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Abstract— The paper addresses the state estimation prob-
lem involving communication errors and capacity constraints.
Discrete-time partially observed unstable linear systems per-
turbed by uniformly bounded disturbances are studied. Unlike
the classic theory, the sensor signals are transmitted to the
estimator over a noisy digital communication link modelled
as a stochastic stationary discrete memoryless channel. It is
shown that the Shannon zero error capacity of the channel
constitutes the border separating the cases where the plant is
and respectively, is not almost surely observable.

I. INTRODUCTION

In classical control theory, a common assumption is that
data transmission between various components of the system
can be performed with arbitrary high accuracy. However
in many modern engineering applications, observation and
control signals are sent over digital finite capacity chan-
nels. Examples concern complex dynamical processes like
advanced aircraft, spacecraft, automotive, industrial and de-
fence systems, arrays of microactuators, and power control in
mobile communication. Other examples arise when a large
number of mobile units is remotely controlled by a single
decision maker. Bandwidths communication constraints are
often major obstacles to control system design by means
of the classical theory. As was shown in [22], design of
control systems for platoons of underwater vehicles strongly
highlights the need for control strategies that address ex-
plicitly the bandwidth limitation on communication between
vehicles, which is severely restricted underwater.

The issues of stabilization and observation via limited
capacity channels enjoyed much attention recently, see e.g.,
[1], [4], [6]–[9], [12], [14], [15], [17], [21] and the lit-
erature therein. Fundamental limitations imposed by the
available communication data rate on the achievable control
performance were studied e.g., in [12], [14], [15], [17],
[18]. The tightest data rate bounds above which stabiliza-
tion/observation of a linear plant is possible were estab-
lished in [14], [15], where the focus was on the channel
quantization effects, and noiseless channels with alphabets
containing a finite number N of elements were considered.
The stabilizability/observability criterion was given in the
form η < log2 N , where η is the sum of the logarithms of
the absolute values of the system unstable eigenvalues and
log2 N is the channel capacity.
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Study of the interaction between control and data rate limi-
tations of noiseless channels is a necessary step in developing
the theory. However typical communication channels are
noisy. Mean-square and more generally, mth moment) ob-
servability/stabilizability bounds for noisy discrete channels
were addressed in [16], [21] for scalar noisy linear systems.
An encoder-decoder pair for estimating the state of a scalar
noisy linear system via a noisy binary symmetric channel
with a perfect feedback was proposed in [21]. Conditions
ensuring that the mathematical expectation of the estimation
error is bounded were obtained. It was shown that these
conditions improve those from [16].

Almost sure observability/stabilizability of noiseless mul-
tidimensional plants over noisy channels was addressed in
[12]. It was shown that the border between the cases where
such an observability/stabilizability holds and does not hold,
respectively, is given by the Shannon ordinary capacity c of
the channel [20]. The critical feature of these results from
[12] is that they concern noiseless (unperturbed) plants.

In this paper, the issue of almost sure observability is
addressed for noisy both plants and channels. We consider
a linear discrete-time unstable partially observed plants af-
fected by exogenous disturbances. The sensor signals are
sent to the state estimator over a finite alphabet stationary
discrete memoryless channel (DMC). We show that taking
into account the plant disturbances drastically changes the
observability domain, as compared with noiseless plants. For
noisy plants, the border between the cases where the system
can and, respectively, cannot be observed with almost surely
bounded error is constituted by the Shannon not ordinary c

but zero error capacity c0 [19] of the channel. The conditions
η ≤ c0 and η < c0 are necessary and sufficient, respectively.
As is known, c ≥ c0 and for many channels, c > c0. For
them, the observability domain does change. Moreover, we
prove that an unstable linear system affected by arbitrarily
and uniformly small disturbances can never be observed via
DMC if c0 < η. Then the estimation error is unbounded
almost surely, irrespective of which algorithm of observation
is employed. A similar in spirit negative fact was established
for a simple scalar system in [16], where however only
a special and rather small class of estimation algorithms
was examined. They are confined to those employing static
block encoders and decoders producing only finitely many
outputs. On contrary, our results deal with all time-varying
non-anticipating deterministic algorithms of estimation. In
the particular case of noiseless channel, our results are in
harmony with those from [14], [15]. Some further details
relevant to the results of the paper can be found in [13].
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Fig. 1. Estimation via a communication channel

Recent references that describe related developments include
[1]–[4], [6]–[9].

