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Abstract— This paper discusses problems related to partial
observation supervisory controllers with possibly faulty sensors
using the framework of discrete-event systems. At initialization
all sensors are operational such that the sensors observe
occurrences of events and transmit those observations to the
controller, but, when a sensor fails, it ceases to send signals to
the controller. A new version of observability is introduced that
is part of the necessary and sufficient conditions for controller
existence under the assumption of faulty sensors. A polynomial-
time construction is given that can be used to test for and then
synthesize a non-blocking controller with faulty sensors using
standard supervisory control methods.

I. INTRODUCTION

When designing a controller for a system to match a
given specification it is generally desirable in safety-critical
applications for the controller to be fault tolerant. That is,
it is desirable to design controllers in a redundant manner
such that even if the controller fails partially, it will still
be able to achieve its desired task, or at least not fail
catastrophically. This field, called Fault Tolerant Control
(FTC), has been a very active in many control theoretic
research areas, including discrete-event systems ([2]).

In the standard partial observation supervisory control
model as discussed in [3], controllers have sensors to ob-
serve occurrences of a subset of system events. Supervisory
controllers are usually designed with the assumption that
the controllers are fault-free. However, this assumption of
controller infallibility may not be reasonable over the full
life-cycle of a control system due to the natural deterioration
of a controller over time. For instance, control circuitry may
degenerate as a control system ages, a control actuator may
become stuck, or sensors may fail.

A controller’s sensors are normally assumed to be deter-
ministic in that sensors always communicate event occur-
rences to the controller. However, as was indicated above,
sensors failures may occur such that individual sensors may
cease to send correct signals to a controller. This paper
focuses on problems related to the testing of controller
existence and performing controller synthesis for a given
specification when the controller’s sensors may fail. It is
assumed in this paper that sensors fail permanently such
that before failure a sensor operates normally as in [3],
but after failure no signals are sent from the sensor to the
controller such that, the previously observable event becomes
effectively unobservable after failure. It is also assumed that
not only may the sensors for the control systems fail, but the
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sensor failures are sufficiently uncommon such that no two
sensors may both be failed at any given time. As expected,
sensor failures cannot be directly observed.

The paper is structured as follows. The next section
of this paper presents preliminary definitions and notation
from supervisory control. Section III presents an observabil-
ity property for systems with faulty sensors and discusses
existence properties for fault-tolerant control systems with
unreliable sensors. Section IV presents a method for testing
the existence of sensor-failure tolerant controllers to satisfy a
specification. Section V discusses methods for the synthesis
of sensor-failure tolerant control systems based on known
methods in the supervisory controls literature. Section VI
closes the paper with a review of the results contained herein.
for the sake of brevity, the proofs of the lemmas and theorems
in this paper are shown in [5].

II. PRELIMINARIES AND NOTATION

To aid the reader, this section gives a review of nec-
essary concepts of partial-observation supervisory control
as presented in [3]. Due to the necessary brevity of this
paper, a deeper introduction can be found in [1]. In the
supervisory control framework, system and specification
behaviors are modelled as languages of the automata G =
(XG, xG

0 ,ΣG, δG, XG
m) and H = (XH , xH

0 ,ΣH , δH , XH
m ),

respectively, where XG and XH are sets of states, xG
o and

xH
o are initial states, ΣH = ΣG is the common event set of

the automata, δG : XG ×ΣG → XG and δH : XH ×ΣG →
XH are the (possibly partial) state transition functions, and
XG

m and XH
m are the marked states of G and H , respectively.

Following the formalisms of [3], controllers may have
a set of sensors to observe a set of system events Σo ⊆
ΣG with each sensor assigned to deterministically observe
all occurrences of exactly one event. Furthermore, on the
occurrence of observable events, controllers may be given
sufficient actuation to selectively disable a subset of the
controllable events Σc ⊆ ΣG. Controllers can be realized
as finite state automata that observe some events and control
a potentially different set of events. Controllers should not
be able to disable uncontrollable events and control actions
should not update on the occurrence of unobservable events.
The set of unobservable events, Σuo = ΣG \Σo, is the set of
events whose occurrence can never be observed even in the
absence of sensor failures. Similarly, the set of uncontrollable
events, Σuc = ΣG \ Σc are the events whose occurrence
cannot be regulated. Given a controller S and a system G,
the composed system of S controlling G with perfect sensors
is denoted as the controlled system S/G.
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For a given set of observable events Σo ⊆ ΣG, a natural
projection operation P : ΣG → Σo is used to model a
controller’s observations of system behavior. For the empty
event ε, P (ε) = ε, and for a string of events s and an event
σ,

P (sσ) =
{

P (s)σ if σ ∈ Σo

P (s) otherwise
.

