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Stochastic Uncertainty
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Abstract— We consider two standard philosophies for finding
minimizing solutions of convex objective functions affected by
uncertainty. In a first approach, the solution should minimize
the expected value of the objective w.r.t. uncertainty (average
approach), while in a second one it should minimize the
worst-case objective (worst-case, or min-max approach). Both
approaches are however numerically hard to solve exactly,
for general dependence of the cost function on the uncertain
data. Here, we discuss two techniques based on uncertainty
randomization that permit to solve efficiently some suitable
probabilistic relaxation of the indicated problems, with full
generality with respect to the way in which the uncertainty
enters the problem data. A specific application to uncertain
Least-Squares problems is also examined in the paper.

I. INTRODUCTION

A convex optimization program is usually formulated as
the problem of minimizing a convex cost function f(x) over
a convex set X, i.e.

min f(z).

In this paper, we consider the situation where the objective
function may be affected by uncertainty. In other words,
the function f depends not only on the decision vector
x but also on a vector of uncertain parameters 0, that
are assumed to be random with known distribution over
a compact set A C R’ In this setting, the formulation
of the optimization problem and the meaning of solution
need to be clarified. In fact, it is possible to devise differ-
ent paradigms, that consider the effect of the uncertainty
from different viewpoints. One may consider the problem
from a min-max viewpoint, and look for a solution that
minimizes the “worst-case” value (w.r.t. the uncertainty) of
the objective function. Alternatively, one may be interested
in considering the effect of the uncertainty “on average,’
and this corresponds to minimizing an uncertainty-averaged
version of the cost function. In this paper, we present these
two standard philosophies and we discuss recent techniques
based on uncertainty randomization that allow for efficient
solution of some suitable probabilistic relaxation of the
indicated problems.
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II. AVERAGE AND WORST-CASE DESIGN

We formally state the two classes of optimization problems
that are the object of our study.

Consider an objective function f(x,0) : X x A — R,
where X C R” is a convex set and A C R’ is a compact
set. Denote by PP the probability measure on 4.

We make the standing assumption that the objective is
convex in the decision variables for any fixed value of the
uncertainty:

Assumption 1: The function f(z,d) is convex in z for
every 0 € A.

A. Worst-case approach

In the worst-case optimization approach one seeks for a
solution guaranteed for all possible values taken by the
uncertainty § € A. This leads to the following min-max
optimization problem

g;rél;l%neagf(x,é). (1)

Problem (1) is usually restated in an epigraphic form as a
robust optimization problem:

min ¢
t,xeX

subject to 2
fx,6)<t, V6eA

These problems are in general hard to solve numerically
(see e.g. [3], [4]) and computable solutions are available
only when the uncertainty enters the function f in a simple
form (such as affine), see for instance [10]. This motivates
our approximate approach based on sampling relaxations.

B. Average approach

In the average approach one aims at solving the stochastic
program
in £
min E5[f(z, 6)] 3)
where Es[f(x,d)] is the expectation of f(z,d) with respect
to the probability measure P defined on § € A. For notation
ease, we define the function

Pav(w) = E5(f(x,0)]. “)

We denote by z%, a minimizer of ¢,y (z), and define the
achievable minimum as ¢%, = mingcy dav(z) = dav (x5, ).
Problem (3) is a classical stochastic optimization prob-
lem, and it has been extensively treated in the literature,
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see e.g. [13]. Again, determining an exact solution to
a stochastic program is in general computationally pro-
hibitive (indeed, just evaluating the expectation for a fixed x
amounts to computing a multi-dimensional integral, which
is numerically hard).

In the next section we follow a probabilistic approach,
and propose approximate solutions for both worst-case
and average problems, based on random sampling of the
uncertainty.

III. SAMPLING-BASED APPROXIMATE
SOLUTIONS

The main idea in randomized relaxations is a simple one:
we collect a finite number N of random samples of the
uncertainty

s s ) (5)

extracted independently according to P, and we construct
a suitable “sampled” approximation of the problems previ-
ously considered.

We next show how to construct these approximations,
and we discuss the theoretical properties of the solutions
obtained by the approximated problems.

A. Worst-case design

A sampled approximation of problem (1) can be naturally
stated as

(@)
L (@00). (©)
This problem may be also rewritten in epigraph form as

min ¢

min subject to (7)

f(z, 69y <t fori=1,...,N.

Notice that in practice, in this latter formulation, the
possibly infinite number of constraints of problem (2) is
substituted by a finite number N of sampled scenarios of
the uncertainty. This scenario approximation of the worst-
case problem has been first introduced in [6], where it has
been shown that the solution obtained from the scenario
problem is actually approximately feasible for the original
worst-case problem, in a sense explained next.

