
Abstract—This paper presents a new approach to the
problem of dynamic obstacle avoidance. Our developed
approach, the Gradient Velocity Obstacle algorithm, has been
designed specifically to operate in real-time on a non-holonomic
car-like vehicle with a Ladar sensor being used for obstacle
detection. The algorithm has been demonstrated both through
simulation tests and operation on a test vehicle platform.

I. INTRODUCTION

Autonomous motion of intelligent vehicles, specifically in
environments containing dynamic road obstacles, is an
exciting field of research. In order for success to be achieved
in this field a number of areas of research must be integrated
including sensor design, data fusion, map building,
localization, off-line optimized path planning methods and
real-time high-speed obstacle avoidance methods.

Due to dynamic obstacle avoidance being just one small
segment amongst this large group of topics it is often
overlooked. Also, its close link to the path planning problem
often causes the solution required for this complex and
distinct area to be underestimated. This is exemplified by the
fact that most researchers make obstacle avoidance methods
that are designed for operating in an a priori environment
amongst static obstacles. They then believe that in order to
make these methods operate in real-time among dynamic
obstacles it is only a matter of increasing processing power
and applying small modifications to achieve the same
success. This is strongly refuted by Kohout [1] who criticizes
current path planning methods that are largely computed off-
line and unsuitable for application to a real-time scenario
with dynamic obstacles.

As the current focus on dynamic obstacle avoidance is
from a traditional path planning view, terminology currently
used is from the view point of the vehicle’s surrounding
environment [2]. For example an environment is described as
dynamic if obstacle information becomes known over time.
This paper will however adopt a new terminology taken from
the view point of the vehicle platform. Therefore rather than
describing a dynamic environment, an algorithm would be

Manuscript received March 1, 2005. This work was supported, in part,
by the French Government through the IMARA research unit of INRIA
Rocquencourt. Support was also provided by Griffith University, Australia
and its Institute for Intelligent and Integrated Systems.

T. J. Myers and L. Vlacic are with the Intelligent Control Systems
Laboratory of Griffith University, QLD Australia (email:
toby.myers@student.griffith.edu.au, l.vlacic@griffith.edu.au)

T. Noël and M.Parent are with INRIA, Rocquencourt, France (email:
t.noel@inria.fr, m.parent@inria.fr).

referred to as operating in real-time by gathering details
about the environment on-the-fly (after the algorithm has
begun execution). Alternatively an offline algorithm uses a
priori information about the environment to determine its
maneuver prior to execution. This allows the attributes
dynamic and static to refer to moving and stationary
obstacles respectively. Also, to describe the motion
constraints of a vehicle, the term holonomic is used to
describe a vehicle capable of unconstrained motion such as
turning on its axis and near instant acceleration within a
specified (normally low) velocity range.

The organization of this paper is as follows. In Section II,
areas of related work are discussed. Section III summarizes
the Dynamic window approach. Section IV gives a brief
explanation of the Velocity Obstacle approach. Our
proposed method, the Gradient Velocity Obstacle Algorithm,
is detailed in Section V. In Section VI, experimental results
using both a simulated environment and an autonomous
vehicle are presented. Finally, the conclusions can be found
in Section VII.

II. RELATED WORK

The separation of obstacle avoidance into different
problems is a very controversial subject in which there are
many differing opinions. Most agree that there are two
approaches, global and local (though not always with these
titles). This however is where the agreement ends and, due to
the differing definitions applied by different authors, it is
common to find solutions to the problem classified as global
by one author and local by another. This confusion is
increased by the common practice of combining local and
global solutions to the problem together in an attempt to
form a complete system.

For the purposes of this paper the following definitions of
global and local will be used. Global solutions to the
dynamic obstacle avoidance problem operate in a static
environment by computing offline an optimized path from
start to finish that avoids all known static obstacles. Local
solutions use only a small fraction of the world space and
operate real-time in an unknown environment. Therefore
they have an inherent advantage in avoiding dynamic
obstacles. However, they may also have the disadvantage of
not being able to produce an optimal solution and may get
trapped in local minima (such as a large U shaped obstacle)
[2].