There is also a corresponding inverse projection operation
P−1 : ΣG∗

o → 2ΣG∗
.

Three important properties related to controller existence
are controllability and observability and M -closure.

Definition 1: [4] Consider the languages K and M such
that M = M and the set of uncontrollable events Σuc. The
language K is controllable with respect to M and Σuc if

KΣuc ∩ M ⊆ K. (1)
Definition 2: [3] Consider the sets of languages K and

M such that M = M and the set controllable, Σc, and
observable Σo events. The language K is observable with
respect to M , P (·) and Σc if for all t ∈ K and for all
σ ∈ Σc,[(

tσ /∈ K
) ∧ (tσ ∈ M)

] ⇒ (2)[(
P−1 [P (t)]σ ∩ K = ∅) ∧ (σ ∈ Σc)

]
.

Definition 3: Consider the languages K and M . The set
K is M -closed if K = K ∩ M .

The above definitions of controllability, observability and
M -closure are central in the following controller existence
theorem called the controllability and observability theorem.

Theorem 1: [3] For a finite state automaton system G, a
finite state automaton specification H such that Lm(H) ⊆
Lm(G), a set of controllable events Σc and a set of observ-
able events Σo, there exists a nonblocking partial observation
controller S such that Lm(S/G) = Lm(H) and L(S/G) =
Lm(H) if and only if the following conditions hold:

1) Lm(H) is controllable w.r.t. L(G) and Σuc.
2) Lm(H) is observable w.r.t. L(G), Σo and Σc.
3) Lm(H) is Lm(G)-closed.
One might think that due to Theorem 1 that for there to

exist a supervisory control system that is tolerant to single
sensor failures, one could ensure that for all σ ∈ Σo Lm(H)
is observable with respect to L(G), Σo \ {σ} and Σc. That
is, one might expect that if any one event σ ∈ Σo is made
unobservable during control operation, but the specification
Lm(H) is always observable with respect to any ΣG\{σ} for
any σ ∈ Σo, then there would exist a nonblocking controller
S tolerant to sensor failures such that the controller behavior
matches Lm(H). Unfortunately, this is not the case. Consider
the following example.

Example 1: Consider the system automaton G and the
specification automaton H seen in Figure 1.

Let Σc = {α}. If Σo = {λ}, the proper control action at
initialization would be to disable α at initialization. Simi-
larly, if Σo = {γ}, then the proper control action would be
to enable α at initialization. However, if Σo = {γ, λ}, and if
either the sensor for γ or λ may fail at initialization, and the

α

α

G:

γ

λ

αH:

γ

λ

Fig. 1. The system automaton G and the specification automaton H for
Example 1.

controller can have no direct observations of sensor failure,
then there is no correct initial control action. Therefore, it
is not possible to synthesize a controller with possibly faulty
sensors for this example when Σo = {γ, λ} to match the
specification L(H) even though for all σ ∈ Σo, L(H) is
observable with respect to L(G), Σo \ {σ} and Σc.

III. OBSERVABILITY WITH RESPECT TO SENSOR

FAILURES

As was discussed in the introduction, it is assumed that
a controller’s sensors fail in such a way that after failure a
sensor halts sending signals to the controller. Furthermore,
it is assumed that only one controller can have failed at
any given time. With this scenario, an interesting problem
is to decide if there exists a controller S for a system G,
a specification H , controllable events Σc and sensors for
observable events Σo that can fail as described above such
that when the controller is coupled with the system, the
specification can be satisfied even if a sensor may fail.