Define the probability of violation of x as
Py(z)=P{6 € A: f(z,0) —t > 0}

For example, if a uniform (with respect to Lebesgue
measure) probability distribution is assumed, then Py (x)
measures the volume of ‘bad’ parameters § such that the
constraint f(x,d) < t is violated. Clearly, a solution x
with small associated Py (z) is feasible for most of the
problem instances, i.e. it is approximately feasible for the
robust problem.

Definition 1 (e-level solution): Let € € (0,1). We say that
x € X is an e-level robustly feasible (or, more simply, an
e-level) solution, if Py (z) < e.

The following theorem establishes the probabilistic prop-
erties of the scenario solution.

Theorem 1 (Corollary 1 of [5]): Assume that, for any ex-
traction of 6(1), ..., 6™, the scenario problem (7) attains
. . . (N)
a unique optimal solution Zyc’. Fix two real numbers
e € (0,1) (level parameter) and 5 € (0,1) (confidence
parameter) and let!

N > Nycl(e,8) = E h% +2(n+1) + @ In ﬂ (8)

then, with probability no smaller than (1 — ), j;(WJX)

level robustly feasible.

is €-

B. Average design

For the developments in this subsection, we need to state
a further assumption on the function f, namely that the
total-variation of the function is bounded.

Assumption 2: Let f*(J) = mingex f(x,0), and assume
that the total variation of f is bounded by a constant V' > 0,
ie.

f(z,0) = f7(8) <V, Vo € X, V6 € A.

This implies that the total variation of the expected value is
also bounded by V/, i.e.

¢AV(«T) — o <V, VzeX.

Notice that we only assume that there exist a constant V'
such that the above holds, but do not need to actually know
its numerical value.

An approximate solution to (3) may be obtained con-
structing an empirical estimate of ¢,y based on the random
samples

f(x, 6.

WE

A 1
i=1

The function qB,(\]VV) is convex in x, being the sum of convex
functions.
Now, we study the convergence of the empirical minimum
g{,v)(ik) to the actual unknown minimum ¢,y (z*). To this
end, notice first that as x varies over X, f(z,-) spans a

family F of measurable functions of J, namely
F={f(z,0) :x € X}. )

A key step for assessing convergence is to bound (in
probability) the relative deviation between the actual mean
dav(x) = Es[f(x,0)] and the empirical mean &) (x) for
all f(-,0) belonging to the family F. In other words, for
given relative scale error ¢ € (0, 1), we require that

2(N)
pR{sup [@av(@) = o "(2)] >e} <a(N),  (10)

TeEX 14

The notation [] denotes the smallest integer greater than or equal to
the argument.
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with a(N) — 0 as N — oo. Notice that the uniformity
of the bound (10) with respect to x is crucial, since x is
not fixed and known in advance: the uniform “closeness” of
é(A]VV) (x) to ¢ay(x) is the feature that allows us to perform
the minimization on @4y )(x) instead of on ¢,y (x). Prop-
erty (10) is usually referred to as the Uniform Convergence
of the Empirical Mean (UCEM) property. A fundamental
result of Learning Theory states that the UCEM property
holds for a function class F whenever a particular measure
of the complexity of the class, called the P-dimension of
F (P-DIM (F)), is finite. The interested reader can refer to
the monographs [16], [17] for formal definitions and further
details.

The key result for average optimization is given in the next
theorem.

Theorem 2: Let a, e € (0,1), let d be an upper bound on
the P-dim of F and let

12 2 2
N> N, = 28 [1n8+d(1n3e +1n1n3eﬂ.
« €

€2 €
(1D
Let z%, be a minimizer of ¢u(z), and let 3 be a
minimizer of the empirical mean q@&{,v)(x) Then, it holds
with probability at least (1 — «) that
¢Av(5c5§))v— Inlah) _ 12

That is, a?&{,v) is an e-suboptimal solution (in the relative
scale), with high probability (1 — «). A solution iffvv) such
that the above holds is called an (1 — «)-probable e-near
minimizer of @y (z), in the relative scale V.

Proof. See Appendix.

IV. APPLICATION: UNCERTAIN
LEAST-SQUARES PROBLEMS

As an important application of the robust optimization
techniques discussed in this paper, we here examine the
case of uncertain Least-Squares problems.

In the standard Least-Squares (LS) problem, the objective
is to determine a solution vector z* such that the residual
norm ||Az — y||* of a (usually over-determined) system of
linear equations is minimized. However, in many practical
applications the data matrices A,y are not exactly known.
This uncertainty in the data can be modeled assuming A,y
to be generic, possibly nonlinear functions of a vector of
uncertain real parameters

A(6) e R™" y(§) eR™, §=1[6109 --- 64]T,
where the uncertain parameter § is assumed to belong
to a given compact set A C R’. Thus, the uncertain
LS problem falls in the problem family discussed in the
previous sections, by taking

f(x,8) = | AG)z — y(5)]1*. (13)

Notice that f(z,d) is convex quadratic in z, for any fixed
0 €A

The worst-case approach to uncertain LS is discussed for
instance in the papers [2], [9], [14], and is closely related
to Tikhonov-type regularization [15]. With the exception
of special cases where the uncertainty has simple structure
and enters f in a specific fashion (such as linear, see [11]),
an exact worst-case solution for the uncertain LS problem
is numerically hard to determine. Similarly, the average
approach gives rise to a numerically hard problem, since
the mere evaluation of the objective function, for fixed z,
can be numerically prohibitive.

