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Abstract— In recent joint work, P. Morin and C. Samson
have advocated the use of transverse functions on tori to de-
sign practical stabilizers (even asymptotic stabilizers whenever
possible) and tracking controllers for driftless, control-affine
systems. By design, those stabilizers and controllers retain their
performance even in the presence of known disturbance drift
terms and, moreover, they exhibit additional robustness features
that derive from their smoothness in terms of the state. As
yet, however, no systematic procedure has been devised to
address the same problem in the case of systems whose drift
vector fields are required to ensure local accessibility, including,
for instance, second-order and simple mechanical systems. In
this paper we show that one way to extend the usefulness of
transverse functions to the realm of second-order systems is by
taking their associated tangent mappings, a process that results
in “vertically transverse functions.” We believe that, although
work remains to be done in this direction, this extension
provides an initial step towards a more thorough theory that
addresses both practical stabilization and tracking for such
systems. Included is an example that illustrates how these ideas
may be put to use for control purposes.

I. INTRODUCTION

The transverse function formalism of [8], [9], [10] pro-

vides a unified treatment of practical stabilization and trajec-

tory tracking for control-affine systems whose control vector

fields ensure local accessibility. The transverse function

approach may be tailored to control systems of the form

ẋ = X0(x) +
m∑

i=1

uiXi(x), (1)

with X0, X1, . . . , Xm smooth vector fields on an n-

dimensional, smooth, connected manifold M , such that the

Lie algebra Lie(X) generated by X = {X1, . . . , Xm} spans

TpM at a given point p ∈ M (i.e., X satisfies the “Lie

algebra rank condition at p”). Included in this class are

controllable driftless systems subject to (possibly null) ad-

ditive disturbances represented by the drift term X0, such

as the so-called 3-state, 2-input Chained Form (CF) ẋ =
u1( ∂

∂x1 + x2 ∂
∂x3 ) + u2 ∂

∂x2 .

Feedback laws derived from the transverse function ap-

proach allow one to circumvent some difficulties linked to

the control of “critical” systems, i.e., systems that do not

meet (generalizations of) Brockett’s necessary conditions for
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asymptotic stabilization. For instance, they address stabiliza-

tion of equilibria and more general trajectories, the trade-

off being the replacement of convergence to the desired

value by convergence to a given neighborhood of that value

(practical stability/tracking). This agrees with results in [5],

which point out that constructing “universal” controllers that

stabilize arbitrary system trajectories seems hopeless for

some classes of systems, among which the CF. The approach

also produces feedback laws that ensure practical stabi-

lization of “non-feasible” trajectories and, moreover, those

feedback laws are typically smooth, which prevents them

from exhibiting some nonrobustness issues, for instance the

ones alluded to in [6]. More recently, the transverse function

approach was enhanced in [10] to produce controllers that

ensure asymptotic stabilization to a point whenever this is

allowed by the drift vector field.

In this paper we take initial steps towards extending this

formalism to second-order systems, in particular those de-

fined on (tangent) Lie groups, under the hypothesis that their

drift vector fields play a fundamental role in guaranteeing

local accessibility. In particular, we consider second-order

systems of the form (1) under the assumption that, whereas

the set X̃ = {X0, X1, . . . , Xm} satisfies the rank condition at

p ∈ M , X itself no longer does. Examples include underac-

tuated mechanical systems evolving on Lie groups, such as

underactuated manipulators, blimp-like systems and under-

water vehicles. The principle underlying our results is that

the tangent functor, as applied to manifolds and mappings

involved in the constructions by Morin and Samson, yields

what may be termed “vertically transverse functions,” which

extend the notion of transverse functions on tori introduced in

[8]. Our presentation of the theoretical constructs is entirely

coordinate-free; nevertheless, an example with computations

in coordinates is included in Section VI for concretion.

Due to space limitations, the proofs and several details are

omitted.

