of T (s).
Moreover the column degrees of V̄ (s) will be the orders of

its poles at s = ∞. Thus if q̄ is the total number of poles at

s = ∞ then

q̄ = ε = m̄r (30)

where m̄r = max deg{minors of order r of V̄ (s)}. Now

the minors of order r of V (s) remain invariant (up to

multiplication by a non zero constant) in V̄ (s). Thus m̄r =
mr which in view of (29), (30) proves the lemma.

The main result is thus

Theorem 16: The systems in (2) are fundamentally equiv-

alent iff there exists a unimodular matrix U(s) satisfying

(i) U(s)A1(s) = A2(s).
(ii) δM

[
U(s) A2(s)

]
= δM (A2(s)).

(iii)
[

U(s) A2(s)
]

have no zeros at s = {∞} .

Proof: (if) Assume that there exists a the unit map

I : B1 → B2 satisfying (i)-(iii). Conditions (i)-(ii) guarantee

(see theorem 8) that I is a well defined map I : B1 → B2.

The restriction of I to Z1, i.e. I∗, will be bijective since

ker A1(p), ker A2(p) have the same dimension over �f .

Using theorem 12 shows that I∗ is injective. Now write (i)

as [
U(s) A2(s)

] [
A1(s)
−I

]
= 0 (31)

[
U(s) A2(s)

]
has full row rank and so the dimension of

its kernel is dim ker
[

U(s) A2(s)
]

= r + m − r = m.
The matrices in (31) satisfy lemma 15, so

δM

[
AT

1 (s) −I
]T = ε

where ε is the sum of the right minimal indices of[
U(s) A2(s)

]
. Now since

[
U(s) A2(s)

]
has no

zeros in C ∪ {∞}, δM (
[

U(s) A2(s)
]
) = ε. Us-

ing the McMillan degree conditions in (ii) we conclude

δM (A1(s)) = δM (A2(s)) or equivalently rankXA1 =
rankXA2 . Combining this with the fact that I∗ is injective

and using statement (i) of theorem 14 and equation (23)

we obtain rankXA2 = rank(ŪXA1). From (24) we thus

conclude that ŪR(XA1) = R(XA2), which is the necessary

and sufficient condition (theorem 14, (ii)) for surjectiveness

of I∗. The surjectiveness of I follows from theorem 11,

which proves the sufficiency of (i)-(iii).

(only if) Assume now that the systems in (2) are funda-

mentally equivalent. Then conditions (i)-(ii) holds since I is

a well defined map from B1 to B2. Since I is surjective,

I∗ will be surjective, thus using (ii) of theorem 14 we

have R(XA2) = ŪR(XA1) or equivalently rankXA2 =
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rank(ŪXA1) = rankXA1 − dim(ker Ū ∩R(XA1)). Hence

dim(ker Ū ∩R(XA1)) = δMA1(s) − δMA2(s) (32)

= δM

[
AT

1 (s) −I
]T − δM

[
U(s) A2(s)

]
Following similar lines as the (if) part it is easy to see

that δM

[
AT

1 (s) −I
]T = ε and δM

[
U(s) A2(s)

]
=

n + q̂ + ε, where n, q̂ is the total number of finite and

infinite zeros of
[

U(s) A2(s)
]

respectively (note that[
U(s) A2(s)

]
has full row rank since A2(s) has full row

rank). Now (32) becomes

dim(ker Ū ∩R(XA1)) = −n − q̂ ≥ 0 (33)

which implies n + q̂ = 0, i.e. that
[

U(s) A2(s)
]

has no

zeros in C ∪ {∞} which proves condition (iii). Moreover

from (33) we get dim(ker Ū ∩R(XA1)) = 0 or equivalently

ker Ū ∩R(XA1) = {0}, which by (i) of theorem 14 implies

that I∗ is injective. Now it easy to see that I∗ is injective

since I is injective and surjective because theorem 14 is

satisfied.

Corollary 17: If Σ1, Σ2 are fundamentally equivalent then

I : B1 → B2 induces a bijective map I∗ between the quotient

solution spaces B1/Z1,B2/Z2 of the systems. Further the

restriction of I to Z1, I∗ : Z1 → Z2, is bijective.

We have the following commutative diagram

B1
π1−→ B1/Z1

φ1−→ XA1

↓I ↓I∗ ↓Ū

B2
π2−→ B2/Z2

φ2−→ XA2

where I, I∗ and Ū are the maps between the behaviors, the

quotient solution spaces and the initial conditions spaces

respectively. πi, i = 1, 2 are the natural projections, φi,
i = 1, 2 are the isomorphisms between the quotient solution

spaces and the initial condition spaces, that is the map

that takes equivalence classes to their corresponding initial

conditions.

V. CONCLUSIONS

A characterization of C-solvability of a non-regular AR-

representation in terms of the left minimal structure of the

polynomial matrix that describes the AR-representation is

given, and is a generalization of the corresponding conditions

appearing in [9], [10]. The definition of equivalence between

AR-representations that has been presented in the behavioral

context by [18], [16] has been extended to the case where the

smooth-impulsive solution sets are of interest. An alternative

characterization of this equivalence, has been given in terms

of a transformation between polynomial matrices, named full

unimodular equivalence. Full unimodular equivalence is a

special case of the known full matrix equivalence, appearing

in [21], and has the nice property of preserving both the

finite and infinite zero structure and the right minimal in-

dices of the associated polynomial matrices. These invariants

are strongly connected with the smooth-impulsive behavior

of the AR-representation represented by such polynomial

matrices. In this sense, fundamental equivalence of non-

regular systems provides a dynamic interpretation of known

algebraic results.
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