The randomized methods that we propose next provide
efficient numerical techniques to solve uncertain LS prob-
lems, both in the average and worst-case setting, in all cases
that cannot be tackled by means of the cited exact methods.

A. Approximate average solution of uncertain LS

To apply the general results of Section III-B, we simply
need to determine a bound on the P-dimension of the
function class

F={f(,0):xe X}, f(z,0)=[lA@d)z —y(d)|.

14
This is established in the following lemma.

Lemma 1 (P-dimension of F): Consider the function

family F defined in (14). Then,

P-DIM (F) < 9n.

Proof. Let M = sup,cy sea f(,0), and define the family
of binary valued functions F, whose elements are the
functions

_ L1, if f(x,8) >c
f(@,6,0) = { 0, otherwise,

for ¢ € [0, M]. Then, from Lemma 10.1 in [17], we have
that P-DIM (F) = vcC (F), where vC (F) denotes the
Vapnik-Chervonenkis dimension of the class F. Notice that
the functions in F are quadratic in the parameter vector
x € R", therefore a bound on the VC-dimension can be

derived from a result of Karpinski and Macintyre, [12]
ve (F) < 2nlogy(8e) < 9n.

O

The sample size bound for solving in the e-approximate
sense the average uncertain LS problem then simply obtains
by plugging the P-dimension bound of Lemma 1 into
Theorem 2. A result along these lines has been previously
derived in [7].

1) Numerical computation of Z: While Theorem 2 pro-
vides the theoretical properties of Z,, in this section we
briefly discuss a simple numerical technique to compute it.
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Notice that, in the specific LS context, the objective
function qﬁf\JVV) () has a sum-of-squares structure

N
SNy, 1 i NI 2
W) = 5 A~ = e =]

where
A(sW)) y(6M)
A(5@ 5
x| AL | W)
AGE) y(8N)

Therefore, an exact minimizer of qSE{VV) (z) can be readily
computed as #y = A'Y, where Al is the Moore-Penrose
pseudo-inverse of 4. Remark that, since A, ) are functions
of 6, = 1,..., N, the resulting solution Z is a random
quantity, whose probability distribution is defined over the
product space A x A x --- x A (N times). The solution
Zn can be alternatively defined as the result given at the
N-th iteration by the following standard recursive form of
the LS algorithm.

Algorithm 1: Assuming that A(§(")) is full-rank, an exact
minimizer #(¥) of the empirical mean qﬁ,(é,v)(x) can be
recursively computed as

30 = k=D 1 AT (5(R)) (y((;(k)) _ A((;(k))gg(k)) ’

where
Ki = K1 + AT(6")A(6W),
and the recursion for k = 1,..., N is started with Ky = 0,
#(0) =
X .

B. Approximate worst-case solution of uncertain LS

In the worst-case LS problem, we seek a solution 7§, that
solves the min-max problem

i A(0)x — y(9)]. 15
min max || A(d)z — y(9)] (15)
Assuming a probability distribution on A, the scenario
counterpart of this problem is

min t subject to: (16)

x,t

Az —y(6D)|| <t, i=1,....,N (17)

where 69, i =1,..., N are iid random samples of § € A.
Call zy, iy the resulting optimal solution of (16).

The results of Theorem 1 can be applied directly to
this problem, concluding that if the scenario solution is
computed using a number of scenarios compatible with
bound (8), then &y guarantees (with high probability 1 —/3)
that all residuals, except possibly those in an exceptional
subset with small probability measure (< ¢€), are smaller
than 7. From a numerical point of view, solving (16)
amounts to solving a convex second-order cone program
(SOCP), which can be done in a computationally efficient
way, see for instance [1].

V. EXAMPLE

In this section, we consider a numerical example of a least-
squares problem with affine uncertainty on the matrix A.
Since in this case both the worst-case solution 3, and x3,
can be computed exactly as shown in Subsection V-A, we
can directly test the quality of the randomized solutions
proposed in Section III against the exact solution. Let

3
A@G)=Ag+ ) 6iAi, y"=[0 2 1 3],
i=1
with
3 1 4 0 0 O
0o 1 1 0 0 O
Ao = AL = ;
-2 5 3 0 0 O
1 4 52 0 0 .1
0 0 .2 0 0 O
0 .2 0 0 0 O
Ay = ,As =
0 0 O 4 0 0
0 0 0 0 0 O
Consider the uncertainties vector § = [0; J2 d3]7 to be

uniformly distributed over the set [—1, 1]3.