II. PRELIMINARY NOTIONS

A. Basic concepts

Given a smooth manifold Q, and its first and second

tangent bundles TQ and TTQ, we let πQ : TQ −→ Q
and πTQ : TTQ −→ TQ denote their respective bundle

projections. The tangent space to Q at a point q ∈ Q is

denoted TqQ. Given smooth manifolds Q, P and a mapping

f : Q −→ P , we write Tqf : TqQ −→ Tf(q)P for the

tangent mapping of f at q and Tf for the respective bundle

map covering f . If q is clear from the context, we sometimes

use the notation Tf(v) instead of Tqf(v). The sets of smooth
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vector fields on Q and on TQ will be denoted by Γ(TQ)
and Γ(TTQ), respectively. For simplicity we shall frequently

write Xq instead of X(q) for the value of a vector field X
at a point q.

B. Second-order and vertical constructs

More details on the concepts recalled in this section can

be found in e.g. [1], [7]. A vector field X ∈ Γ(TTQ) is

said to be a second-order vector field (one also says that

“X defines a second-order equation on Q” or simply that

“X is second order”) if TπQ ◦ X = idTQ. This definition

extends naturally to vector fields along a curve in TQ,

namely, if γ : (t0, t1) −→ TQ is a curve and X is given

by Xγ(t) = Ttγ
(

∂
∂r

∣∣
t

)
, then X is said to be second-order

along γ if for every t ∈ (t0, t1), TπQ(Xγ(t)) = γ(t).
Associated with any such curve γ is the corresponding base
curve πQ ◦ γ : (t0, t1) −→ Q. Given v ∈ TQ, the vertical
space over v is ker(TvπQ), a subspace of TvTQ which

we denote by (TvTQ)vert. The disjoint union of vertical

spaces over points in TQ inherits a natural structure that

makes it a vector subbundle of TTQ, called the vertical

subbundle TTQvert. A section X ∈ Γ(TTQvert) of this

subbundle is called a vertical vector field. A subbundle being

a constant-dimensional distribution, TTQvert is also referred

to as the vertical distribution on TQ. Given tangent vectors

v, w ∈ TQ such that πQ(v) = πQ(w), one defines the

vertical lift of w by v as the vector in TvTQ given by

lift(v, w) = T0γv,w (∂/∂r|0), where γv,w : R −→ TQ is

the curve determined by γv,w(t) = v + tw. Given a vector

field X ∈ Γ(TQ), the vertical lift of X is the vector field

X lift ∈ Γ(TTQ) defined by X lift
v = lift(v, XπQ(v)). System

(1), under the assumption that X0, X1, . . . , Xm ∈ Γ(TTQ),
is said to be a second-order (control-affine) system on TQ
if X0 +

∑m
i=1 uiXi is a second-order vector field for every

u = (u1, . . . , um) ∈ R
m. One easily checks that if (1) is

second order, then X0 is itself second order whereas the

vector fields X1, . . . , Xm are vertical.

C. Tangent Lie groups

Given an n-dimensional Lie group G, we consider its

associated tangent group TG (cf. [7, Chap. 9]) with Lie

group structure determined by the multiplication µ : TG ×
TG −→ TG given by

µ(v, w) = TπG(w)L̂πG(v)(w) + TπG(v)R̂πG(w)(v), (2)

where L̂g : h �→ gh and R̂g : h �→ hg denote left and right

translations on G, respectively. Endowed with this structure,

TG admits 0e (the zero vector in TeG) as identity element.

In the sequel, when both a Lie group G and its tangent group

TG are involved in a discussion, we systematically use R̂, L̂
to denote translations on G, and R, L to represent translations

on TG.

III. TRANSVERSE FUNCTIONS FOR DRIFTLESS SYSTEMS

In this section we recall the results of [8] on the existence

and construction of transverse functions for driftless systems.

Consider a set of vector fields X = {X1, . . . , Xm} ⊂ Γ(TQ)

and a point p ∈ Q such that {Yp : Y ∈ Lie(X)} = TpQ.