The body of the paper is organized as follows. In Sec-
tion II, we pose the estimation problem. Section III recalls
the notion of the zero error capacity. Section IV presents
main results, whereas Section V is devoted to their proofs.
Section VI offers brief conclusions. There is an Appendix
containing the proof of a technical fact.

II. ESTIMATION PROBLEM

We study unstable discrete-time linear systems of the
form:

x(t + 1) = Ax(t) + ζ(t); x(0) = x0, y(t) = Cx(t). (1)

Here x ∈ R
n is the state, ζ(t) ∈ R

n is an exogenous dis-
turbance, and y ∈ R

l is the measured output. The instability
means that there is an eigenvalue λ of A with |λ| ≥ 1. The
initial state x0 is random. The objective is to estimate the
current state on the basis of the prior measurements.

This estimate is required at a remote location. The only
way to communicate information from the sensor to this
location is via a given noisy discrete channel. So to be
transmitted, measurements must be first translated into a
sequence of symbols e from the finite input alphabet E of
the channel. This is done by a special device, referred to as
coder. Its outputs e emitted into the channel are transformed
by a noise into a sequence of channel’s outputs s from a
finite output alphabet S. The decoder-estimator produces an
estimate x̂ of the current state x on the basis of the prior
messages s:

x̂(t) = X [t, s(0), s(1), . . . , s(t)] . (2)

We consider two classes of coders. The first of them serves
the case where there is a feedback communication link. Via
this link, the transmission result s(t) becomes known at the
coder site by the time t + 1 (see Fig. 1). The second class
serves the case where no feedback is available. The coders
from these classes are said to be with and without a feedback
and are given by the following equations, respectively:

e(t) = E[t, y(0), . . . , y(t), s(0), . . . , s(t − 1)] ∈ E, (3)

e(t) = E[t, y(0), . . . , y(t)] ∈ E. (4)

Definition 1: The coder and decoder-estimator are said to
track the state with a bounded error if

lim
t→∞

|x(t) − x̂(t)| < ∞.

Is it possible to construct such coder and decoder?
An answer will be given under the following assumptions.
Assumption 1: The communication channel is a stationary

DMC: given a current input e(t), the output s(t) is indepen-
dent of all other inputs and outputs e(j), s(j), j �= t, and the
conditional probability W (s|e) := P [s(t) = s|e(t) = e], s ∈
S, e ∈ E does not depend on time t.

This model incorporates the effect of message loss by
including a special ”void” symbol ∅ in the output alphabet
S: s(t) = ∅ ⇔ the message e(t) is lost.

Assumption 2: The plant does not affect the channel:
given an input e(t), the output s(t) is independent of x0.

Assumption 3: The pair (A,C) is detectable.
We consider two classes of disturbances ζ(t) in (1). The

first class consists of all deterministic bounded disturbances

|ζ(t)| ≤ D ∀t. (5)

The second one interprets ζ(t) as a stochastic process. These
classes differ if only since sample sequences of such a
process do not necessarily constitute a set described by (5).
Note that our result concerning deterministic disturbances
(Theorem 1) can be formally derived from that dealing
with stochastic ones (Theorem 3). We however offer an
independent proof of the first result since it permits us to
display the basic arguments in a more straightforward and
clear fashion than in the case of stochastic disturbances.

III. ZERO ERROR CAPACITY OF THE CHANNEL

The Shannon ordinary capacity of the channel is the least
upper bound of rates at which information can be transmitted
with as small probability of error as desired [20]. The zero
error capacity is the least upper bound of rates at which it
is possible to transmit information with zero probability of
error. Unlike the former, the latter may depend on whether
the communication feedback is available or not [19].

Channels without a feedback link. A block code [20]
with block length m is a finite number N of the channel
input code words E1, . . . , EN ∈ Em = {E}, Eν =
(eν

0 , . . . , eν
m−1). This code is used to notify the receiver

which choice of N possibilities, labeled by ν, is taken by the
transmitter. The ratio R := log

2
N

m
is the rate of the code. The

decoding rule is a method to associate a unique ν with any
output word of length m, that is a map D : S

m → [1 : N ].
Such a rule is errorless if D(S) = ν for any ν and any output
word S that occurs with a positive probability given that Eν

is sent over the channel. The zero error capacity c0 := supR,
where sup is over all block codes of arbitrary lengths m for
which errorless decoding is possible. Two input letters e1, e2

are said to be adjacent if they may cause a common output
letter s, i.e., ∃s : W (s|e1)W (s|e2) > 0, where W (s|e) are
the channel transition probabilities. The zero error capacity
is positive c0 > 0 if and only if there exists a couple of
non-adjacent letters [19]. The general formula for c0 is still
missing [5].

