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José Carlos Aleixo
Dept. Math.

University of Beira Interior
6201-001 Covilhã, Portugal
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Abstract— We consider periodic behavioral systems as intro-
duced in [1] and analyze two main issues: behavior repre-
sentation and controllability. More concretely we study the
equivalence and the minimality of representations. Moreover
we relate the controllability of a periodic system with the
controllability of an associated time-invariant system known as
lifted system, and derive a controllability test. Finally we prove
the existence of an autonomous/controllable decomposition
similar to what happens for the time-invariant case.

I. INTRODUCTION

In the classical input-state-output framework, linear models
with periodically time-varying coefficients can be found in
numerous practical applications, such as satellite attitude
control based on the periodicity of the earth magnetic field,
control of rotating machinery, or sampled-data systems. An
overview of the vast literature in the field of periodic systems
can be found in the survey papers [2] and [3].
In this paper periodic systems are studied within the be-
havioral framework. The behavioral theory of linear, time-
invariant systems has its roots in the mid eighties when J.C.
Willems started his pioneering work. The main paradigms are
the emphasis of the behavior, the set of possible trajectories
of the system rather than on its mathematical representation
and the absence of a prior partition of the signals into inputs
and outputs.
In this paper we present some results on the behavioral
theory of linear periodic systems. The paper builds on a
framework that was developed Kuijper and Willems, see [1]
and the references therein. An important tool is the lifting
technique that associates to each periodic behavior a time-
invariant behavior. The lifting map is the key tool in relating
properties of the periodic behavior to similar properties
of the lifted, time-invariant, behavior. Subsequently, known
results for time-invariant behaviors are applied to the lifted
behavior. Finally, these are translated back to the periodic
behavior. In this way we obtain results about classification
of representations of periodic behaviors, controllability, and
autonomous periodic behaviors.
The paper is organized as follows. Section II contains the
basic material such as the precise definition of periodic
behavior, the lifting map, and a quick review of the results
obtained in [1] that are relevant in our context. The main
new results in Section III are an analysis how different
representations of the same periodic behavior are related,

and the characterization of minimal representations. Section
IV is concerned with controllable and autonomous periodic
behaviors. Results concerning the autonomous case have
been obtained in [1]. Here we prove that a periodic behavior
is controllable if and only if its lifted behavior is controllable.
Furthermore a test for controllability is obtained. If a periodic
behavior is neither controllable nor autonomous, then just
like in the time-invariant case, the periodic behavior may be
decomposed in a controllable and an autonomous part.
Throughout the paper we provide examples to illustrate the
theory.

II. PERIODIC BEHAVIORAL SYSTEMS

In the behavioral framework a dynamical system Σ is defined
as a triple Σ = (T, W, B), with T ⊆ R as the time set, W

as the signal space and B ⊆ WT as the behavior. Here we
focus on the discrete-time case, that is, T = Z, assuming
furthermore that our space of external variables is W = Rq

with q ∈ Z+.
As is now well known, the behavior of a time-invariant
systems is characterized by its invariance under the time
shift, i.e., σB=B, where σλ : (Rq)

Z
→ (Rq)

Z, defined by(
σλw

)
(k) := w (k+λ), is called backward λ-shift in case

λ ∈ Z+ or forward λ-shift in case λ ∈ Z−.
For P -periodic behaviors invariance is only required with
respect to the P -th power of the shift, as stated in the next
definition.

Definition II.1. [1] A system Σ is said to be P -periodic
(with P ∈ N) if its behavior B satisfies σP B=B. �
Note that this definition is not given in terms of the system
mathematical description (system representation). However
it has been shown in [1] and [4] that if B is a σP -invariant
linear closed subspace of (Rq)

Z (in the topology of point-
wise convergence), then Σ has a representation of the type(

Rt

(
σ, σ−1

)
w

)
(Pk+t)=0, t=1, . . . , P, k ∈ Z, (1)

where Rt ∈ Rgt×q
[
ξ, ξ−1

]
. Remark that the Laurent-

polynomial matrices Rt need not have the same number of
rows (in fact we could even have some gt equal to zero).
Analogously to the time-invariant case, although with some
abuse of language, we refer to (1) as a kernel representation.

Example II.2. Consider the 2-periodic system Σ with be-
havior B ⊆

(
R2

)Z

defined by{
w|

(
Rt

(
σ, σ−1

)
w

)
(2k+t)=0, t=1, 2, k∈Z

}
,
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with

R1

(
ξ, ξ−1

)
=

[
ξ−1 ξ2

]
∈ R

1×2
[
ξ, ξ−1

]
,

R2

(
ξ, ξ−1

)
=

[
ξ−1−1 ξ2−1

2ξ 1−ξ

]
∈ R

2×2
[
ξ, ξ−1

]
.