It follows from [8, Thm. 1] that, given a neighborhood U
of p, there exist an integer κ ≥ n − m and a transverse
function f : T

κ −→ Q that satisfies f(Tκ) ⊂ U and, for

every θ ∈ T
κ,

Tf(θ)Q = Tθf(TθT
κ) + span

R
{X1,f(θ), . . . , Xm,f(θ)},

(3)

where T
κ denotes the κ-torus (R/2πZ)κ. In the sequel

we shall refer to any such mapping as a Morin–Samson
function for X (near p). Note that, while in general the

sum in (3) is not direct, i.e., κ need not equal n − m, in

some cases f can be chosen so that it is, for instance when

Q = G is an n-dimensional Lie group and the vector fields

X1, . . . , Xm are left-invariant. In the latter case, the explicit

construction in [9] of a transverse function can be easily

detailed as follows. Let ξ1, . . . , ξm be elements of g, the Lie

algebra of G, such that Lie({ξ1, . . . , ξm}) = g and assume

that Xi,g = TeL̂g(ξi) for i = 1, . . . , m and g ∈ G. Define

inductively a family (Gk)k∈N of subspaces of g by setting

G0 = spanR{ξ1, . . . , ξm} and Gk = Gk−1 + [G0, Gk−1] for

k ≥ 1. Then consider mappings λ, ρ : {m + 1, . . . , n} −→
{1, . . . , n} and an ordered basis {ζ1, . . . , ζn} of g such that

(1) Gk = span
R
{ζ1, . . . , ζdim(Gk)} for k = 1, . . . , min{k :

Gk = g}; and (2) Whenever k ≥ 2 and dim(Gk−1) ≤
i ≤ dim(Gk), one has ζi = [ζλ(i), ζρ(i)], with ζλ(i) ∈ Ga,

ζρ(i) ∈ Gb and a + b = k. The set {ζ1, . . . , ζn}, together

with the mappings λ and ρ, constitute a graded basis of

g. With such basis one associates an n-tuple (r1, . . . , rn),
referred to as a weight vector, by requiring that ri = k iff

ζi ∈ Gk \ Gk−1. Given a graded basis, the construction of

the transverse function proceeds by selecting strictly positive

reals εm+1, . . . , εn and by defining mappings fi : T −→ G
(i = m + 1, . . . , n) as follows:

fi(θ) = exp
(
ε

rλ(i)
i sin(θ)ζλ(i) + ε

rρ(i)
i cos(θ)ζρ(i)

)
.

With these mappings at hand, a Morin–Samson function f :
T

n−m −→ G is then obtained by setting

f(θm+1, . . . , θn) = fn(θn)fn−1(θn−1) · · · fm+1(θm+1).

IV. “VERTICALLY TRANSVERSE FUNCTIONS” FOR

SECOND-ORDER SYSTEMS

In this section we show how tangent mappings of Morin–

Samson functions for driftless systems define “vertically-

transverse functions,” which may be regarded as second-

order generalizations of transverse functions for second-order

systems. Let Q be a manifold (referred to as the config-
uration manifold, by analogy with the case of mechanical

systems) and let p ∈ Q. Starting with a set of vector

fields {X1, . . . , Xm} ⊂ Γ(TQ) that satisfies the Lie algebra

rank condition at p, we define a “lifted” system on TQ by

selecting a second-order vector field Z ∈ Γ(TTQ) and by

considering

v̇ = Zv +
m∑

i=1

uiX lift
i,v. (4)
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The approach we follow proceeds by assuming that the

target system (the system under control) is of the form (4).

We remark that, even though this assumed structure for the

target system somewhat restricts the applicability of this

approach, it encompasses a large class of second-order and

mechanical systems, in particular the class of simple me-

chanical systems (fully actuated or underactuated) possibly

subject to constraints (see e.g. [4]). The ultimate goal will

be to provide control laws for the target system (4) building

upon the properties of any Morin–Samson function f for

{X1, . . . , Xm}, a function whose existence is guaranteed

in view of the stated assumptions. The first of our main

results in this vein states that the tangent map Tf satisfies a

condition that somehow extends (3), namely, that along the

image of Tf , the image of the vertical subbundle (TTT
κ)vert

by TTf , together with the distribution spanned by the lifted

control vector fields {X lift
1 , . . . , X lift

m }, generate the vertical

subbundle of TTQ over Tf(TT
κ). This is made precise in

the following proposition.

Proposition 1 Let X = {X1, . . . , Xm} ⊂ Γ(TQ) satisfy

the Lie algebra rank condition at a point p ∈ Q, and let

f : T
κ −→ Q be a Morin–Samson function for X near p.