With this motivation the deterministic project operation
(originally P : ΣG∗ → Σ∗

o) is generalized to the faulty sensor
projection operation P f : ΣG∗ → 2∪σ∈ΣoΣ∗

o{Σo\σ}∗
where

for a string s ∈ ΣG∗
, the set P f (s) is all strings that could

be observed for a system with faulty sensors as described
above. Let projection operation Pσ : ΣG∗ → (Σo \ {σ})∗ be
the same as the P (·) operation except that events in Σo\{σ}
are retained in the projection instead of events in Σo. Then,

P f (s) = {P (s1)Pσ(s2)|s1s2 = s, σ ∈ Σo} (3)

Therefore, if a string s ∈ ΣG∗
occurs in the system such

that the sensor for the event σ fails after the occurrence
of s1 where s1s2 = s, then P (s1) is observed before the
sensor failure and Pσ(s2) is observed after the sensor failure.
Consequently, P (s1)Pσ(s2) is the string observed by the
controller resulting from the sensor failure as described, and
P f (s) is the set of all strings that could be observed due to
s and the failure of an event in Σo.

As with the original projection operation the faulty sensor
projection operation also has an inverse projection operation
P f−1 : ∪σ∈Σo

Σ∗
o{Σo \ σ}∗ → 2ΣG∗

. Formally, P f−1(s) =
{s′|s ∈ P f (s′)}. The inverse operation P f−1(s) denotes all
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strings of behavior that could generate the observation of s.
Note that because the faulty sensor projection P f (s) denotes
the set of observed strings which could be generated by s,
then P f−1(P f (s)) denotes all strings that might generate
an observed set of strings which could also be generated by
s. Although it is not shown here, the P f (·) and P f−1(·)
operations preserve regularity.

Due to the insufficiency of observability as a necessary
and sufficient condition for fault-tolerant controller existence,
a new property is now introduced called observability with
respect to sensor failure, or sensor failure observability for
short.

Definition 4: Consider the languages K and M such that
M = M , the set of controllable events, Σc and observable
events Σo. The language K is observable with respect to
sensor failure with respect to M , P f (·) and Σc if for all
t ∈ K and for all σ ∈ Σc,[(

tσ /∈ K
) ∧ (tσ ∈ M)

] ⇒ (4)[(
P f−1 [

P f (t)
]
σ ∩ K = ∅

)
∧ (σ ∈ Σc)

]
.

It is shown in Section V that sensor failure observability
is part of the set of necessary and sufficient faulty-sensor
controller existence conditions, similar to the observability
property in Theorem 1. Although it is not shown here,
sensor failure observability is closed with respect to language
intersection operations, but not with respect to language
union operations. Some important properties of sensor failure
observability are now shown.

A. Properties of Sensor Failure Observability

Due to Example 1, if K is observable with respect to
M , Σo \ {σ} and Σc for all σ ∈ Σo, it is not necessary
for K to be sensor failure observable with respect to M ,
Σo and Σc. However, the reverse is true as demonstrated in
the Proposition 1 below. First, some preliminary lemmas are
shown without their proofs for reasons of brevity.

Lemma 1: For the Pσ(·) and P f (·) functions as defined
above, for any t ∈ ΣG∗

, Pσ(t) ∈ P f (t).
Lemma 2: For the P−1

σ (·) and P f−1(·) functions as de-
fined above, for all σ ∈ Σo and any t ∈ ΣG∗

, P−1
σ (L) ⊆

P f−1(L).
Lemma 3: For the P f−1(·) function as defined above, for

all σ ∈ Σo and any languages L ⊆ ΣG∗
and L′ ⊆ ΣG∗

such
that L ⊆ L′, P f−1(L) ⊆ P f−1(L′).

Proposition 1: If K is sensor failure observable with
respect to M , Σo and Σc, then ∀σ ∈ Σo, K is observable
with respect to M , Σo \ {σ} and Σc.

IV. TESTING SENSOR FAILURE OBSERVABILITY

A method to test sensor failure observability is now shown
based on the construction of two deterministic automata
�G and �H and two sets of events �Σo and �Σc from G,
H , Σc and Σo in polynomial time such that Lm( �H) is
observable (in the sense of [3]) with respect to L(�G), �Σo

and �Σc if and only if Lm(H) is sensor failure observable
with respect to L(G), Σo and Σc. Therefore, the standard

methods for testing observability can be used with the �G
and �H constructions to test sensor failure observability. To
facilitate these constructions, two intermediate constructions
of the automata, G̃ and H̃ from G and H are given such that
P f (Lm(G)) = P (Lm(G̃)) and P f (Lm(H)) = P (Lm(H̃)).