The first techniques designed specifically for avoiding

Autonomous Motion of a Driverless Vehicle operating among
Dynamic Obstacles

Toby J. Myers, Tony Noël, Michel Parent, MIEEE, Ljubo Vlacic, SMIEEE

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeB07.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 5071

dynamic obstacles used various techniques to determine the
point where a collision would occur between the vehicle and
the obstacles. The techniques that were developed include
configuration-time space [3], path-velocity decomposition
[4], and collision fronts [5]. Configuration-time space
operates by searching for a path in configuration space over
time by estimating new positions of obstacles assuming
constant velocities and unchanging direction. Path-velocity
decomposition separated the control of velocity and
direction, allowing velocity to be altered along the path in
order to avoid obstacles that have been found to cross the
chosen path. Collision fronts consists of creating an
accessibility graph of the environment that is the set of the
points on obstacles which are achievable by the vehicle
moving at maximum speed [5].

Another technique for avoiding dynamic obstacles is the
Velocity Obstacle approach [6]. Unlike the previous
techniques, the Velocity Obstacles approach directly uses
velocity information to determine which velocities will cause
the vehicle to collide with an obstacle. As this method uses
the velocities of the obstacles directly when calculating
possible collisions it is ideal for real-time applications.

Before we discuss the details of the Velocity Obstacle
approach, we will firstly, in Section III, describe the
Dynamic Window approach. Although the Dynamic Window
approach has not been specifically designed for controlling a
vehicle’s motion amongst dynamic obstacles it consists of an
elegant step structure concept which eliminates unsuitable
velocities until the vehicles best possible velocity is chosen.
This step structure is also deployed in our algorithm in order
to enhance the structure of the original Velocity Obstacle
approach.

III. DYNAMIC WINDOW APPROACH

The dynamic window approach [7] is an obstacle
avoidance method that is capable of operating in a real-time
environment amongst dynamic obstacles using the position
of obstacles relative to the mobile platform. The algorithm
was originally designed for a non-holonomic vehicle, taking
into account the kinematics and dynamics of syncro-drive
robots. The kinematics of the vehicle is considered by
searching the velocity space (v,) consisting of the
translational velocities v and angular velocities that are
achievable by the vehicle as represented in Figure 1.

The dynamic window approach is implemented in four
steps each of which involves a further reduction of the
vehicle’s available velocities until the best possible
translational and angular velocities have been chosen. The
first step restricts the vehicle’s velocity space to the
achievable velocities, which are the set of translational and
angular velocities achievable taking into account the
kinematic constraints of the vehicle.

This set of achievable velocities is then reduced to those
velocities that can safely avoid obstacles near the vehicle
resulting in a set of velocities called admissible velocities.
For the purposes of this method obstacles are considered
avoided if the vehicle can modify its velocity or come to a
complete stop to avoid a collision. This definition is far from
ideal as it doesn’t guarantee to keep the vehicle in motion
and doesn’t calculate future points of likely collision as is
necessary to successfully avoid dynamic obstacles over a
long driving time horizon.

The third step of the method is to create a dynamic
window of the admissible velocities consisting of velocities
that can be achieved within a certain time frame and within
the acceleration constraints of the vehicle. This is normally a
rectangular window centered on the current velocity of the
vehicle and extended according to the vehicle’s acceleration
capabilities.

The fourth and final step of the dynamic window approach
is to search the dynamic window using a cost function to find
the best translational velocity v and angular velocity based
on a set of heuristics. The heuristics of the cost function
favor velocities in the direction of the goal, angle(v,), that
maintain a large distance from obstacles, dist(v,), and that
operate at faster speeds, velocity(v,). This is all
incorporated into a weighted function using coefficents

, , and that allows the relative importance of each of

the behaviors to be modified,

(,) ((,)

(,) (,)),

G v w angle v w

dist v w velocity v w
 (1)

which is then computed over the discretised set of
translational and angular velocities located in the dynamic
window.

IV. VELOCITY OBSTACLE APPROACH

The Velocity Obstacle approach [6], unlike the majority of
other obstacle avoidance methods, is capable of operating
amongst dynamic obstacles as it has been specifically
designed for this purpose.

