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Abstract— In this paper, we report some new results on
practical asymptotic stabilizability of switched systems consist-
ing of time-invariant subsystems. After formally introducing
the concept of practical asymptotic stabilizability, we propose
some sufficient conditions based on energy functions. We then
point out that the vector fields of a switched system can be
decomposed into two parts, namely, vector fields corresponding
to a common equilibrium and vector fields corresponding to
integrator dynamics. Such a decomposition makes it possible
to study the relationship between conventional asymptotic sta-
bilizability and practical asymptotic stabilizability of switched
systems. Based on the decomposition, we present methods for
estimating the region of attraction for switched affine systems.

I. INTRODUCTION

In our previous papers [8], [9], [10], we have pointed
out that, under appropriate switching laws, switched systems
whose subsystems have different or no equilibria may still
exhibit interesting behavior similar to that of a conventional
stable system near an equilibrium. Such behavior is defined
as practical stabilizability in these papers. It is a natural
extension of the traditional concept of practical stability [4],
[5], which is concerned with bringing the system trajectories
to be within given bounds.

It should be noted that the notion of practical stabilizability
is mainly concerned with the local behavior of the system
within given bounds around the origin. However, in many
cases, we are interested not only in the local behavior of the
system but also in its behavior in a larger region around
the origin. For example, we may want to know whether
the system can exhibit “convergent behavior” similar to that
of a conventional asymptotically stable system. Therefore,
it is important to extend the practical stabilizability notion
so that such behavior can be studied. In [11], we formally
introduced the notion of practical asymptotic stabilizability
and presented some preliminary sufficient conditions.

In this paper, we further our studies on practical asymp-
totic stabilizability of switched systems. The contributions in-
clude the followings. We first formally introduce the concept
of practical asymptotic stabilizability for switched systems
consisting of time-invariant subsystems and propose some
sufficient conditions based on energy functions. We then
point out that the vector fields of a switched system can be
decomposed into two parts, namely, vector fields correspond-
ing to a common equilibrium and vector fields corresponding

to integrator dynamics. Based on such a decomposition, we
study the relationship between conventional asymptotic stabi-
lizability and practical asymptotic stabilizability of switched
systems. Finally we focus on switched affine systems and
derive methods for estimating the region of attraction. More
sufficient conditions based on quadratic energy functions are
proposed for switched affine systems.

It should be noted that practical asymptotic stabilization is
a natural extension of asymptotic stabilization for switched
systems when the origin is not an equilibrium for some or all
of their subsystems. Such practical asymptotic stabilization is
made possible by switchings among subsystems and thus is
an important feature of switched systems. This feature makes
switched system useful in many control problems for which
conventional controller based on one dynamic equation is
incapable of providing a solution. Our research on practical
asymptotic stabilizability is thus the first step toward the
study of many important problems such as asymptotic track-
ing, practical reachability (see, e.g., [10] for an introduction
to such problems) and is expected to arouse more interest in
this new research direction.

II. SWITCHED SYSTEMS AND PRACTICAL

STABILIZABILITY NOTIONS

A. Switched Systems and Switching Laws

In this paper, we consider switched systems consisting of
time-invariant subsystems

ẋ = fi(x), i ∈ I
�
= {1, 2, · · · , M}. (1)

In (1), every fi : R
n → R

n is locally Lipschitz continu-
ous. The active subsystem at each time instant is orches-
trated by a switching law, which will be formally defined
below. Given any initial time t0 and initial state x(t0),
the switching law generates a switching sequence σ =(
(t0, i0), (t1, i1), · · · , (tk, ik), · · · ) (t0 < t1 < · · · < tk <
· · · , ik ∈ I) which indicates that subsystem ik is active in
[tk, tk+1). For a switched system to be well-behaved, we
only consider nonZeno sequences which switch at most a
finite number of times in any finite time interval.

In the sequel, we will pay particular attention to switching
sequences over the time interval [0,∞). Such sequences are
usually generated by switching laws defined below.

Definition 1 (Switching Law over [0,∞)): For switched
system (1), a switching law S over [0,∞) is defined as
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a mapping S : R
n → Σ[0,∞) which specifies a nonZeno

switching sequence σ ∈ Σ[0,∞) for any initial state x(0).