To pave the way to channels with feedback, note that in the
absence of feedback, encoding by block codes is equivalent
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to encoding ν via block functions, i.e., rules of the form

e(t) = E∗[t, e(0), . . . , e(t − 1), ν],

t = 1, . . . , m − 1, e(0) = E∗[0, ν]. (6)

Channels with a complete feedback. In this case, the block
function (6) with block length m takes the form [19]

e(t) = E∗[t, e(0), . . . , e(t − 1), s(0), . . . , s(t − 1), ν],

t = 1, . . . , m − 1, e(0) = E∗[0, ν]. (7)

It is still used to encode messages labeled by ν for transmis-
sion over the channel. The other particulars in the definition
of the zero error capacity remain unchanged; the correspond-
ing capacity is denoted by c0F . The zero error capacity may,
in some cases, be grater with feedback than without [19]. It
is known that c0F = 0 if all pairs of input letters are adjacent.
Otherwise, 2−c0F = min maxs∈S

∑
e∈Es

P (e) [19]. Here
min is over all probability distributions on the input channel
alphabet E, and Es is the set of all input symbols that cause
the output letter s with a nonzero probability.

IV. MAIN RESULTS

A. Deterministic disturbances

Theorem 1: Let Assumptions 1 and 2 hold and the noise
do occur in the plant: D > 0 in (5). Denote by λ1, . . . , λn

the eigenvalues of the system (1) repeating in accordance
with their algebraic multiplicities, and put

η(A) :=
∑

λj :|λj |≥1

log2 |λj |.

If there exists a coder-decoder pair without (with) a
feedback that with a nonzero probability, tracks the state
with a bounded error for any disturbance satisfying (5), then
c0 ≥ η(A) (respectively, c0F ≥ η(A)).

The proof of this theorem is given in Section V.
The conclusion of the theorem holds for any D > 0. So

the level of the plant noise may be arbitrarily small.
The zero error capacity of many channels is 0. Theorem 1

implies that for them and strictly unstable plants η(A) > 0,
the estimation error is almost surely unbounded, even if the
disturbance is arbitrarily uniformly small and irrespective of
which estimation scheme is employed. This in particular
holds for the binary symmetric channel with cross-over
probability 0 < p < 1 and erasure channel with arbitrary
alphabet (of size ≥ 2) and positive erasure probability.

The next theorem demonstrates that the necessary condi-
tions given by Theorem 1 are ”almost” sufficient.

Theorem 2: Suppose that Assumptions 1—3 hold and the
noise bound D from (5) is known.

If c0 > η(A) (c0F > η(A)), then there exists a coder-
decoder pair without (with) a feedback that with probability
1, tracks the state with uniformly bounded error:

lim
t→∞

sup
{ζ(·)}

|x(t) − x̂(t)| < ∞, (8)

where sup is over all disturbances satisfying (5).

In fact, this theorem is known since by increasing the
sampling period, this case is reduced to that of the noiseless
channel with capacity c > η(A).

B. Stochastic disturbances

Now we assume that in (1), {ζ(t)} is a stochastic process
satisfying the following assumptions.

Assumption 4: The random vectors ζ(t) are identically
distributed according to a probability density p(ζ), mutually
independent, and independent of x0.
The major points of this paper concern the case where the
disturbances ζ(t) are uniformly and arbitrarily small: the
support of p(ζ) is a subset of a small ball centered at 0.

Assumption 5: The system (1) does not affect the channel:
given an input e(t), the output s(t) is independent of not only
the initial state x0 but also disturbances ζ(θ).

Theorem 3: Let Assumptions 1, 2, 4, 5 hold.
If η(A) > c0F (or η(A) > c0), then for any coder with a

feedback (3) (without a feedback (4)) and decoder-estimator
(2), the estimation error is a.s. unbounded:

lim
t→∞

|x(t) − x̂(t)| = ∞ a.s. (9)
The proof of this theorem is available upon request.