In order to calculate the Velocity Obstacle (VO), with
reference to Figure 2, consider two circular objects, A and B,
at time t0, with velocities vA and vB where A represents the
vehicle and B represents a moving obstacle. The first step is
to reduce the vehicle circle, A, to a single point, Â and to

enlarge the object circle, B by the radius of A to B̂ . This now

v

min max

maxv

Dynamic Window

Current Velocity

Figure 1: Dynamic Window Search Space [7]

5072

minimizes computation by only having to calculate the
intersection of a point and a circle.

A Collision Cone, ,A BCC is created using Â and B̂ which

is the set of colliding relative velocities between Â and

B̂ and is defined as:

, , ,
ˆ| 0A B A B A BCC v B

where ,A Bv is the relative velocity of Â with respect to B̂ ,

,A B A Bv v v , and ,A B is the supporting line of ,A Bv . Any

relative velocity within ,A BCC will cause A and B to collide.

In order to avoid multiple obstacles, absolute velocities
must be used by adding the velocity of the obstacle, vB, to
each velocity in CCA,B thereby forming the Velocity
Obstacle, VO, where ,A B BVO CC v and is the

Minkowski vector sum operator, ()
B

A B A . The

VO then is the set of colliding absolute velocities between Â

and B̂ . By finding the union of the individual velocity

obstacles,
1 i

m

Bi
VO VO , where m is the number of

obstacles, multiple obstacles can be avoided using a
combined velocity obstacle (VO). Therefore the vehicle can
avoid a collision by selecting any velocity outside of the
combined velocity obstacle; these velocities are known as
avoidance velocities.

The dynamics of the vehicle are considered by computing
the set of velocities that the vehicle can reach in the set time
interval and are known as achievable velocities. By choosing
avoidance velocities that are also achievable velocities a set
of achievable avoidance velocities is formed. These
achievable avoidance velocities can then be searched using a
cost function in order to select the velocity that best fulfils a
set of heuristics.

Recently some modifications have been suggested to the
Velocity Obstacle method. One modification is the
introduction of a short time horizon so that priority is given
to avoiding obstacles that are directed towards an imminent
collision [6]. Another modification has been to create a non-
linear velocity obstacle capable of avoiding collisions with

obstacles that do not move along a linear path [8].

V. GRADIENT VELOCITY OBSTACLE APPROACH

The Gradient Velocity Obstacle approach, as suggested by
the name, is a modification of the Velocity Obstacle
algorithm that uses a gradient rather than an absolute
velocity obstacle. The motivation for the utilization of a
gradient is that, in the case of a non-holonomic vehicle, it is
possible that all of the achievable velocities may result in a
collision. In this case it is necessary to take the best possible
action to avoid the obstacle(s) in multiple steps by way of a
gradient.

This approach has the benefit of using the well-structured
steps of the Dynamic Window approach and the ability to
operate amongst dynamic obstacles provided by the Velocity
Obstacle approach. The combination of the Dynamic
Window approach and the Velocity Obstacle approach has
been investigated before, though independently, in [9],
though this method fails to find the need for gradient velocity
obstacles.

Similarly to the Velocity Obstacle approach the Gradient
Velocity Obstacle method operates in Cartesian velocities Vx

and VY rather than translational and angular velocity pairs.
This decision was made due to the test vehicle platform –
Cycab [10], using the IBEO Ladar sensor that provides
velocity information on obstacles in Cartesian pairs.

In addition to the integration of the Dynamic Window
approach and the Velocity Obstacle approach a number of
other improvements were made, namely: the holonomic
constraints of a car-like vehicle were incorporated; the
velocity obstacle was discretised for improved performance
and converted to a gradient; and a new cost function was
created.

A. Holonomic Constraints

Most methods developed for obstacle avoidance are to be
implemented on a holonomic vehicle with differential drive.
Our method was required to be implemented on a car-like
platform that required the consideration of non-holonomic
constraints such as the inability of turning on the spot, i.e. to
turn without forward motion.