Here Σ[0,∞)
�
= {switching sequence σ over [0,∞)}. �

Remark 1: S over [0,∞) (in the sequel, we simply call it
switching law S) is often determined by some rules or algo-
rithms, which describe how to generate a switching sequence
for a given x(0), rather than mathematical formulae. �

Remark 2: Switching laws over any [t0,∞) (t0 ∈ R)
may be similarly defined. Since all subsystems in (1) are
time-invariant, given any initial state, a time shift in the
amount t0 of any switching sequence over [0,∞) will result
in the same amount of time shift in the state trajectory.
Hence many properties that the switched system has under
switching laws over [0,∞) will carry over to the cases in
which the switching laws are over [t0,∞), except for the
time shift t0. �

B. Practical Stabilizability Notions

Now we review some notions and results reported in [8],
[9], [10]. We use ‖·‖ to denote the 2-norm, B[x, r] to denote
the closed ball {y ∈ R

n : ‖y−x‖ ≤ r} and B(x, r) the open
ball. Unlike the conventional stability concept, here we do
not assume that fi(0) = 0, ∀i ∈ I , i.e., the origin does not
have to be an equilibrium for any or all of the subsystems.
Without loss of generality, we only discuss the case of the
origin and let the initial time be t0 = 0.

Definition 2 (ε-Practical Stability): Assume that a
switching law S is given for switched system (1). Given an
ε > 0, the system is said to be ε-practically stable under
S if there exists a δ = δ(ε) > 0 such that x(t) ∈ B[0, ε],
∀t ≥ 0, whenever x(0) ∈ B[0, δ]. �

Definition 3 (Practical Stabilizability): Switched system
(1) is said to be practically stabilizable if for every ε > 0,
there exists a switching law S = S(ε) such that the system
is ε-practically stable under S. �

Remark 3: In Definition 3, ε can be varied as opposed
to the fixed ε in Definition 2. Such a definition provides us
with the flexibility in design and trajectory tracking problems
where the bound ε may vary depending on the specific task
we are facing. �

In view of the results in [9], [10], we have the following
lemma which provides a sufficient condition for the practical
stabilizability of switched system (1).

Lemma 1: Switched system (1) is practically stabilizable
if 0 ∈ Int(C). Here C is the convex hull of the set {fi(0) :
i ∈ I}, i.e., C = conv

({fi(0) : i ∈ I}) = {∑M
i=1 λifi(0) :

λi ≥ 0, i ∈ I and
∑M

i=1 λi = 1}, and Int(C) is the interior
of C. �

Remark 4: In [9], we have actually obtained a δ as in
Definition 2 for a given ε and constructed a valid switching
law S to achieve ε-practical stability. �

C. Practical Asymptotic Stabilizability Notions

Practical stabilizability concerns the local behavior of the
system trajectory within given bounds around the origin.
In many cases, we are also interested in the behavior of
the trajectory in a larger region around the origin. For

example, we may want to know whether a switched system
can exhibit “convergent behavior” similar to that of a con-
ventional asymptotically stable system. Such behavior has
been formally defined as practical asymptotic stabilizability
in [11]. Below we review some notions related to practical
asymptotic stabilizability. In the sequel, by a region D
around the origin, we mean a open connected subset of R

n

containing the origin along with some, none, or all of its
boundary points.

Definition 4 (ε-Practical Attractivity): Assume that a re-
gion D around the origin is given. Also assume that a
switching law S is given for switched system (1). Given
an ε > 0, the system is said to be ε-practically attractive
on D under S if for every x(0) ∈ D, there exists a finite
T = T

(
x(0)

) ≥ 0 such that x(T ) ∈ B[0, ε]. �
Definition 5 (Practical Attractivity): Assume that a re-

gion D around the origin is given. Switched system (1) is
said to be practically attractive on D if for every ε > 0,
there exists a switching law S = S(ε) such that the system
is ε-practically attractive on D under S. �

Combining the notions of practical attractivity and practi-
cal stabilizability, we can define the following useful concept.