The intuition behind the construction of G̃ is that if there
are n observable events Σo = {σ1, . . . , σn}, then the system
G has n + 1 modes of operation with respect to sensor
failure. In the initial mode of operation, mode 0, all sensors
for observable events are operational. However, when the
sensor for event σi ∈ {σ1, . . . , σn} fails, the system then
enters mode i where σi event occurrences are no longer
observable. Note that the underlying state transition behavior
in all modes of operation should be identical to the state
transition behavior of G, but the observability properties of
events occurrences are altered between various modes of
operation.

With this in mind, for the observable event set Σo =
{σ1, . . . , σn}, the automata G0, G1, . . . , Gn are used to
model the system observation behavior in the various modes
of operation with respect to sensor failure. The automaton
Gi represents the behavior of the system in mode i.

For i ∈ {0, . . . , n} the automaton Gi =
(XG

i ,Σi, δ
G
i , XG

mi) is a copy of the original system
automaton G with the relabelling of the states and some
events. The state set XG

i of Gi is a copy of XG such
that for every x ∈ XG from G there is a corresponding
state xi ∈ XG

i . A one-to-one function Φi : XG → XG
i is

defined which translates a state in XG to its corresponding
state in XG

i such that Φi(x) = xi. The inverse operation
Φ−1

i (·) is defined in the usual manner. Similarly, all marked
states xmi ∈ XG

mi are copies of marked states xm ∈ XG
m

according to the Φi(·) function.
As noted above, in the initial mode of operation, all sen-

sors are operational. Therefore the state transition structure
of G0 is identical to G such that δG

0 (x0, σ) = Φ0(δG(x, σ)).
However, for the other n modes of operation, each mode

corresponds to the failure of an event sensor. There are
therefore n new unobservable events Σf

o = {σf
1 , . . . , σf

n}
such that every transitions originally labelled by a σi event
in G is replaced in Gi by a transition labelled by the
corresponding unobservable event σf

i . An occurrence of a
σf

i event in mode i signifies that σi occurred in the system
but this event is not observed due to sensor failure.

Therefore, the set of events Σi = {σ1, . . . , σ
f
i , . . . , σn} is

a copy of ΣG with σi replaced by σf
i . A one-to-one function

Ψi : ΣG → Σi is defined to translate the events in ΣG to the
corresponding events in Σi such that Ψi(σ) = σf

i if σ = σi

and Ψi(σ) = σ otherwise. A corresponding inverse operation
Ψ−1

i (·) is defined in the usual manner. The state transition
structure of Gi, δG

i : XG
i × Σi → XG

i is formally defined
as δG

i (xi, σ) = Φi(δG(x,Ψ−1
i (σ))).

An example of the construction of the modes G0, . . . , Gn

can be seen in Figure 3 which are constructed from the
automaton G seen in Figure 2. Note that Σo = {α, β},
σ1 = α and σ2 = β.

Before G̃ is formally defined, its overall behavior is

3495



α α

β

β

G :

21 3

Fig. 2. The automaton G.

αf

β
2111 31

β

αf
G1 :

α α

β

β
10 20 30

G0 :

α α

βf12 22 32

βf
G2 :

Fig. 3. Mode automata G0, G1 and G2 constructed from G in Figure 2.

described. The mode automata {G0, . . . , Gn} are used to
construct the G̃ automaton through concatenation such that
G̃ simulates the sensor signalling under the assumption of
possible sensor failures and P f (Lm(G)) = P (Lm(G̃)). Due
to the sensor failure dynamics described in this paper, the
automaton G̃ initially is in mode 0 and all observable events
can be observed. On the failure of the sensor for event σi,
the system enters mode i such that occurrences of σi are no
longer observable. Hence, if G̃ is the concatenation of the
various mode automata {G0, . . . , Gn}, then G̃ is initially in
the mode modelled by G0, but on the failure of the sensor
for σi, G̃ enters the mode modelled by Gi. For Gi, σf

i

events are used in place of σi events in order to model the
change in event observability due to the mode switching.
To govern the mode transition dynamics in G̃ a new set
of events FΣo = {fσ1 , . . . , fσn} is defined such that fσi

represents the failure of the sensor for event σi. Therefore,
on the occurrence of event fσi , G̃ should transition from
mode 0 to mode i.