The non-holonomic constraints of the vehicle were
incorporated into the achievable velocities step of the
dynamic window approach structure by limiting the
maximum lateral velocity, Vx, based on the forward velocity,
VY. By either limiting the maximum curvature of the vehicle,
C, or by finding its rotational velocity, d /ds, the maximum

steering angle can be calculated by simplifying the vehicles
motion to a two-wheel bicycle, as shown in Figure 3,

1 tan d
C

R L ds
(3)

where is the vehicle’s heading direction. The maximum

Figure 2: Construction of a Velocity Obstacle [6]

5073

steering angle is then used to limit the Cartesian velocity
pairs based on the lateral velocity of the vehicle.

B. Gradient Velocity Obstacle

For the Velocity Obstacle method to interact with the
Dynamic Window stage of the Dynamic Window approach,
the Velocity Obstacle had to be converted from an absolute
indicator of a collision to a gradient. The reason for this is
when the Cost Function is used to select a velocity from the
dynamic window it is possible that the whole dynamic
window can contain collision velocities. In the case where an
absolute velocity obstacle is used, and no avoidance is
possible in the next iteration, the vehicle will no longer try to
avoid a collision and will favor the other heuristics, in this
case, speed and goal heading. By changing the velocity
obstacle to a gradient, the vehicle can select velocities that
will eventually place the vehicle along a safe path to avoid
the obstacle that is essential in order for this method to be
able to operate in real-time.

The Gradient velocity obstacles algorithm is as follows:

1. Extend the left-most point (LMP) and right-most point
(RMP) of the obstacle along LMPRMP by the vehicle
width and a safety distance to LMP' and RMP'

2. For each point P(x0,y0) inside the gradient velocity
obstacle

Find P1(x1,y0) on OCP
Find P2(x2,y0) on 'OLMP
The Gradient value at P0 is calculated with:

0 1

1 2

1
2

P P

P P
(4)

This algorithm results in a gradient with a maximum value

of 1.0 at the center of the Velocity Obstacle and a value of
0.5 at its edge. A simplified example of the calculation of the
Gradient Velocity Obstacle can be seen in Figure 5. Outside
the steering constraints are blocks representing velocity pairs
not possible due to holonomic constraints; inside the steering
constraints blocks not covered by the gradient velocity
obstacle represent safe velocity pairs; and boxes inside the
gradient velocity obstacle represent velocity pairs that are
predicted to result in a collision.

When more than one obstacle is present the individual
gradient velocity obstacles are combined and averaged by
the number of obstacles. This then encourages the vehicle to
place higher priority on avoiding velocities that would cause
collisions with multiple obstacles. As the gradient is
currently calculated prior to combination of velocity
obstacles, it is feasible that more than one local minimum
could occur which may result in the vehicle maintaining an
unsuitable velocity. In the future a new method of combining
multiple velocity obstacles will be investigated which will
remove the possibility of local minima.

C. Cost Function

Similar to the cost function used in the Dynamic Window
approach (1), apart from the change in coordinate systems; a
function composed of three heuristics was used in this
method to search for the next velocity of the vehicle. The
three heuristics used were angle(Vx,Vy), speed(Vx,Vy), and
inhibition(Vx,Vy) where Vx indicates lateral velocity and Vy

indicates forward velocity relative to the vehicle platform.
The angle heuristic is used to provide the vehicle with a

goal-directed behavior by finding the heading of the vehicle
if it takes the current (Vx,Vy) velocity pair and then
subtracting this from the goal heading and normalizing this
value with . This results in a value of 1 if the velocity pair is

V = V y

V x = V sin

R

Figure 3: Simplification of Vehicle to Bicycle.

O

CP RMP RMP’LMP’ LMP

P0 P1P2

x

y

Figure 4: Implementation of the Gradient Velocity Obstacles

LMP

RMP

CP

X Velocity O
 Y Velocity

Steering
constraints

Figure 5: Gradient Velocity Obstacles

5074

directly towards the goal, and a value of 0 if in the totally
opposite direction.

1 1tan tan

(,)

x

y

x y

VyGoal

xGoal V
angle V V (5)

The speed heuristic makes the vehicle favor moving at
faster velocities. The function for doing this is to normalize
the current Vy velocity by the fastest velocity of the vehicle,
Vy max.

max

(,) y
x y

y

V
speed V V

V
(6)

The inhibition heuristic converts the gradient of the
velocity obstacles into a value that indicates the safety in
choosing the velocity pair.