This definition leads to the periodically time-varying differ-
ence equations([

σ−1 σ2
] [

w1

w2

])
(2k+1) = 0([

σ−1−1 σ2−1
2σ 1−σ

] [
w1

w2

])
(2k+2) = 0. �

In [1] two kinds of time-invariant systems are introduced
that can be associated with a P -periodic system: the lifted
and the twisted systems. In this paper we are concerned with
the lifting option. Following [1], given a P -periodic system
Σ = (Z, Rq, B), the associated lifted system is defined as
a time-invariant system ΣL =

(
Z, RPq, LB

)
, with behavior

defined by LB=L (B) :={w̃| w̃=Lw, w ∈ B}⊆
(
RPq

)Z

,

where L is the linear map L : (Rq)Z →
(
RPq

)Z

, defined by

(Lw) (k) :=

⎡
⎢⎣

w (Pk+1)
...

w (Pk+P )

⎤
⎥⎦ .

Two important properties concerning this map are presented
in the following proposition.

Proposition II.3. [1]

i) LσP =σL;
ii) L is a homeomorphism; consequently L is closed.

These properties allow to relate a P -periodic system with
the corresponding lifted system.

Proposition II.4. [1]

i) Σ is P -periodic if and only if ΣL is time-invariant;
ii) B is linear if and only if LB is linear;

iii) B is closed if and only if LB is closed.

III. KERNEL REPRESENTATIONS

The main purpose of this section is to analyze the connection
between different kernel representations of a given linear P -
periodic behavior. We start by noting that, since(

Rt

(
σ, σ−1

)
w

)
(Pk+t)=

(
σtRt

(
σ, σ−1

)
w

)
(Pk) ,

the kernel representation (1) can be written as(
R

(
σ, σ−1

)
w

)
(Pk)=0, k ∈ Z, (2)

where

R
(
ξ, ξ−1

)
:=

⎡
⎢⎢⎢⎣

ξR1

(
ξ, ξ−1

)
ξ2R2

(
ξ, ξ−1

)
...

ξP RP

(
ξ, ξ−1

)

⎤
⎥⎥⎥⎦ ∈ R

g×q
[
ξ, ξ−1

]
, (3)

with g :=
∑P

t=1 gt. From now on we will refer to the matrix
R

(
ξ, ξ−1

)
as a representation matrix of the corresponding

behavior.

Remark III.1. Note that by considering the representation
matrix R (and the associated representation (2) for a P -
periodic behavior) we are ignoring the partition which is
initially given by the matrices R1, . . . , RP . However, this
partition is irrelevant, as can be seen in Example II.2.
Indeed, in this example P = 2, R1 has one row and R2

has two rows and the final description consists of three
difference equations, which could as well be obtained by
taking adequately defined R1 and R2 matrices with two and
one row, respectively. �

Now, decomposing R
(
ξ, ξ−1

)
as

R
(
ξ, ξ−1

)
= ξR1

(
ξP , ξ−P

)
+· · ·+ξP RP

(
ξP , ξ−P

)
= RL

(
ξP , ξ−P

)
ΞP,q (ξ) , (4)

with ΞP,q (ξ) :=
[

ξIq · · · ξP Iq

]T
and

RL
(
ξ, ξ−1

)
=

[
R1

(
ξ, ξ−1

)
R2

(
ξ, ξ−1

)
· · · RP

(
ξ, ξ−1

)]
,

(5)
and recalling the definition of the lifted trajectory Lw asso-
ciated to w, (2) can be written as(

RL
(
σ, σ−1

)
(Lw)

)
(k)=0, k ∈ Z.

Example III.2. Recall example II.2. By definition the matrix
R

(
ξ, ξ−1

)
is given by

[
ξR1

(
ξ, ξ−1

)
ξ2R2

(
ξ, ξ−1

) ]
=

⎡
⎣ ξ2−ξ ξ3

ξ−ξ2 ξ4−ξ2

2ξ3 ξ2−ξ3

⎤
⎦ .

By decomposing R as in (4), we obtain

R
(
ξ, ξ−1

)
=

[
R1

(
ξ2, ξ−2

)
R2

(
ξ2, ξ−2

) ]
Ξ2,2 (ξ) ,

where

R1
(
ξ2, ξ−2

)
=

⎡
⎣ −1 ξ2

1 0
2ξ2 −ξ2

⎤
⎦ , R2

(
ξ2, ξ−2

)
=

⎡
⎣ 1 0
−1 ξ2−1
0 1

⎤
⎦ .

Therefore the matrix RL is given by

RL
(
ξ, ξ−1

)
=

⎡
⎣ −1 ξ 1 0

1 0 −1 ξ−1
2ξ −ξ 0 1

⎤
⎦ . �

Taking into account that this reasoning can be reversed, we
obtain the following result.

Lemma III.3. [1] A P -periodic behavior B ⊂ (Rq)
Z is

given by the kernel representation (1), that is,

B=
{
w|

(
Rt

(
σ, σ−1

)
w

)
(Pk+t)=0, t=1, . . . , P, k ∈ Z

}
if and only if the associated lifted behavior LB is given
by the kernel representation LB =

{
w̃|RL

(
σ, σ−1

)
w̃=0

}
,

where RL
(
ξ, ξ−1

)
∈ Rg×Pq

[
ξ, ξ−1

]
, g =

∑P

t=1 gt, is given
as in (5).
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The following result is standard in time-invariant behaviors.
A proof for the continuous time setting may be found in [5].