With this description of the overall behavior of G̃, this
automata is defined formally as (XG̃,ΣG̃, xG̃

0 , δG̃, XG̃
m). For

the state space of G̃, define XG̃ = XG
0 ∪ · · · ∪ XG

n and
XG̃

m = XG
0m ∪ · · · ∪XG

nm. For the event set, let ΣG̃ = ΣG ∪
Σf

o ∪ FΣo . The system is initially in mode 0 so the initial
state of G̃ is defined to be Φ0(xG

0 ) so that if no sensor failure
occurs the set of behaviors that could be observed due to
state transitions in G̃ equal the set of behaviors that could
be observed due to state transitions in G. The state transition
function δG̃ : XG̃ × ΣG̃ → XG̃ is defined as follows:

δG̃(x, σ) = (5)

⎧⎨
⎩

δGi(x, σ) if δGi(x, σ)!
Φi(Φ−1

0 (x)) if
(
x ∈ XG0

) ∧ (σ = fσi)
undefined otherwise

.

For the unary operator !, f(α)! is true if f(·) is defined
for input α, false otherwise. Note that if G and H are
deterministic, then G̃ and H̃ are also deterministic. Examples
of the G̃ and H̃ constructions are now given.

Example 2: Consider the system automaton G in Figure
2 and the specification automaton H in Figure 4.

α

β
21

H :

Fig. 4. The specification automaton H .

Using the method outlined above, the automaton G̃ con-
structed from G can be seen in Figure 5 and the automaton
H̃ constructed from H can be seen in Figure 6.

αf

β

α α

βf

2111

12 22 32

31

β

αf

fα

fα

fβ

fβ

G̃ :

α α

β

β
10 20 30

fα

fβ
βf

Fig. 5. The automaton G̃ constructed from G in Figure 1.

β

α

βf

2111

12 22

αf

fα

H̃ :

α

β

fα

10 20

fβfβ

Fig. 6. The automaton H̃ constructed from H in Figure 4.

It is now shown that P f (Lm(G)) = P (Lm(G̃)) if a slight
abuse of notation is allowed to extend the definition of P (·)
to P : ΣG̃

∗ → Σ∗
o. That is, the domain of P (·) is enlarged

to be defined over ΣG̃
∗
.
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Theorem 2: Suppose an automaton G and an observable
event set Σo are given. Then, for the corresponding G̃
construction as described above, P f (Lm(G)) = P (Lm(G̃)).

Now that the G̃ construction has been presented, construc-
tions for �G, �H , �Σo and �Σc are shown such that Lm(H) is
sensor failure observable with respect to L(G), Σo and Σc

if and only if Lm( �H) is observable with respect to L(�G),
�Σo and �Σc.

The construction of �G is based on the G̃ automa-
ton. The automaton �G is formally defined as the 5-tuple
(X �G,Σ�G, x

�G
0 , δ

�G, X
�G
m). Let X

�G = XG̃ ∪ {d, dm} and
X

�G
m = XG̃

m ∪ {dm}. That is, the state spaces of G̃ and �G
are identical except that �G has two additional states, one of
which is marked. Also, Σ�G = ΣG̃ and x

�G
0 = xG̃

0 so that
G̃ and �G have identical event sets and initial states. The
state transition function δ

�G : X
�G ×Σ�G → X

�G is defined as
follows:

δ
�G(x, σ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δG̃(x, σ) if δG̃(x, σ)!

d if

( (
x ∈ XGi |i 
= 0

) ∧ (σ = σi)∧(

 ∃s ∈ Σ�G

∗|δG̃(x, σs) ∈ XG̃
m

) )

dm if

( (
x ∈ XGi |i 
= 0

) ∧ (σ = σi)∧(
∃s ∈ Σ�G

∗|δG̃(x, σs) ∈ XG̃
m

) )

undefined otherwise

.

For a control system, the specification automaton H can
be used to construct H̃ and �H , similar to how G̃ and �G are
constructed from G. Also define �Σc = Σc ∪{σf

i |Φ−1
i (σf

i ) ∈
Σc} and �Σo = Σo.

Examples of the G̃ and H̃ constructions are now given.
Example 3: Consider the system automaton G in Figure 2

and the specification automaton H in Figure 4. Furthermore,
let Σo = {α, β} and let Σc = {α, β}.