A. Exact solutions

In the special case of affine uncertainty, it is possible to
compute the exact min—max solution. In fact, it has been
shown in [9], [11] that =3, is the optimal solution of the
following semi-definite programming problem

min A subject to
A—1 0 (Agz—y)7T
* 71 M(x)T =0
* * I

where M (z) = [Ajx—y Asx—y Asz—y]. The optimal
min-max solution hence resulted to be

—0.0700
ahe=| 0.1909
0.2576

and the corresponding worst-case residual is given by
rwo = A% =2.2781.
In can be easily shown that also for the average problem,
the minimizing solutions can be computed exactly. In par-

ticular, in [11], [8] it is shown that x%, can be computed as
the solution of the modified normal equations

4
(A5 Ao+ o AT Az = ATy,

i=1

(18)
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being 0? = Es,[6?], i = 1,...,{ the covariances of §;.
In our case, since the covariance of a uniform variable in
[-1,1] is 02 = 1/3, we immediately obtained

—1.9247
—1.6490
2.0626

* p—
Lay =

B. Approximate solutions

We set ¢ = 0.1, 8 = 0.001 and computed the scenario
bound of Theorem 1 as

Nwe = 386.

This number of samples guarantees that? the approximate
solution :%E,,AC[) will satisfy the constraints with probability
larger than 0.9. Solving the sampled scenarios approximate
problem (7) yielded the solution

—0.0678
#N — | 0.1857
0.2622

with (approximate) worst case residual
fweo = 2.2827.
The probability of violation of the residual 7y, was then

estimated a posteriori via Monte-Carlo analysis using a very
large number of samples, obtaining

. N
Py = WV = 0.0051,

showing that the the scenario solution had indeed a very
low associated violation probability.

As for the average paradigm, setting € = 0.1 and o =
0.001, the bound of Theorem 2 would require

N = 3,115,043

uncertainty samples. We remark however that the Learning
Theory bounds are usually rather conservative, and we
expect practical convergence of the algorithm for much
smaller sample sizes. Indeed, in the example at hand,
we observed practical convergence of the recursive LS
algorithm (Algorithm 1) in less than 1 x 10° iterations to
the solution

—1.9200
# ) = | —1.6450
2.0583

VI. CONCLUSIONS

This paper presented a brief overview of available tech-
niques based on uncertainty sampling for solving in a
relaxed sense convex design problems in presence of uncer-
tainty. The key point is that both average and worst-case de-
sign can be solved efficiently in the discussed probabilistic
setup. Moreover, the sampling approximations are simple,

2Unless the scenarios 6(1), ... 6(V) are chosen in an “unfortunate”
way, an event that is guaranteed to occur only with very low probability S.

and rigorous sample complexity bounds are available. In
our opinion, these two features make these techniques very
appealing for application to practical engineering design
problems.
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APPENDIX

PROOF OF THEOREM 2. Consider the function family G
generated by the functions

f(z,8) — f*(4)
V i
as x varies over X. The family G is a simple rescaling

of F and maps A into the interval [0, 1], therefore the P-
dimension of G is the same as that of F. Define

60(2) = Byly(a,0)) = DK

g(,0) =

19)
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and

N AN N p
S g, 50) = O (@) =K o

2 (N) - i
V@) = - 2

i=1

where
R 1 & .
K=B[" @), K=[f0) =5 > 6"

Notice that a minimizer &,y of q@&z\y)(x) is also a minimizer
of ¢§N)(:z:). Then, Theorem 2 in [18] guarantees that, for

a,v € (0,1),
> 1/} < a,

PR < sup
g€eg
provided that
2 1 1
N > 3—2 [ln8 + P-piM (G) (1116e +Inln 66)] .
v o v v
21

Applying this theorem with v = ¢/2, and using the bound
P-DIM (G) = P-DIM (F) < d , we have that, for all x € X,
it holds with probability at least (1 — «) that

. €
[6g(2) — 3 ()] < 5. (22)
From (22), evaluated in x = x}, it follows that
* In * € n ~(N €
¢g(xAV) 2 ¢;(;N) (xAv) - 5 2 ¢_<(;N) (17,(“, )) - 5; (23)
(N)

where the last inequality follows since 2,y ’ is a minimizer
of ¢g4. From (22), evaluated in x = :%/(\JVV) it follows that

N

Eslg(0)] - > 9(6)

=1

B E) > 6,23 - 5,
which substituted in (23), gives

6(20) = 0y (30)) — €.
From the last inequality and (19) it follows that
o) — dlaky) < eV,

which concludes the proof. ]
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