Definition 6 (Practical Asymptotic Stabilizability):
Assume that a region D around the origin is given.
Switched system (1) is said to be practically asymptotically
stabilizable on D if it is both practically attractive on D
and practically stabilizable. Moreover, if D = R

n, then it is
said to be globally practically asymptotically stabilizable.
�

Remark 5: For a practically asymptotically stabilizable
system, given an ε > 0, we can find a δ > 0 as in Definition
2 and a switching law S1 that keeps every trajectory starting
in B[0, δ] to be within B[0, ε]. Furthermore, we can find a
switching law S0 that can drive the state trajectory starting at
every x(0) ∈ D into B[0, δ] at some time instant T

(
x(0)

)
.

Concatenating S0 and a time shifted version of S1 (shifted by
T

(
x(0)

)
for each x(0)), we can then obtain a switching law

S that can bring the trajectory into and keep it within B[0, ε].
This resembles the trajectory of a conventional asymptoti-
cally stable system. However, for a switched system, we can
only keep the trajectory to be within certain ε-bound; yet we
may not be able to drive the trajectory asymptotically to 0
as t → ∞ (even though ε can be chosen to be very small).
�

III. SUFFICIENT CONDITIONS FOR PRACTICAL

ASYMPTOTIC STABILIZABILITY

Methods using energy functions similar to the conven-
tional Lyapunov function methods can be applied to deter-
mine the practical attractivity of system (1). In the sequel,
we call a continuously differentiable function V : R

n → R

an energy function if it is positive definite, i.e., V (0) = 0
and V (x) > 0, ∀x �= 0. An energy function V is said to be
radially unbounded if V (x) → ∞ as ‖x‖ → ∞ (see [3]).

Theorem 1: Assume that an energy function V (x) is given
for switched system (1). Also assume that a ρ > 0 is given
and the set Ωρ = {x ∈ R

n : V (x) ≤ ρ} is bounded.
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Switched system (1) is practically asymptotically stable on
Ωρ if the following two conditions are satisfied:
(a). For any x ∈ Ωρ − {0},

min
i∈I

∂V

∂x
fi(x) < 0. (2)

(b). 0 ∈ Int(C) where C = conv
({fi(0) : i ∈ I}).

Proof: Due to Lemma 1, condition (b) guarantees that
switched system (1) is practically stabilizable. Hence, given
any ε > 0, there exist a δ > 0 and a switching law S1 such
that x(t) ∈ B[0, ε], ∀t ≥ 0 whenever x(0) ∈ B[0, δ]. Next
we will construct a switching law S0 such that the system
is δ-practically attractive on Ωρ under S0.

Let α = min‖x‖=δ V (x), then α > 0 since V is positive
definite. Choose β ∈ (0, α) small enough such that β <
minx∈Ωρ and ‖x‖≥δ V (x). Let Ωβ = {x ∈ R

n : V (x) ≤ β}.
Then Ωβ ⊆ B(0, δ). Note that the local Lipschitz continuity

of all fi(x)’s leads to the continuity of all functions hi(x)
�
=

∂V
∂x fi(x), i ∈ I and the function H(x)

�
= mini∈I

∂V
∂x fi(x) =

mini∈I hi(x) on Ωρ. Since the set Ωβ,ρ
�
= Ωρ − Int(Ωβ) =

{x ∈ R
n : β ≤ V (x) ≤ ρ} is compact, there exists a γ > 0

such that maxx∈Ωβ,ρ
H(x) = −γ.

Because hi(x)’s are uniformly continuous on the compact
set Ωβ,ρ, there exists a r1 > 0 such that |hi(xa)−hi(xb)| ≤
γ
2 , ∀i ∈ I whenever xa, xb ∈ Ωβ,ρ and ‖xa − xb‖ ≤ r1.

Now let us construct a valid switching law to achieve δ-

practical attractivity. Let L
�
= maxi∈I{maxx∈Ωβ,ρ

‖fi(x)‖}.

Define Td
�
= r1

L . The switching law is as follows.

Switching Law S0 (for system (1) with x(0) ∈ Ωβ,ρ):
(1). Set k = 0.
(2). Repeat the following step until at some time instant

t ∈ [0,∞), the state trajectory intersects Ωβ:
(2a). At tk = kTd, let subsystem ik =

arg mini∈I hi

(
x(tk)

)
be active in the time

interval [kTd, (k + 1)Td). At time instant
(k + 1)Td, set k = k + 1.