V. PROOF OF THEOREM 1

To prove Theorem 1, it suffices to justify the following.
Proposition 1: Let η(A) > c0 (or η(A) > c0F ). Consider

any coder and decoder without (with) a feedback. Then with
probability 1, there exists an admissible (i.e., satisfying (5))
disturbance {ζ(t)} for which the error is unbounded:

lim
t→∞

|x(t) − x̂(t)| = ∞. (10)
We start the proof of this claim by noting that attention

can be switched to the uniform observability.
Lemma 1: Suppose that for any coder and decoder with-

out (with) a feedback and initial state distribution satisfying
Assumption 2, the error is not kept uniformly bounded:

lim
t→∞

sup
{ζ(·)}

|x(t) − x̂(t)| = ∞ a.s. (11)

Then the conclusion of Proposition 1 holds.
The proof of this technical observation is placed in Ap-

pendix.
Let the assumptions of Proposition 1 be valid. To prove

(11), we shall argue by contradiction. Suppose that (11) is
not true, i.e., (8) holds with a positive probability for some
coder and decoder. By sacrificing a small probability, the
error can be made uniformly bounded: for some nonrandom
t∗, b∗ < ∞, with a nonzero probability,

sup
{ζ(·)}

|x(t) − x̂(t)| < b∗ for all t ≥ t∗. (12)

The idea is to show that then there is an errorless block code
hidden within the observer. We start with preliminaries.

By the assumptions of Proposition 1, η(A) > 0. So σ⊕ :=
{λ ∈ σ(A) : |λ| > 1} �= ∅, where σ(A) is the spectrum of
A. Let L⊕ denote the invariant subspace of A related to σ⊕,
and A⊕ the operator A acting in L⊕. It is easy to see that
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η(A) = log2 |det A⊕|. We also recall that a set V ⊂ R
n is

called b-separated if |v1 − v2| > b for any v1 �= v2 ∈ V .
Lemma 2: For any b > 0 and m = 1, 2, . . ., there exist

N ≥
(
b−1D

)dim L⊕
2(m−2)η(A) (13)

admissible disturbances Ξν = {ζν(t)}m−2
t=0 , ν = 1, . . . , N

that drive the system (1) from the zero initial state to the
states xν(m − 1)

Ξν←−− 0 forming a b-separated set.
Proof: We look for Ξν among disturbances of the form:

ζν(0) ∈ L⊕, ζν(t) = 0 if t ≥ 1. For them, xν(m − 1) =
Am−2

⊕ ζν(0). Among the subsets of the ball BD
0 ⊂ L⊕

transformed by Am−2
⊕ into b-separated sets, we pick one

Z = {ζ1(0), . . . , ζN (0)} with the maximal cardinality N .
Then Am−2

⊕ BD
0 ⊂

⋃N
ν=1 Bb

xν(m−1) (all balls are in L⊕):
otherwise, one more point can be put in Z. Hence

|det A⊕|
m−2 mes BD

0 = mes
[
Am−2

⊕ BD
0

]
≤

N∑
ν=1

mes
[
Bb

xν(m−2)

]
= N mes Bb

0,

N ≥ |det A⊕|
m−2 mes BD

0

mes Bb
0

= 2(m−2)η(A)

(
D

b

)dim L⊕

.•

To construct an errorless code with block length m ≥ 2,
we take t∗, b∗ from (12) and Ξ1, . . . ,ΞN from Lemma 2,
where we use b > 2b∗. At first, we introduce infinitely many
random codes. Then we pick a unique deterministic code as
a realization of one of them. To this end, for any i ≥ 1, we
consider the process x(t), y(t), x̂(t), e(t), s(t) generated by
the zero disturbance until t = ti∗−1, ti∗ := t∗+ im. Then we
introduce N continuations of this disturbance on [ti∗, t

i+1
∗ −2]

by Ξ1, . . . ,ΞN , respectively. Each of them Ξν gives rise to a
continuation of the process on the interval [ti∗, t

i+1
∗ −1]; this

continuation is marked by i
ν . Now we introduce the block

code (6) (or (7)) that encodes ν by acting just as the coder
(4) (respectively, (3)) does under the continuation Ξν :

Ei
∗

[
t, e0, . . . , et−1, s0, . . . , st−1, ν

]
:=

E

[
t + ti∗, y(0), . . . , y(ti∗), y

i
ν(ti∗ + 1), . . . , yi

ν(ti∗ + t),

s(0), . . . , s(ti∗ − 1), s0, . . . , st−1

]
, t ≤ m − 1. (14)