Then, for every ω ∈ TT
κ,

TTf(ω)TQvert = TωTf((TωTT
κ)vert) + (5)

spanR{X lift
1,Tf(ω), . . . , X

lift
m,Tf(ω)}.

Moreover, if f is such that the sum in (3) is direct, then the

sum in (5) is direct as well.

We are following [8] in calling Tf “vertically transverse,”

although, as pointed out therein, this rather liberal use

of the adjective “transverse” is merely motivated by the

formal similarity between conditions (3) and (5) and the

condition required in the definition of transverse mapping

in differential topology (cf e.g. [2, Chap. 3]).

V. APPLICATIONS OF VERTICALLY TRANSVERSE

FUNCTIONS TO CONTROL

In this section we take a step forward in the direction

of using our generalization for control purposes, albeit we

hasten to mention that this subject is open and research is still

in progress. As a first example of how “vertically transverse”

functions may be applied for control, suppose that the

configuration manifold G is a Lie group and that the vector

fields Xi ∈ Γ(TG) (i = 1, . . . , m) are obtained by left-

translating vectors ξi ∈ g that satisfy Lie({ξ1, . . . , ξm}) = g.

In this case, using the procedure recalled in Section III,

for any open set U ⊂ G one can define a Morin–Samson

function f : T
n−m −→ U and, from Proposition 1, we see

that Tf satisfies, for every ω ∈ TT
n−m,

TTf(ω)TGvert = TωTf((TωTT
n−m)vert) ⊕ (6)

spanR{X lift
1,Tf(ω), . . . , X

lift
m,Tf(ω)}.

Mimicking the procedure described in [9], we extend

system (4) dynamically by selecting a global frame for

(TTT
n−m)vert, that is, a set {Ω1, . . . , Ωn−m} ⊂ Γ(TT

n−m)

such that spanR{Ω1,ω, . . . , Ωn−m,ω} = (TωTT
n−m)vert for

all ω ∈ TT
n−m. The existence of a global frame is

guaranteed by the triviality of TTT
n−m as a vector bundle,

which is easily established. Then pick a second-order vector

field ∆ ∈ Γ(TTT
n−m) and define the auxiliary system

ω̇ = ∆ω +
n−m∑
i=1

wiΩi,ω . (7)

If ω : (t0, t1) −→ TT
n−m and w : (t0, t1) −→ R

n−m are

functions of classes C1 and C0, respectively, which satisfy

the differential equation (7), we shall refer to the couple

(ω, w) as an auxiliary trajectory. At this point we can define

an error signal whose intent, intuitively speaking, is “to

quantify the deviation of the state v of (4) from the image

by Tf of the state ω of (7).” The definition makes use of

the Lie group structure on TG determined by µ, thus we set

z = µ(v, (Tf(ω))−1) which, for the sake of simplicity, we

write as1

z = v · Tf(ω)−1.

The natural question arising at this point is whether there

exists a general expression for the error dynamics and, if

so, what structure it may have. To respond to the question

we shall proceed in several simple steps. If (ω, w) is any

arbitrary auxiliary trajectory and B is defined along the curve

Tf ◦ ω : (t0, t1) −→ TG by

BTf◦ω(t) = (Tf ◦ ω)′(t) = Tt(Tf ◦ ω)
(

∂

∂r

∣∣∣∣
t

)
,

then B satisfies a second-order equation. The following result

is the key to writing an explicit expression for the error

dynamics.

Proposition 2 Let TG be a tangent Lie group, A ∈ Γ(TTG)
a complete, second-order vector field (not necessarily left-

invariant) and let B be a second-order vector field defined

along a smooth curve b : (t0, t1) −→ TG by ḃ(t) = Bb(t).

Then (i) if a : (t0, t1) −→ TG is an integral curve of A, the

curve c = ab−1 satisfies, for t ∈ (t0, t1),

ċ(t) = Ta(t)Rb−1(t)(Aa(t) − Tb(t)Lc(t)(Bb(t))); (8)

and (ii) (8) represents a (non-autonomous) second-order dif-

ferential equation on TG.