This switching law will drive the state trajectory to inter-
sect Ωβ ⊆ B(0, δ) in finite time for any initial x(0) ∈ Ωβ,ρ.
We show this by contradiction as follows. Assume that the
trajectory never intersects Ωβ . Then at any time instant kTd,
we must have hik

(
x(kTd)

)
= H

(
x(kTd)

) ≤ −γ due to
step (2a). Moreover, from the definition of Td, we conclude
that ‖x(t) − x(kTd)‖ = ‖ ∫ t

kTd
fik

(
x(τ)

)
dτ‖ ≤ r1, ∀t ∈

[kTd, (k+1)Td). This leads to ‖hik

(
x(t)

)−hik

(
x(kTd)

)‖ ≤
γ
2 , ∀t ∈ [kTd, (k + 1)Td). Consequently

hik

`
x(t)

´ ≤ −γ

2
, ∀t ∈ [kTd, (k + 1)Td) (3)

(which also implies that V
(
x(t)

)
decreases as t increases).

Due to (3), we have for any t ∈ [KTd, (K + 1)Td),

V
`
x(t)

´
= V

`
x(0)

´
+

K−1X
k=0

Z (k+1)Td

kTd

hik

`
x(τ )

´
dτ

+

Z t

KTd

hiK

`
x(τ )

´
dτ ≤ V

`
x(0)

´ − γ

2
t. (4)

In (4), the right-hand side will eventually become negative
if t is large enough. This leads to a contradiction to the

positive definiteness of V (x). Hence the state trajectory must
intersect Ωβ in finite time.

Finally, we can concatenate S0 and a time shifted version
of S1 to obtain a switching law S which practically asymp-
totically stabilizes the system (1) on Ωρ (see Remark 5). �

In the case when V (x) satisfies (2) for any x ∈ R
n−{0},

we have the following corollary.
Corollary 1: Assume that a radially unbounded energy

function V (x) is given for switched system (1). Switched
system (1) is globally practically asymptotically stable if the
following two conditions are satisfied:

(a). mini∈I
∂V
∂x fi(x) < 0, ∀x ∈ R

n − {0}.
(b). 0 ∈ Int(C) where C = conv

({fi(0) : i ∈ I}).

Proof: The radial unboundedness of V (x) leads to the
boundedness of Ωρ for any ρ > 0. Hence, by Theorem 1,
under condition (a), the system is practically asymptotically
stabilizable on Ωρ for any ρ > 0. �

Remark 6: A Lyapunov function in conventional Lya-
punov stability theory for a switched system with a common
equilibrium at the origin is an energy function with V̇ (x)
being negative definite (see [1], [2], [6], [7] for more on con-
ventional stability theory of hybrid and switched systems).
The energy function V (x) in Theorem 1, although similar to
a Lyapunov function, cannot be called a Lyapunov function
because the origin is not necessarily a common equilibrium
for all subsystems; hence the conventional stability theory
of switched system cannot be directly applied here. How-
ever, the close relationship between energy functions and
Lyapunov functions naturally leads us to consider Lyapunov
functions for some switching dynamics with common equi-
librium as candidate energy functions in the exploration of
practical asymptotic stabilizability of switched system (1). �

To implement the idea in Remark 6, we first note that
any subsystem vector field fi(x) in (1) can be written as
fi(x) = fi(x)− fi(0) + fi(0). Let us define a first auxiliary
switched system

ẋ = gi(x)
�
= fi(x) − fi(0), i ∈ I, (5)

and a second auxiliary switched system
ẋ = fi(0), i ∈ I. (6)

Note that the vector fields of the above two switched systems
adds up to the vector fields of system (1), i.e., g i(x) +
fi(0) = fi(x) for any i ∈ I . In this way, we decompose
the vector fields of system (1) into two parts and obtain two
corresponding auxiliary switched systems. Switched system
(5) has a common equilibrium at the origin for all subsystems
and switched system (6) is an integrator switched system.