(For t = 0, all arguments of the form sθ, eθ, y
i
ν(θ) are

dropped.) The dashed expressions are omitted if there is no
communication feedback. The decoding rule Di : Sm → [1 :
N ] is fabricated on the basis of the decoder (2):

Di[s0, . . . , sm−1] :=

{
ν if A is true

1 otherwise
, where

A ≡
{

the ball in R
n with the radius b∗ centered at

X
[
θi, {s(t)}

ti
∗−1

t=0 , {sj}
m−1
j=0

]
contains xi

ν(θi)

and does not contain xi
ν′(θi) with any ν′ �= ν

}
. (15)

where θi := ti+1
∗ − 1. Thus a random coding-decoding pair

Pi
cd := [Ei

∗(·),D
i(·)] with block length m is constructed.

Further it will be convenient to think about the channel
as a sequence of mutually independent (and independent of
x0) and identically distributed random maps Gt : E → S

such that P [Gt(e) = s] = W (s|e) ∀t, e, s, where W (·|·)
is taken from Assumption 1. Then s(t) = Gt[e(t)]. We
also introduce the block maps Gm

i (E) :=
{
Gti

∗+t(et)
}m−1

t=0

acting on the input words E = {et}
m−1
t=0 . When one uses a

coding-decoding pair Pcd = [E∗(·),D(·)] with block length
m to transmit a message ν during the interval [ti∗ : ti+1

∗ −1],
the result νtr depends on both this pair and Gm

i . With a
slight abuse of notation, we write this νtr = Pcd[ν,Gm

i ].
Now we are in a position to state the key property of Pi

cd.
Lemma 3: Whenever (12) holds,

ν = Pi
cd[ν, Gm

i ] ∀ν and i. (16)
Proof: By (14), Ei

∗ encodes ν into {ei
ν(ti∗ + t)}m−1

t=0 ,
and

Gm
i

[
{ei

ν(ti∗ + t)}m−1
t=0

]
= {si

ν(ti∗ + t)}m−1
t=0

def
= Si

ν ,

x̂ i
ν(θi) = X

[
θi, {s(t)}

ti
∗−1

t=0 , Si
ν

]
, θi := ti+1

∗ − 1. (17)

Since the state at t = ti∗ is common for all ν, the set
{xi

ν(θi)}
N
ν=1 is a displacement of the set {xν(m − 1)}N

ν=1

from Lemma 2. Since the latter is b-separated, so is the
former. It follows that any ball of radius b∗ < b/2 contains
no more than one point of the form xi

ν′(θi). At the same
time, (12) ensures that the ball centered at x̂ i

ν(θi) contains
xi

ν(θi). This and (15), (17) imply (16). •

By Lemma 3, the decoding rule (15) does not make error
for a particular realization of the random channel map Gm.
At the same time, a rule is errorless if it does not make errors
for every realization assumed with a nonzero probability.
Now we are going to show that the variety of samples
assumed by the random codes Pi

cd, i = 1, 2, . . . contains
an errorless pair.

We note first that there are only finitely many coding-
decoding pairs with a given block length m and the number
N of messages. So in any sample sequence of the stochastic
process {Pi

cd}, some particular pair is encountered infinitely
many times. Moreover, let us observe all such sequences
corresponding to elementary events for which (12) holds.
By the same argument, there is a pair Pcd such that with a
nonzero probability, both (12) is true and Pcd is encountered
in {Pi

cd}
∞
i=1 infinitely many times.

Lemma 4: The pair Pcd is errorless.
To prove this lemma, we need the following fact.

Theorem 4 ( [11, §32, p.53]): Suppose that Fi is a flow
of non decreasing σ-algebras in a probability space, the
random variable ξi is Fi-measurable, and bi ↑ ∞, bi > 0.
Suppose also that E

∣∣ξi − E(ξi|Fi−1)
∣∣ < ∞ and

∞∑
i=1

b−2
i E

{[
ξi − E(ξi|Fi−1)

]2}
< ∞. (18)
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Then with probability 1,

b−1
r

r∑
i=1

[
ξi − E(ξi|Fi−1)

] r→∞
−−−→ 0. (19)

Proof of Lemma 4: We put i0 := 0 and ik+1 := min{i :

i > ik,Pi
cd = Pcd} for i = 0, 1, . . ., where min ∅

def
= +∞.