Using the method outlined above, the automaton �G con-
structed from G can be seen in Figure 7 and the automaton
�H constructed from H can be seen in Figure 8. Furthermore,
�Σo = {α, β} and �Σc = {α, β, αf , βf}.

αf

β

α α

βf

2111

12 22 32

31

β

αf

fα

fα

fβ

fβ

�G :

α α

β

β
10 20 30

fα

β

α

α

dm

fβ
βf

Fig. 7. The automaton �G constructed from G in Figure 1.

β

α

βf

2111

12 22

αf

fα

�H :

α

β

fα

10 20

fβfβ

β

α
dm

Fig. 8. The automaton �H constructed from H in Figure 4.

For the intuition behind the constructions of �G and �H ,
suppose there are two strings t1, t2 ∈ L(G)∩Lm(H) and an
event σ ∈ Σc such that t1σ ∈ Lm(H), t2σ ∈ L(G)\Lm(H)
and Pf (t1)∩Pf (t2) 
= ∅. Because Pf (t1)∩Pf (t2) 
= ∅, then
it is possible for the sensors of the system to fail in such a
way that the observation generated by t1 and the observation
generated by t2 are identical. Therefore, there are two strings
�t1,�t2 ∈ Lm( �H) such that P (�t1) = P (�t2). However, if there
is an event σ ∈ Σc such that t1σ ∈ Lm(H) and t2σ ∈ L(G)\
Lm(H), then it is possible that the correct control action after
t2 cannot be known. This is tested for in the �G construction
with the d and dm transitions, so that if t1σ ∈ Lm(H),
then �t1σ ∈ Lm( �H), and if t2σ ∈ L(G) \ Lm(H), then
�t2σ ∈ L(�G) \ Lm( �H). This effectively converts the sensor
failure observability test of Lm(H) into an observability test
of Lm( �H). This is formalized in the proof of Theorem 3.

Theorem 3: Suppose G, H , Σo and Σc are given and �G,
�H , �Σo and �Σc are constructed from them. Then, Lm(H) is
sensor failure observable with respect to L(G), Σo and Σc

if and only if Lm( �H) is observable with respect to L(�G),
�Σo and �Σc.

Note that the sizes of the state spaces of �G and �H are in
O(|Σo||XG|) and O(|Σo||XH |) respectively. Therefore, �G
and �H can all be constructed in polynomial time with respect
to the sizes of G, H , ΣG. Now that the standard methods
for testing observability can also be used to test sensor
failure observability. It is well known that observability
can be decided in polynomial time [6], so sensor failure
observability can therefore be decided in polynomial time.

V. CONTROLLER SYNTHESIS WITH FAULTY SENSORS

A controller S : Σ∗
o → 2Σc ∪ Σuc is considered a map

from observed strings in Σ∗
o to a set of enabled events in

ΣG. Therefore, if t is observed by controller S, then S(t)
is the set of events enabled by S. The composed system of
S controlling G under the assumption of faulty sensors is
denoted as S◦/G. The language generated by S◦/G, denoted
by L(S◦/G), is defined recursively as follows:

• ε ∈ L(S◦/G).
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• s ∈ L(S◦/G), sσ ∈ L(G), and ∃t ∈ P f (s) such that
σ ∈ S(t) if and only if sσ ∈ L(S◦/G).

The language marked by S◦/G, denoted by Lm(S◦/G), is
L(S◦/G)∩Lm(G). Note that if s ∈ L(S◦/G), sσ ∈ L(G), and
∃t, t′ ∈ P f (s) such that σ ∈ S(t) and σ 
∈ S(t′), then sσ ∈
L(S◦/G). The concept of sensor failure observability is part
of the set of necessary and sufficient faulty-sensor controller
existence conditions, similar to observability in Theorem 1.

Theorem 4: For a finite state automaton system G, a finite
state automaton specification H such that Lm(H) ⊆ L(G),
a set of controllable events Σc and a set of observable events
Σo with sensors that may fail as described above, there exists
a nonblocking partial observation faulty sensor controller S
such that Lm(S◦/G) = Lm(H) and L(S◦/G) = Lm(H) if
and only if the following conditions hold:

1) Lm(H) is controllable with respect to L(G) and Σuc.
2) Lm(H) is sensor failure observable with respect to

L(G), Σo and Σc.
3) Lm(H) is Lm(G)-closed.