Remark 7: Although the vector fields of the above two
auxiliary switched systems add up to the vector fields of
switched system (1), their corresponding state trajectories
do not add up to that of system (1). Therefore, in a rigorous
sense, (5) and (6) cannot be said to be decompositions of
the original switched system (we may only say that they
corresponds to the decomposition of the vector fields of
the original switched system). However, since the Lyapunov
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function approach concerns only the vector fields, the two
auxiliary systems are of importance in our subsequent studies
of practical asymptotic stabilizability. �

Since switched system (5) has a common equilibrium
at the origin, conventional Lyapunov stability theory for
switched systems can be applied. For such a switched system,
if there exists an energy function V (x) whose derivatives
along the solutions of all subsystems in (5) are negative
definite, then V (x) is called a common Lyapunov function
(CLF) for (5); if the derivatives along the solutions of all
subsystems are negative semidefinite, V (x) is called a weak
CLF. CLFs play important roles in stability analysis of
switched systems in that the existence of CLFs guarantees
the stability of switched systems under arbitrary switching
laws. For more on CLFs, the reader is referred to [1], [2],
[6], [7] and the references therein.

Theorem 2: Given switched system (1), assume that a
weak CLF V (x) exists for the corresponding auxiliary
switched system (5). Also assume that a ρ > 0 is given
and the set Ωρ = {x ∈ R

n : V (x) ≤ ρ} is bounded.
Switched system (1) is practically asymptotically stable on
Ωρ if 0 ∈ Int(C) where C = conv

({fi(0) : i ∈ I}).
Moreover, if V (x) is radially unbounded, then switched
system (1) is globally practically asymptotically stable.

Proof: Since V (x) is a weak CLF for switched system
(5), then for any x ∈ Ωρ − {0}, we have

∂V

∂x
gi(x) ≤ 0, ∀i ∈ I. (7)

On the other hand, due to the condition 0 ∈ Int(C), we
can conclude that at every x ∈ Ωρ − {0} there exists an
i ∈ I such that ∂V

∂x fi(0) < 0. This conclusion is shown
by contradiction as follows. Assume on the contrary that at
some x ∈ Ωρ − {0}, we have ∂V

∂x fi(0) ≥ 0 for any i ∈ I .
Then ∂V

∂x y ≥ 0 for any y ∈ C. This leads to the conclusion
that there exists a separating hyperplane between C and {0},
which is contradictory to the condition 0 ∈ Int(C).

At any x ∈ Ωρ −{0}, since there exists an i ∈ I such that
∂V
∂x fi(0) < 0, we furthermore have

min
i∈I

∂V

∂x
fi(0) < 0. (8)

In view of (7) and (8), we then conclude that for every
x ∈ Ωρ − {0} and every i ∈ I ,

∂V

∂x
fi(x) =

∂V

∂x
gi(x) +

∂V

∂x
fi(0) ≤ ∂V

∂x
fi(0), (9)

which consequently leads to

min
i∈I

∂V

∂x
fi(x) ≤ min

i∈I

∂V

∂x
fi(0) < 0. (10)

Theorem 1 and Corollary 1 can then be applied to establish
the results. �

Remark 8: Note that the condition mini∈I
∂V
∂x gi(x) < 0,

∀x ∈ R
n−{0} in general does not guarantee the asymptotic

stabilizability of the auxiliary switched system (5). For gen-
eral nonlinear subsystem gi(x)’s, the switching law which as-
sociates with each x the subsystem i = arg mini∈I

∂V
∂x gi(x)

might cause the undesirable (and invalid) Zenoness or chat-
tering phenomenon. By far most literature results based on
the aforementioned condition are derived for switched linear
systems where gi(x) = Aix (e.g., asymptotic stabilization
using state-dependent switching laws). One advantage of our
results here is that when (2) holds, we can establish the
practical asymptotic stabilizability of switched system (1)
and nonZeno switching laws can be explicitly constructed
for every ε to achieve ε-practical attractivity and ε-practical
stabilizability. �

IV. SWITCHED AFFINE SYSTEMS

When a switched system is practically asymptotically
stabilizable, we are often interested in its largest region of
attraction. However, finding the exact region of attraction
analytically is difficult or impossible even for ordinary
nonlinear systems (see [3]). In practice, we often content
ourselves by finding a bounded subset of R

n containing the
origin and regard it as an estimate of the region of attraction.
The results in Section III can help us find such estimates. In
fact, the set Ωρ in Theorem 1 is such an estimate. In this
section, we focus on switched affine systems, and develop
methods for finding estimates of regions of attraction.