In order to apply Proposition 2, we define curves a = v
and b = Tf ◦ ω, as well as the corresponding vector fields

Av = Zv +
m∑

i=1

uiX lift
i,v

BTf(ω) = TωTf

(
∆ω +

n−m∑
i=1

wiΩi,ω

)
,

1We shall often write Tf(ω) for Tf ◦ω and Tf(ω)−1 for (Tf(ω))−1

to simplify the exposition.
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which then yield the error dynamics

ż = TvRTf(ω)−1

(
Zv +

m∑
i=1

uiX lift
i,v

−TTf(ω)Lz ◦ TωTf

(
∆ω +

n−m∑
i=1

wiΩi,ω

))
.

After some simplifications one gets

ż = Tz·Tf(ω)RTf(ω)−1(Zz·Tf(ω)

−TTf(ω)Lz ◦ TωTf(∆ω)) +

Tz·Tf(ω)RTf(ω)−1 ◦ TTf(ω)Lz

(
m∑

i=1

uiX lift
i,Tf(ω)

−
n−m∑
i=1

wiTωTf(Ωi,ω)

)
. (9)

Equation (9), a second-order equation in view of Proposi-

tion 2-(ii), is the form of the error dynamics which we shall

use in the sequel. Let us remark that one can use alternative

definitions of the error, e.g. z = Tf(ω) · v−1, for which the

approach leads to analogous results, mutatis mutandis.

Now, How can one profit from vertical transversality for
control purposes? The answer to this question generalizes the

way one uses “transversality” in the approach of Morin and

Samson. Indeed, for second-order systems the control inputs

can only shape the second-order time derivatives of the base

trajectories, which amounts to assigning them values in the

vertical subbundle. Thus the fact that, as stated in (5), the

image of TTf complements the control distribution to span

the whole vertical subbundle provides full control over the

error system, and this can in turn be used to derive feedback

laws that impose any desired error dynamics. The following

result makes this statement precise.

Theorem 1 Given a second-order vector field S ∈ Γ(TTG),
there exists a smooth feedback law α = (α1, . . . , αn) : TG×
TT

n−m −→ R
n such that the error dynamics (9) with control

inputs ui(z, ω) = αi(z, ω) (i = 1, . . . , m) and wj(z, ω) =
αj+m(z, ω) (j = 1, . . . , n − m) writes as ż = Sz .

Notice that, while Theorem 1 ensures that any dynamics

can be imposed on the error signal, one cannot say much

about the stability properties of the target system without

further investigation. In particular, if in the theorem one

selects the desired vector field S to have 0e as an Expo-

nentially Stable (ES) equilibrium, then the problem becomes

one of output regulation to 0e, where the output function is

the one that gives “the error,” h : (v, ω) �→ v · Tf(ω)−1.

In such case, the ultimate behavior of the target system

will be determined by the resulting zero-dynamics, whose

stability characteristics require a detailed assessment. This is

where the contribution of this paper reaches its boundary, as

we are currently searching in that direction. Nevertheless,

the specific example presented below suggests that under

appropriate conditions imposed on Z—the drift term of the

target system—one can expect the base trajectory (πG◦v)(t)

to converge to U , the open set that contains the image of f ,

whereas v(t) itself converges towards a neighborhood V of

the zero-section in TTG—the caveat at this point being that

V cannot be fixed in advance, for it depends on the initial

conditions.

VI. EXAMPLE

Here we apply the above constructions to a particular

example of mechanical system, namely the (idealized) un-

deractuated, horizontal PPR (Prismatic-Prismatic-Rotational)

manipulator, the rotational joint of which is passive. It was

shown in [3] that the PPR’s dynamic model is locally

feedback-equivalent to the “Extended Chained Form” (ECF)⎧⎨⎩
q̈1 = u1

q̈2 = u2

q̈3 = u1q2,
(10)

which we shall use in this example. Clearly, the ECF bears

a strong resemblance with the first-order chained form—

which involves q̇is instead of q̈is—and, in a sense, this

“resemblance” is the key to our approach. Consider the Lie

group G with underlying manifold structure R
3 and group

composition law given by

µ̂(x, y) = ( x1 + y1, x2 + y2, x3 + y3 + x2y1 ).