(,) 1 (,)
x yx y V Vinhibition V V window index index (7)

Therefore if the dynamic window value (represented by
window(x,y)) is 0, indicating the velocity will not cause a
collision, the inhibition will be 1 and therefore maximized.
However if the velocity is a collision velocity, the gradient at
the point of the velocity pair will be subtracted from 1
making the velocity pair less likely to be chosen. This
heuristic together with the gradient of the Velocity
Obstacles, ensures that the vehicle will head in a direction
that avoids a collision.

Combining these three heuristics the Cost Function
becomes:

(,) (,)
 (,)
 (,)

x y x y

x y

x y

C V V angle V V
speed V V

inhibition V V
(8)

where , , and are the cost function parameters of the
angle, speed and inhibition functions respectively.

V. EXPERIMENTAL RESULTS

Testing of the method was first performed in a simulation
environment and then on our experimental test platform. For
simulation, a model of the Ladar sensor was used to provide
data. The Ladar sensor data was simulated over an 180o field
of view with any obstacle within a 20x20m radius becoming
visible. In accordance with the Ladar sensors data the left-
most, closest, and right-most points of the obstacle were then
provided.

The aim of testing was to create simulated environments
that would occur in a typical inner-city environment.
Obstacles were modeled as circular figures, and by using
different sizes were used to represent various moving

obstacles such as pedestrians, cyclists, automobiles, and
buses. Each obstacle was then given a starting point and a set
velocity. Combinations of these obstacles were then used in
the simulation of six possible scenarios. These scenarios
were a static obstacle on a collision path with the vehicle, a
static obstacle on a non-collision path with the vehicle, an
intersection scenario, a head on collision scenario, a lane-
merge scenario and a sidewalk/adjacent lane scenario.

All tests were performed using the cost function
parameters of 0.3, 0.1, 0.6 with the simulated

vehicle operating at 7m/s (25 km/h), and obstacles operated
up to a maximum of 16.5m/s (60 km/h). Of the total 248 test
cases performed the algorithm had an 89.1% success rate at
avoiding all obstacles while maintaining a safety distance of
a meter, and of reaching the goal. The exclusion of cases
with obstacles operating at 16.5m/s raised this to 97.2%
indicating that the current sensor setup is not yet adequate
for operating with obstacles moving at velocities greater than
7m/s.

In Figure 6 an example test of the simulation environment
can be seen in which three obstacles are present. All of the
obstacles and the vehicle are moving at 7m/s. Each instance
of the vehicles and obstacles represents a critical stage of the
simulation. The first stage shows the initial position of all the
obstacles and the vehicle prior to the simulation starting. In
the second stage the figure shows when the vehicle has just
detected the first obstacle and is about to begin an evasive
maneuver to the left. By the third stage the vehicle has
detected obstacle two and using the combination gradient
velocity obstacle continues to avoid to the left. The fourth
stage shows the vehicle detecting the third obstacle and the
gradient velocity obstacle of the third obstacle causes the
vehicle to reduce its speed to avoid the collision. The fifth
stage shows the vehicle maintaining a slow admissible
velocity about to avoid the third obstacle, then increase

0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

80

Obstacle 1

Obstacle 2

Obstacle 3

Vehicle

Goal

meters

m
et

er
s

Figure 6: Intersection Scenario Test in Simulation Environment

5075

speed and reach the goal.
In addition to simulation, testing was also performed on

the test vehicle platform. Initial tests were performed at low
speeds (0.5m/s) with static and slow moving obstacles. The
results were promising and gave initial success though more
time needs to be spent performing on-road testing of the
algorithm.