Consider switched systems consisting of affine subsystems

ẋ = fi(x) = Aix + bi, Ai ∈ R
n×n, bi ∈ R

n, i ∈ I. (11)

The vector fields of system (11) can be decomposed into two
parts which correspond to two auxiliary switched systems as
in (5) and (6). The first one is a switched linear system with
a common equilibrium

ẋ = Aix, i ∈ I. (12)

The second one is an integrator switched system
ẋ = bi, i ∈ I. (13)

For switched affine systems, we mainly consider quadratic
energy function V (x) = xT Px where P = P T is a real
positive definite matrix. If PAi + AT

i P is negative definite
for every i ∈ I , V (x) is called a common quadratic Lyapunov
function (CQLF) for switched system (12); if PAi +AT

i P is
negative semidefinite for every i ∈ I , V (x) is called a weak
CQLF for system (12).

Assume that a weak CQLF V (x) exists for system (12).
By Theorem 2, if 0 ∈ Int(C) where C = conv

({bi : i ∈ I}),
then switched system (11) is globally practically asymptoti-
cally stabilizable (since V (x) is radially unbounded). In the
following, we assume that a weak CQLF does not exist. In
such a case, given any V (x) = xT Px, there exists some
i ∈ I such that λmax,i > 0 where λmax,i is the maximum
eigenvalue of PAi + AT

i P .
The derivative of V (x) along the trajectory of the i-th

subsystem is

∂V

∂x
fi(x) = xT (PAi + AT

i P )x + 2xT Pbi. (14)

For any x �= 0, the second term in (14) can be repre-
sented as 2xT Pbi = ‖x‖ · 2

(
x

‖x‖
)T

Pbi = ‖x‖ · 2yT Pbi

where y
�
= x

‖x‖ (and ‖y‖ = 1). If we define −η
�
=
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max‖y‖=1 mini∈I 2yT Pbi, then we have mini∈I 2xT Pbi ≤
−η‖x‖. Note that η > 0 since h(y) = mini∈I 2yT Pbi is
continuous and negative on the compact set {y ∈ R

n :
‖y‖ = 1}. Here the negativeness of h(y) for any ‖y‖ = 1
can be shown by contradiction as follows. Assume on the
contrary that at some y (‖y‖ = 1), we have 2yT Pbi ≥ 0 for
every i ∈ I . Then 2yT Pz ≥ 0 for any z ∈ C. This implies
that there exists a separating hyperplane between C and {0},
which is contradictory to 0 ∈ Int(C).

Now we return to (14). If we define λmax
�
=

maxi∈I λmax,i, we then have

min
i∈I

∂V

∂x
fi(x) = min

i∈I
{xT (PAi + AT

i P )x + 2xT Pbi}

≤ min
i∈I

{λmax,i‖x‖2 + 2xT Pbi} ≤ min
i∈I

{λmax‖x‖2 + 2xT Pbi}

≤ λmax‖x‖2 + min
i∈I

2xT Pbi ≤ λmax‖x‖2 − η‖x‖. (15)

In view of (15), mini∈I
∂V
∂x fi(x) < 0 holds true for every

0 < ‖x‖ < η
λmax

. Thus by Theorem 1, any Ωρ = {x ∈
R

n : xT Px ≤ ρ} is an estimate of the region of attraction
if ρ < min‖x‖= η

λmax
V (x).

Through the above discussions, we have in fact proved
Theorem 3: Assume that a switched affine system (11) is

given and 0 ∈ Int(C) where C = conv
({bi : i ∈ I}). Also

assume that a quadratic energy function V (x) = xT Px with
P = PT > 0 is given. Then the following conclusions hold.

(i). If V (x) is a weak CQLF for the corresponding aux-
iliary switched linear system (12), then the switched
affine system (11) is globally practically asymptotically
stabilizable.

(ii). If V (x) is not a weak CQLF for system (12),
then the switched affine system (11) is practically
asymptotically stabilizable on any Ωρ = {x ∈
R

n : xT Px ≤ ρ} with ρ < min‖x‖= η
λmax

V (x).

Here η
�
= −max‖y‖=1 mini∈I 2yT Pbi and λmax =

maxi∈I λmax,i, where λmax,i is the maximum eigen-
value of PAi + AT

i P . �
Remark 9: For switched affine systems (11) satisfying 0 ∈

Int(C), any quadratic function V (x) = xT Px with P =
PT > 0 can serve as an energy function and can be used
to establish the practical asymptotic stabilizability of (11) on
some region around the origin. This is true even when the
corresponding auxiliary switched linear system (12) is not
asymptotically stabilizable. Such a result is quite different
from conventional Lyapunov stability results for system (12).
For (12), it is possible that not every quadratic function can
be a Lyapunov function or even no quadratic function can
be a Lyapunov function.