We take q = idG and consider natural (global) coordinates

(TG, (q, q̇)) on the tangent group TG. Using these coordi-

nates, the group operation on TG is easily computed to be

µ(x, y) = ( x1 + y1, x2 + y2, x3 + y3 + x2y1,

x4 + y4, x5 + y5, x6 + y6 + x2y4 + x5y1 ).

Now, letting the vector fields X1, X2 ∈ Γ(TG) be given by

X1,q =
∂

∂q1
+ q2

∂

∂q3
, X2,q =

∂

∂q2
,

we see that (10) defines the target system as a second-order

system on TG of the form (4), provided we consider, for

v = (q, q̇),

Zv =
3∑

i=1

q̇i
∂

∂qi
, X lift

1,v =
∂

∂q̇1
+ q2

∂

∂q̇3
, X lift

2,v =
∂

∂q̇2
.

One easily verifies that both Xi and X lift
i (i = 1, 2) are left-

invariant under the respective left translations in G and TG.

It is also straightforward to check that [X1, X2] = − ∂
∂q3

,

so that Lie({X1,q, X2,q}) spans TqG at every q ∈ G.

Consequently one can apply the theory of [9], recalled in

Section III, to construct a Morin–Samson function f : T −→
G for the CF q̇ = u1X1,q +u2X2,q near any point in G, e.g.

q = 0. Taking (U, θ) to be an “angular” coordinate system

on T 	 S1 ⊂ R
2 (for instance U = S1 \ {(0, 1)} and

θ(p) = 2 arctan( p1
1−p2

)), we obtain

f(θ) =
(

ε sin(θ), ε cos(θ),
1
4
ε2 sin(2θ)

)
,

with ε > 0 arbitrary. In view of the periodicity of this

representative of f , we extend it by continuity so that f is
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globally defined. (In the sequel we often write sin = s and

cos = c to save space.) Now, the transversality condition

(3) amounts to the determinant of the matrix with columns

X1,f(θ), X2,f(θ) and f ′(θ) being constant and equal to

− 1
2ε2(
= 0). Using natural coordinates (θ, θ̇) for TT, the

value of the associated tangent mapping Tf at ω = (θ, θ̇) ∈
TθT is then:

Tθf(ω) =
(

εs(θ), εc(θ),
1
4
ε2s(2θ),

εc(θ)θ̇, −εs(θ)θ̇,
1
2
ε2c(2θ)θ̇

)
.

The vertical transversality condition (5) is easy to estab-

lish although we omit some computations for expediency.

Considering natural coordinates (θ, θ̇, αL, αH) for TTT,

one first evaluates the tangent of Tf at a vertical vector

α ∈ ker(TωπT) ⊂ TωTT. Since TωπT maps (θ, θ̇, αL, αH)
to (θ, αL), α is in the kernel of TωπT iff it has the form

α = (θ, θ̇, 0, αH), so for simplicity we take α̃ = (θ, θ̇, 0, 1).
Carrying out the operations one obtains

TωTf(α̃) =
(

0, 0, 0, εc(θ),

−εs(θ),
1
2
ε2c(2θ)

)
.

Now let us check that X lift
1 , X lift

2 and TωTf(α̃) span the

vertical subspace (TTf(ω)TG)vert. In this case, any vector

in the latter is of the form
∑3

i=1 αi
∂

∂q̇i
, that is, its first

three components are zero. Hence the verification reduces

to computing the determinant of the submatrix consisting of

the lower three rows of the matrix with columns X lift
1,Tf(ω),

X lift
2,Tf(ω) and TωTf(α̃). But this is exactly the matrix

(X1,f(θ), X2,f(θ), f
′(θ)) considered above, with determinant

equal to − 1
2ε2, so Tf indeed satisfies (6).

We define an auxiliary system (7), in this case given by

the second-order system on TT

θ̈ = w, (11)

and the corresponding error z = µ(v, T f(ω)−1)

z =
(

q1 − εs(θ), q2 − εc(θ),

q3 +
1
4
ε2s(2θ) − q2εs(θ), v1 − εc(θ)θ̇,

v2 + εs(θ)θ̇, v3 − v2εs(θ) − q2εc(θ)θ̇

+
1
2
ε2c(2θ)θ̇

)
.