The algorithm was tested on our test vehicle platform,
shown in Figure 7, which is a car-like vehicle operated using
a 3 GHz Pentium 4 embedded computer, a second PC
running a real-time Linux kernel and two MPC555
microcontrollers. The algorithm was implemented on the
embedded computer that is used for high-level behaviors,
while the secondary PC and the MPC555 controllers are
used for low-level behavior consisting mostly of motor
control. For the purposes of obstacle avoidance, the test
vehicle platform was equipped with an IBEO Ladar Sensor
[11] that performs scans at a frequency of 10Hz over a 270o

area (though only 180o was utilized) at 0.25o degree
intervals. The sensor can track 25 objects internally and
transmits details of up to 20 objects that lie within a set
object output area normally 6x6m, via the CAN bus. The
range of the Ladar sensor is dependent on reflectivity but
ranges from 100m at 90% reflectivity to 50m at 10%
reflectivity.

During testing the cause of collisions was found to be
local minima occurring in the gradient velocity obstacles
upon the combination of multiple velocity obstacles. In the
future calculating the gradient velocity obstacle after all
velocity obstacles have been combined will extend this
method. This would also allow the algorithm to follow a
slow moving obstacle or stop to avoid a collision thereby
giving success in the abortive maneuver of a similar method
[9].

VI. CONCLUSION

This paper has outlined the current state of the art in
research on the topic of autonomous motion of a driverless
vehicle operating amongst dynamic obstacles. It has also
presented a new algorithm, the Gradient Velocity Obstacle
approach that is capable of avoiding a collision in a time-
varying environment at high speeds.

The Gradient Velocity Obstacle algorithm has been shown
through simulations to operate successfully at high speeds in
a number of scenarios modeled on an inner-city environment.
The gradient velocity obstacle used in this method allows for
the vehicle to reach avoidable velocities in more than a
single step.

Future work will be done on removing local minima from
the gradient velocity obstacle, investigating the inclusion of
recent modifications to the velocity obstacle as outlined
previously, and on a method to constrain the path that the
algorithm considers. Also, as the Gradient Velocity Obstacle
method has only been tested at low motion, future work will
involve testing the method using higher velocities of both the

test vehicle platform and the dynamic obstacles.

REFERENCES

[1] B. Kohout, Challenges in Real Time Obstacle Avoidance, to appear in
AAAI Spring Symposium on Real-Time Autonomous Systems, 2000,
California, USA

[2] Y. Hwang, and N. Ahuja, Gross Motion Planning – A Survey. ACM
Computing Surveys, vol. 24 (3), 1992, pp. 219-291.

[3] J. Reif, and M. Sharir, Motion Planning in the presence of moving
obstacles. Journal of ACM, vol. 41 (4), 1994, pp. 764-790.

[4] T. Fraichard, and C. Laugier, Path-velocity decomposition revisited
and applied to dynamic trajectory planning. In IEEE International
Conference of Automation and Robotics, vol. 1, pp. 40-45, Atlanta,
USA.

[5] K. Fujimura, and H. Samet, Time-minimal paths among moving
obstacles. In IEEE International Conference on Robotics and
Automation, pp 1110-1115.

[6] P. Fiorini, and Z. Shiller, Motion planning in Dynamic Environments
using Velocity Obstacles, Int. Journal on Robotics Research, vol 17
(7), 1998, pp. 711-727.

[7] D. Fox, W. Burgard, and S. Thrun, The Dynamic Window Approach
to Collision Avoidance, IEEE Robotics and Automation Magazine,
vol 4 (1), 1997, pp. 23-33.

[8] Z. Shiller, F.Large and S. Sekhavat, Motion Planning in Dynamic
Environments: Obstacles Moving Along Arbitary Trajectories, Int.
Conf. On Robotics and Automation, 2001, Seoul, Korea.

[9] D. Castro, U. Nunes and A. Ruano, Reactive Local Navigation,
Proceedings of the .28th Industrial Electronics Society Conference,
2002, Sevilla, Spain.

[10] User Needs Analysis and Analysis of Key Technologies: Report on
Existing Technologies for vehicles. Retrieved 07 Feb. 2005, from
http://www.cybercars.org/docs/D1Part1-UserNeed.doc

[11] IBEO LD Automotive. Retrieved 07 Feb. 2005, from
http://www.ibeo-as.de/html/prod/prod_ld_autom.html.

Figure 7: The Cycab Platform

5076

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