It is easy to see that {ik = l} ∈ Fl ∀l < ∞, where Fi is
the σ-algebra generated by x0, G0, . . . , Gti

∗−1. Thus ik is a
Markov time [10] with respect to the filtration Fi. By the
choice of Pcd and Lemma 3 (where i := ik), we see that

ik < ∞ and ν = Pcd[ν,Gm
ik

] ∀ν, k (20)

with a nonzero probability. So it suffices to show that for
almost all events where (20) holds, the sequence {Gm

ik
} runs

over all realizations Gm
∗ of the random map Gm assumed

with nonzero probabilities.

For such a realization Gm
∗ , we apply Theorem 4 to

bk := k,Fk := Fik+1, ξk := I{Gm
ik

=Gm
∗ }∧{ik<∞}. (21)

Here IE is the indicator of the random event E and the
σ-algebra Fik+1 consists of all random events S such that
S∧{τk = l} ∈ Fl+1 for all l < ∞. As is known, Fk ⊂ Fk+1

since ik↑ are Markov times [10, Lemma 1.5, Ch.1]. Note that

ξk =

∞∑
l=1

I{Gm
l

=Gm
∗ }∧{ik=l} = χik

, (22)

where χl := I{Gm
l

=Gm
∗ } if l < ∞ and χ∞ := 0. Since χl is

Fl+1-measurable for l < ∞, the variable ξk is (Fik+1 = Fk)-
measurable [10, Lemma 1.8, Ch.1]. Since 0 ≤ ξk ≤ 1 ⇒
(19), Theorem 4 ensures (19), where

E[ξk|Fk−1] = E[ξk|Fik−1+1]
Lemma 1.9 [10, Ch.1]
==========

∞∑
j=1

E[ξk|Fj+1]Iik−1=j + ξkIik−1=∞

a)
=

∞∑
j=1

E[ξk|Fj+1]Iik−1=j

(22)
=

∞∑
j=1

∞∑
l=1

E[IGm
l

=Gm
∗ ∧ik=l|Fj+1]Iik−1=j

b)
=

∞∑
j=1

∞∑
l=1

E[IGm
l

=Gm
∗ ∧ik=l × Iik−1=j |Fj+1]

ik>ik−1

=====

∞∑
j=1

∞∑
l=j+1

P [Gm
l = Gm

∗ ∧ ik = l|Fj+1]Iik−1=j

c)
=

∞∑
j=1

∞∑
l=j+1

P [Gm
l = Gm

∗ ]︸ ︷︷ ︸
α(Gm

∗ )

P [ik = l|Fj+1]Iik−1=j

ik>ik−1

===== α(Gm
∗ )

∞∑
j=1

∞∑
l=1

P [ik = l|Fj+1]Iik−1=j

= α(Gm
∗ )

{
∞∑

j=1

∞∑
l=1

P [ik = l|Fj+1]Iik−1=j

+ Iik<∞Iik−1=∞︸ ︷︷ ︸
=0

}
Lemma 1.9 [10, Ch.1]
========== α(Gm

∗ )P
[
ik < ∞

∣∣Fik−1+1

]
= α(Gm

∗ )P
[
ik < ∞

∣∣Fk−1

]
.

Here a) holds since ik−1 = ∞ ⇒ ik = ∞
(21)
⇒ ξk = 0; b)

holds since {ik−1 = j} ∈ Fj ⊂ Fj+1, and c) holds since the
random map Gm

l is independent of Fl, where Fl � {ik = l}
and Fl ⊃ Fj+1 for l ≥ j + 1. Thus by (19),

1

r

r∑
k=1

ξk − α(Gm
∗ )

1

r

r∑
k=1

P
[
ik < ∞

∣∣Fk−1

] r→∞
−−−→ 0 a.s.

Applying Theorem 4 to Fk, bk := k, ξk := Iik<∞ yields

1

r

r∑
k=1

P
[
ik < ∞

∣∣Fk−1

]
−

1

r

r∑
k=1

Iik<∞
r→∞
−−−→ 0 a.s.

It follows that

1

r

r∑
k=1

ξk − α(Gm
∗ )

1

r

r∑
k=1

Iik<∞︸ ︷︷ ︸
r→∞
−−−→ 0 a.s.