In view of this, we find that the condition 0 ∈ Int(C) plays
an important role in establishing the practical asymptotic
stabilizability of switched affine system (11) in neighbor-
hoods near the origin. In other words, the vector fields of the
integrator switched system (13) determines the local behavior
of system (11) around the origin. This explains why our
previous results (see [8], [9], [10]) on practical stabilizability

of switched systems have close relationship with the vector
fields of the integrator switched system (6). �

Remark 10: Although the vector fields of the auxiliary
integrator switched system (13) determine the local behavior
of system (11) around the origin, the vector fields of both
auxiliary switched systems (12) and (13) determine the
region of attraction. This is evident from Theorem 3. In
particular, the size of Ωρ is related to λmax, which is relevant
to the vector fields of system (12); while η is relevant to the
vector fields of the integrator switched system (13). �

Remark 11: The choice of P will also affect λmax, which
in turn will affect the estimate of the region of attraction. In
the calculations of the examples in this section, we simply
choose P = I . It should be noted that for different P
matrices, the estimates can be different. In fact, the union
of all such estimates is a better estimate. �

Example 1: Consider a switched affine system (11) in R
2

consisting of 3 subsystems ẋ = Aix + bi, i = 1, 2, 3, where

A1 =

»
0.5 0.5
−0.5 0.5

–
, b1 =

»
1
1

–
; A2 =

» −0.1 0.5
−0.5 0.1

–
,

b2 =

» −1
1

–
; A3 =

»
0.5 0
0 −0.2

–
, b3 =

»
0
−1

–
.

There does not exist any weak CQLF for the corresponding
auxiliary switched linear system since ẋ = A1x and ẋ =
A3x are unstable (a necessary condition for the existence
of a weak CLF is that all subsystems are stable). If we
choose V (x) = xT x, then computation gives us λmax = 1
and η = 0.8944. Hence the switched system is practically
asymptotically stabilizable on B(0, 0.8944). Given ε = 0.1,
a switching law can be constructed to bring the trajectory
into B[0, ε] and keep it within B[0, ε] (see the proof of
Theorem 1). Fig. 1 shows x1(t) and x2(t) generated by such
a switching law (with x1(0) = 0.6, x2(0) = 0.5). �
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0
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0.6

0.8

t

x 1

Fig. 1. x1(t) and x2(t) generated by the switching law (with initial
condition x1(0) = 0.6 and x2(0) = 0.5).

In Theorem 3, when V (x) is not a weak CQLF, practi-
cal asymptotic stabilizability can only be established on a
bounded region Ωρ. This is sometimes quite restrictive. In
many cases in which no weak CQLF exists for the auxiliary
switched linear system (12), global practical asymptotic
stabilizability can still be established. In the following, we
present such a case.

Assume that a quadratic energy function V (x) = xT Px
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is given. Also assume that there exists an ε0 > 0 such that

min
i∈I

xT (PAi + AT
i P )x ≤ −ε0‖x‖2, ∀x �= 0. (16)

The condition in (16) is closely related to quadratic stabi-
lizability of switched linear systems (for more details on
quadratic stabilization, see [7]). Note that such an ε0 may
exist even if Ai is not stable since the minimum is taken.

In this case, if we define

ζ
�
= max

i∈I
2‖Pbi‖, (17)

then we have

2xT Pbi ≤ ‖x‖ · 2‖Pbi‖ ≤ ζ‖x‖, ∀i ∈ I. (18)

In view of (16) and (18), we have

min
i∈I

∂V

∂x
fi(x) = min

i∈I
{xT (PAi + AT

i P )x + 2xT Pbi}

≤ min
i∈I

{xT (PAi + AT
i P )x + ζ‖x‖}

≤ min
i∈I

{xT (PAi + AT
i P )x} + ζ‖x‖ ≤ −ε0‖x‖2 + ζ‖x‖. (19)

From (19), if ‖x‖ > ζ
ε0

, then mini∈I
∂V
∂x fi(x) < 0.