Differentiating this expression we get the error dynamics

ż = F (z, ω) +
3∑

i=1

uiGi(z, ω), (12)

with u3 = w and the components of F and the Gis given

by

F (z, ω) =
(

z4, z5, z6, θ̇2εs(θ), εc(θ)θ̇2,

1
2
ε2s(2θ)θ̇2 + εs(θ)z2θ̇

2

−2εc(θ)z5θ̇

)
G1(z, ω) = ( 0, 0, 0, 1, 0, z2 + εc(θ) )
G2(z, ω) = ( 0, 0, 0, 0, 1, −εs(θ) )

G3(z, ω) =
(

0, 0, 0, −εc(θ), εs(θ),

−1
2
ε2 − εc(θ)z2

)
.

Each of the Gis, as well as F , may be seen as a family of

vector fields on TG indexed by ω = (θ, θ̇) ∈ TθT. Moreover,

it is clear that F (·, ω) is second order whereas Gi(·, ω) is

vertical (i = 1, 2, 3), thus the error dynamics (12) is second

order for every ω ∈ TT.

In order to construct a control law as outlined in Section V,

and Theorem 1 in particular, we select for the desired

dynamics a second-order vector field S ∈ Γ(TTG) which

has 0 as ES equilibrium point, for instance

Sz = (z4, z5, z6,

−k1z1 − k2z4, −k1z2 − k2z5, −k1z3 − k2z6),

where the control gains k1, k2 are strictly positive. From this

point on, the control design translates into the search for a

function u : TG × TT −→ R
3 such that

F (z, ω) +
3∑

i=1

ui(z, ω)Gi(z, ω) = Sz

for all (z, ω) ∈ TG × TT. From the structure of the

error dynamics (12) this boils down to solving for u in the

following matrix equation⎛⎜⎜⎝
1 0 −εc(θ)

0 1 εs(θ)

z2 + εc(θ) −εs(θ) − 1
2ε2 − εc(θ)z2

⎞⎟⎟⎠u =

⎛⎝ −θ̇2εs(θ) − k1z1 − k2z4

−θ̇2εc(θ) − k1z2 − k2z5

− 1
2ε2s(2θ)θ̇2 − εs(θ)z2θ̇

2 + 2εc(θ)z5θ̇ − k1z3 − k2z6

⎞⎠ .

This equation is solvable since the invertibility of the coeffi-

cient of u is equivalent to the invertibility of the matrix which

ensures the vertical transversality of Tf ; its determinant, in

particular, is equal to 1
2ε2. For economy of space we do

not give its explicit expression, but it is straightforward to

check that the solution is smooth. In order to illustrate the

time evolution for the error and target systems, we include a

simple numerical simulation with v0 = (1, −2, 2, 0, 0, 0),
ω0 = (0, 0), ε = 0.5 and control gains k1 = 0.0707,

k2 = 0.3827. By inspection of Figure 1, the error tends to

zero whereas the logarithm of its norm decays sublinearly,

so that z(t) → 0 exponentially. As for the target system we
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Fig. 1. Time histories of the error and target systems (qdi = q̇i).

also observe that, after a short transient, the configurations

q(t) and the velocities q̇(t) seem to converge to a periodic

motion and, moreover, the base curve q(t) = (πG ◦ v)(t)
ultimately converges to a bounded set, the extent of which

can be made arbitrarily small by decreasing ε. Note, however,

that two side-effects of taking smaller values of ε are an

increase in the peak excursions of the control signals (as

in the transverse function approach) and an increase in the

frequency of the steady-state oscillations. Concerning the

velocities q̇(t), they also converge to a bounded set, but the

extent of that set depends on the initial conditions (v0, ω0),
hence one cannot specify it in advance. in this sense our

current result is weaker than practical stabilization. The

long term behavior of the target system is governed by the

zero-dynamics of the compound system. Thus, it suffices to

analyze the ultimate behavior of the auxiliary system (11)

with input equal to u3(0, ω(t)). After simple computations

we get the zero-dynamics

θ̈ = − sin(2θ)θ̇2. (13)