Here α(Gm
∗ ) = P

[
Gm

t = Gm
∗

]
> 0 by the choice of

Gm
∗ , and the underbraced expression equals 1 whenever (20)

holds. By (21), this implies that the sample sequence Gm
ik

runs through Gm
∗ infinitely many times for almost all events

where (20) holds. It remains to invoke that Gm
∗ is an arbitrary

realization assumed by Gm with a positive probability.
Proof of Proposition 1. By Lemma 1, it suffices to justify

(11). Let (11) fail to be true for some coder-decoder pair
without (with) a feedback. By the foregoing, then for any
m ≥ 2, there exists a zero error block code of length m
without (with) a feedback for which (13) holds. So

c0(respectively, c0F ) ≥ m−1 log2 N
(13)
≥ m−1(log2 D − log2 b) dim L⊕ +

(
1 − 2m−1

)
η(A).

Letting m → ∞ yields c0 ≥ η(A) (c0F ≥ η(A)), in vio-
lation of the hypotheses of Proposition 1. The contradiction
obtained proves that (11) does hold.

Proof of Theorem 1. This theorem follows from Proposi-
tion 1.
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VI. CONCLUSIONS

We studied observability of linear discrete-time unstable
systems over noisy discrete memoryless channels. The sys-
tem is affected by exogenous disturbances. We followed the
natural approach aimed at observability along any (or almost
any) trajectory (in other words, at keeping the estimation
error bounded almost surely.) Is it possible to achieve this
objective, provided that the plant disturbances are uniformly
bounded and arbitrarily small? We showed that generally
speaking, the answer is in the affirmative. However the
capability of a noisy channel to ensure the affirmative answer
is, in some sense, identical to its capability to transmit
information with the zero probability of error. The standard
measure of the latter capability is the so-called zero-error ca-
pacity of the channel [19]. Unfortunately, this capacity equals
zero for most channels of practical interest [5]. The results
of this paper mean that for such channels, the trajectory-wise
observability cannot be achieved by any means. Specifically,
for any non-anticipating observer, the error is unbounded
with probability 1: uniformly bounded and arbitrarily small
plant disturbances cause, sooner or later, arbitrarily large
estimation errors. Then only weaker forms of observability
(such as observability in probability or m-th moment one)
appear to be relevant. However they may ensure only that
unavoidable large errors do not occur systematically and
frequently.

APPENDIX: PROOF OF LEMMA 1

Consider arbitrary coder and decoder without (with) a
feedback and pick {bi}

∞
i=1, bi↑∞. Thanks to (11), there

exists a random time τ1 and random admissible disturbance
ζ(t), t = 0, . . . , τ1 − 1 such that |x(τ1) − x̂(τ1)| > b1

a.s. Let us take the least such a time τ1. Then τ1 is the
stopping time [10], i.e., for every k, the event {τ1 = k}
is in the σ-algebra generated by x0, G0, . . . , Gk. The above
disturbance extended ζ(t) := 0 on t = τ1 can be chosen as
a function of these variables and τ1. Now we consider the
tail t ≥ τ1 +1 of the process x(t), y(t), x̂(t), e(t), s(t), Gt in
the (regular [10]) probability space obtained by conditioning
over τ1 = k, x0 = x, G0 = G̃0, . . . , Gk = G̃k. The
data d = [k,x, G̃0, . . . , G̃k] uniquely determines the state
x(τ1 + 1) = xk+1 and y(0) = y0, . . . , y(k) = yk, s(0) =
s0, . . . , s(k) = sk. (We recall that for t = 0, . . . , k, the
disturbance was chosen as a function of d.) Hence the tail
starts at t = k + 1 at x(k + 1) = xk+1 and is governed by
the coder and decoder that are obtained from putting y(0) =
y0, . . . , y(k) = yk and s(0) = s0, . . . , s(k) = sk into (3)
(or (4)) and (2), respectively. Since the above conditioning
does not alter the transition probabilities of the channel, (11)
still holds for the tail at hand. So by repeating the starting
arguments of the proof, we see that there exist random time
∆τd

2 and disturbance ζd(t), t = k + 1, . . . , k + ∆τd
2 − 1

for which |x(k + ∆τd
2 ) − x̂(k + ∆τd

2 )| > b2. Now we put
τ2 := τ1 + ∆τ

τ1,x0,G0,...,Gτ1

2 and continue the disturbance
ζ(t) := ζτ1,x0,G0,...,Gτ1 (t) on t = τ1 + 1, . . . , τ2 − 1. After
this, we have |x(τ2) − x̂(τ2)| > b2 a.s. By continuing

likewise, we construct a sequence {τi} of random times and
a random admissible disturbance such that |x(τi)− x̂(τi)| >
bi ∀i a.s., which implies (10).
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