Combining this with the result (ii) in Theorem 3, we obtain
Theorem 4: Assume that a switched affine system (11) is

given and assume 0 ∈ Int(C) where C = conv
({bi : i ∈ I}).

Also assume that a quadratic energy function V (x) = xT Px
with P = P T > 0, which is not a weak CQLF for the
corresponding auxiliary switched linear system (12), is given
such that mini∈I xT (PAi + AT

i P )x ≤ −ε0‖x‖2, ∀x �= 0.
Then the switched affine system (11) is globally practically
asymptotically stabilizable if ζ

ε0
< η

λmax
. Here η, λmax, and

ζ are defined in Theorem 3, and (17), respectively.
Proof: For every x �= 0, since ζ

ε0
< η

λmax
, at least one of

(15) and (19) can be applied to show min i∈I
∂V
∂x fi(x) < 0

(apply (15) when ‖x‖ < η
λmax

and (19) when ‖x‖ > ζ
ε0

). �
Remark 12: If (16) is satisfied, then by (19),

mini∈I
∂V
∂x fi(x) < 0 can be established outside some

ball around the origin. In other words, the system trajectory
can be driven toward (i.e., attracted toward) the origin
outside that ball by appropriate switchings. This indicates
that the behavior of the system trajectory far from the
origin is mainly determined by the vector fields of the
corresponding auxiliary switched linear system (12).
Theorem 4 simply says that if the “attracting regions”
determined by (15) and (19) intersects, then the whole R

n

is covered by attracting region. �
Example 2: Consider a switched affine system (11) in R

2

consisting of 3 subsystems ẋ = Aix + bi, i = 1, 2, 3, where

A1 =

»
0.1 0.2

−0.01 0.1

–
, b1 =

»
1
1

–
; A2 =

»
0.1 0.01
−0.2 0.1

–
,

b2 =

» −1
1

–
; A3 =

» −1 1
−1 −1

–
, b3 =

»
0
−1

–
.

There does not exist any weak CQLF for the corresponding
auxiliary switched linear system since ẋ = A1x and ẋ =
A2x are unstable. However, we can still prove that the system
is globally practically stabilizable by Theorem 4. For this
example, we choose V (x) = xT x. Computation gives us
λmax = 0.3900, ε0 = 2, η = 0.8944, ζ = 2.8284, and

therefore ζ
ε0

= 1.4142 < 2.2933 = η
λmax

. Given ε = 0.1,
a switching law can be constructed to bring the trajectory
into B[0, ε] and keep it within B[0, ε] (see the proof of
Theorem 1). Fig. 2 shows x1(t) and x2(t) generated by such
a switching law (with x1(0) = 2, x2(0) = 2). �
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Fig. 2. x1(t) and x2(t) generated by the switching law (with initial
condition x1(0) = 2 and x2(0) = 2).

V. CONCLUSION

This paper reports some new results on practical asymp-
totic stabilizability of switched systems consisting of time-
invariant subsystems. Sufficient conditions based on energy
functions have been presented. Decomposition of the system
vector fields has been proposed. Based on such decompo-
sitions, more sufficient conditions have been proposed. In
particular, we present methods for estimating the region of at-
traction for switched affine systems. Future research includes
studies of the practical asymptotic stabilizability of switched
systems with time-varying subsystems and applications in
asymptotic tracking problems.
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[8] X. Xu and G. Zhai. On practical stability and stabilization of hybrid

and switched systems. Proc. of the 7th Intl. Workshop on Hybrid
Systems — HSCC’04: Hybrid Systems: Computation and Control,
LNCS 2993, pp. 615-630, Springer, 2004.

[9] X. Xu. Practical stabilizability of a class of switched systems. In
Proceedings of the 2004 American Control Conference, pp. 4537-4542,
Boston, MA, July 2004.

[10] X. Xu and G. Zhai. New results on practical stabilization and practical
reachability of switched systems. In Proceedings of the 2005 American
Control Conference, pp. 3784-3789, Portland, OR, June 2005.

[11] X. Xu. Practical attractivity and practical asymptotic stabilizability of
a class of switched systems. In Proceedings of the 2005 American
Control Conference, pp. 3790-3791, Portland, OR, June 2005.

4003


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