It is interesting to note that this system admits an interpre-

tation as a simple mechanical system on T with connection

∇ : Γ(TT) −→ Γ(T ∗
T⊗TT) determined from the (unique)

Christoffel symbol Γ(θ) = sin(2θ) by the rule ∇ ∂
∂θ

∂
∂θ =

Γ(q) ∂
∂θ . (We are adopting here the geometric approach to

modeling of Lagrangian systems; the reader is referred to

e.g. [4] and references therein for more details on such

approach.) Now, ∇ is clearly torsionless, so one may expect

it to represent the Levi-Cività connection associated with

a particular metric tensor field g on T; to obtain g we

simply reverse the usual procedure that yields the Levi-Cività

connection from the data of g. Typically that would involve

PDEs, but in this case the equations reduce to a simple ODE

with (family of) solutions given by gθ = Ae− cos(2θ), A > 0.

One immediately checks that, by defining the Lagrangian

function L : TT −→ R as

L(ω) =
1
2
gθ(θ̇, θ̇) =

1
2
Ae− cos(2θ)θ̇2,

the associated Euler-Lagrange equation ∇θ̇θ̇ = 0 precisely

coincides with the zero-dynamics (13), irrespective of the

value of A. Therefore, the zero-dynamics is, by itself, a

virtual, unforced simple mechanical system with zero po-

tential! Since in this case (L ◦ ω)′ = 0, the (kinetic) energy

is a conserved quantity and, given that it is bounded with

respect to θ and depends quadratically on θ̇, it follows that

θ̇(t) remains bounded for all t ∈ [t0,∞). Consequently, both

Tf(ω(t)) and v(t) converge to a bounded neighborhood of

the zero section in TG. In this case it is also clear that such

neighborhood depends on the initial conditions. Intuitively,

in fact, one may think of the auxiliary system as storing

(kinetic) energy for as long as the error is nonzero. If z(t)
reached 0 in finite-time t = T , remaining at 0 thereafter, then

the cumulated energy ET would be constant for t ≥ T , so

the peak excursions of θ̇(t) would depend on it. (Of course,

by smoothness of the error dynamics, z(t) cannot reach 0
unless z = 0, but this argument is helpful to acquire an

intuitive picture of the situation.)

VII. CONCLUSIONS AND FUTURE WORK

In this paper we single out vertical transversality, a

property that proves instrumental in extending the notion

of transverse functions on tori, introduced in [8], to the

domain of second-order systems. We first show how trans-

verse functions naturally give rise, upon differentiation, to

vertically transverse ones, then outline the way these can

be exploited for control purposes. We believe these results

may be further developed into a more thorough theory that

addresses practical stabilization and tracking for second-

order systems. Research work remains to be done, however,

and our current efforts aim at two issues: the characterization

of the long-term behavior of the zero-dynamics and the

modification of the current construction so that it forces the

state of the target system to converge to the zero-section

in TQ, at least when this is possible, so that the long-term

behavior is not oscillatory.
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[6] D.A. Lizárraga, P. Morin, and C. Samson. Non-Robustness of
Continuous Homogeneous Stabilizers for Affine Control Systems. In
IEEE Conf. on Decision and Control (CDC), pages 855–860.

[7] J.E. Marsden and T.S. Ratiu. Introduction to mechanics and symmetry,
volume 17 of Texts in Applied Mathematics. Springer-Verlag, New
York, 2nd edition, 1999.

[8] P. Morin and C. Samson. A characterization of the Lie Algebra Rank
Condition by Transverse Periodic Functions. SIAM Journal on Control
and Optimization, 40(4):1227–1249, 2001.

[9] P. Morin and C. Samson. Practical stabilization of driftless systems
on Lie groups: the transverse function approach. IEEE Transactions
on Automatic Control, 48(9):1496–1508, September 2003.

[10] P. Morin and C. Samson. Practical and asymptotic stabilization of
chained systems by the transverse function control approach. SIAM
Journal on Control and Optimization, 43(1):32–57, 2004.

7295


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