Note that if s ∈ L(S◦/G), sσ ∈ Lm(H), and ∃t, t′ ∈
P f (s) it is possible that σ ∈ S(t) and σ 
∈ S(t′) and
still have sσ ∈ L(S◦/G). However, the concept of sensor-
failure observability guarantees that if sσ ∈ Lm(H), then
for all ∀t ∈ P f (s), σ ∈ S(t) if Lm(S◦/G) = Lm(H) and
L(S◦/G) = Lm(H).

Note that the controllability condition in Theorem 4 is also
part of the necessary and sufficient conditions for controller
existence with ideal sensors as discussed in Theorem 1. Con-
trollability and Lm(G)-closure can be tested in polynomial
time using standard methods. Therefore, because of Theorem
3, controller existence with faulty sensors can then also be
tested in polynomial time. Importantly, because Theorem 4
is a constructive proof, a method to synthesize controllers
with faulty sensors is therefore known.

An additional benefit of the �G and �H constructions given
above is that Lm(H) is controllable with respect to L(G)
and Σuc if and only if Lm( �H) is controllable with respect to
L(�G) and �Σuc where �Σuc = Σ�G \ �Σc. This is demonstrated
in the following theorem.

Theorem 5: Suppose G, H and Σuc are given and �G,
�H and �Σuc are constructed from them. Then, Lm(H) is
controllable with respect to L(G) and Σuc if and only if
Lm( �H) is controllable with respect to L(�G), and �Σuc.

Theorem 6: Suppose G and H are given and �G and �H
are constructed from them. Then, Lm(H) is Lm(G)-closed
if and only if Lm( �H) is Lm(�G)-closed.

The following corollary of Theorems 3, 4, 5 and 5 can
now be shown which demonstrates that the standard perfect-
sensor control methods of [3] can be used with the �G and
�H to test controller existence in the faulty-sensor scenario
introduced above.

Corollary 1: Consider G and H such that Lm(H) ⊆
L(G), a set of controllable events Σc and a set of observable
events Σo. From G, H , Σc and Σo, construct �G, �H , �Σc and
�Σo as discussed above. There exists a nonblocking faulty

sensor controller S such that Lm(S◦/G) = Lm(H) and
L(S◦/G) = Lm(H) if and only if there exists a nonblocking
perfect sensor controller �S such that Lm(�S/�G) = Lm( �H).

An additional convenience of the �G and �H constructions is
that if a nonblocking controller �S is synthesized under the as-
sumption of perfect sensors such that Lm(�S/�G) = Lm( �H),
then the same controller can be used in the faulty-sensor case
to ensure that Lm(�S◦/G) = Lm(H) and L(�S◦/G) = Lm(H).

Theorem 7: Consider a finite state automaton system
model G, a finite state automaton specification H such that
Lm(H) ⊆ Lm(G), a set of controllable events Σc and a
set of observable events Σo with sensors that may fail as
described above. From G, H , Σc and Σo, construct �G, �H ,
�Σc and �Σo as discussed above. If a nonblocking perfect-
sensor controller �S is synthesized such that Lm(�S/�G) =
Lm( �H) and L(�S/�G) = Lm( �H), then �S can be used in the
faulty-sensor situation such that Lm(�S◦/G) = Lm(H) and
L(�S◦/G) = Lm(H).

Theorem 7 can be used to synthesize a controller �S
such that if Lm(H) is not sensor failure observable with
respect to L(G), Σo and Σc, then, using standard methods,
one could design �S using the �G and �H constructions such
that Lm(�S/�G) is a maximal controllable and observable
sublanguage of Lm( �H). Then, the controller �S could be
used in the faulty-sensor situation such that Lm(�S◦/G) is
also maximal in a sense.

VI. DISCUSSION

This paper discusses supervisory control situations where
the controller has sensors that may fail. A version of ob-
servability, called sensor-failure observability, is introduced
that is part of the necessary and sufficient conditions for
controllers to exist such that a given specification is satisfied
when the controller operates on a system. A polynomial time
construction is given that can be used to test for the existence
of these controllers and then synthesize these controllers
using standard methods.
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