Theorem III.4. Let two time-invariant behaviors H and H′

be given. Then H = kerH
(
σ, σ−1

)
⊂ H′ = kerH ′

(
σ, σ−1

)
if and only if there exists a Laurent-polynomial matrix
L

(
ξ, ξ−1

)
such that H ′

(
ξ, ξ−1

)
=L

(
ξ, ξ−1

)
H

(
ξ, ξ−1

)
.

Invoking Theorem III.4 we can immediately conclude that
for P -periodic behaviors B ⊂ B′ if and only if any
matrices RL

(
ξ, ξ−1

)
and R′L

(
ξ, ξ−1

)
that represent the

corresponding lifted behaviors are related by R′L
(
ξ, ξ−1

)
=

L
(
ξ, ξ−1

)
RL

(
ξ, ξ−1

)
for some Laurent-polynomial matrix

L
(
ξ, ξ−1

)
. This constitutes an indirect characterization of

behavior inclusion for the periodic case. Our next result
provides a more direct condition, since it is stated in terms
of the representation matrices of the periodic behaviors
themselves.

Theorem III.5. Let B and B′ be two P -periodic behaviors
with representation matrices R

(
ξ, ξ−1

)
and R′

(
ξ, ξ−1

)
, re-

spectively. Then B⊂B′ if and only if there exists a Laurent-
polynomial matrix L

(
ξ, ξ−1

)
such that

R′
(
ξ, ξ−1

)
=L

(
ξP , ξ−P

)
R

(
ξ, ξ−1

)
. (6)

Proof. Assume first that B ⊂ B′, then, by Theorem
III.4, the matrices RL

(
ξ, ξ−1

)
and R′L

(
ξ, ξ−1

)
that

represent the corresponding lifted behaviors are related by
R′L

(
ξ, ξ−1

)
= L

(
ξ, ξ−1

)
RL

(
ξ, ξ−1

)
, for some Laurent-

polynomial matrix L
(
ξ, ξ−1

)
, and (6) immediately follows

from the relation (4).

Assume now that (6) holds. Taking into account the
uniqueness of the decomposition (4), this implies that
R′L

(
ξP , ξ−P

)
=L

(
ξP , ξ−P

)
RL

(
ξP , ξ−P

)
. Since this equal-

ity still holds when ξP is replaced by ξ, this means that
LB = kerRL

(
σ, σ−1

)
⊂ LB′ = kerR′L

(
σ, σ−1

)
, which is

equivalent to say that the corresponding inclusion also holds
for the associated P -periodic behaviors, i.e., B⊂B′.

¿From this theorem we can conclude that two representa-
tion matrices R

(
ξ, ξ−1

)
and R′

(
ξ, ξ−1

)
correspond to the

same P -periodic behavior if and only if there exist two
Laurent-polynomial matrices L

(
ξ, ξ−1

)
and L′

(
ξ, ξ−1

)
such

that R′
(
ξ, ξ−1

)
= L

(
ξP , ξ−P

)
R

(
ξ, ξ−1

)
and R

(
ξ, ξ−1

)
=

L′
(
ξP , ξ−P

)
R′

(
ξ, ξ−1

)
. Note that, in case the representation

matrices RL and R′L of the corresponding lifted systems are
not full row rank, the matrices L and L′ are not unique.

Example III.6. Consider the 2-periodic systems Σ and Σ′

with behaviors B and B′ corresponding respectively to the
representation matrices

R
(
ξ, ξ−1

)
=

⎡
⎢⎢⎣

ξ2−ξ ξ3

2ξ 1−ξ

ξ−ξ2 ξ4−ξ2

2ξ3 ξ2−ξ3

⎤
⎥⎥⎦

and

R′
(
ξ, ξ−1

)
=

⎡
⎢⎢⎣

ξ−3−ξ−2 −ξ−1

2ξ 1−ξ

1−ξ−1 ξ

ξ3−ξ4 ξ6−ξ4

⎤
⎥⎥⎦ .

It is easy to check that

R′
(
ξ, ξ−1

)
= L

(
ξP , ξ−P

)
R

(
ξ, ξ−1

)
R

(
ξ, ξ−1

)
= L′

(
ξP , ξ−P

)
R′

(
ξ, ξ−1

)
,

with

L
(
ξ, ξ−1

)
=

⎡
⎢⎢⎣
−ξ−2 −α1ξ 0 α1

0 1−α2ξ 0 α2

ξ−1 −α3ξ 0 α3

0 −α4ξ ξ α4

⎤
⎥⎥⎦ (7)

L′
(
ξ, ξ−1

)
=

⎡
⎢⎢⎣

β1ξ−ξ2 0 β1 0
β2ξ 1 β2 0
β3ξ 0 β3 ξ−1

β4ξ ξ β4 0

⎤
⎥⎥⎦ ,

for any real values of αi and βj , i, j=1, . . . , 4, respectively.
Thus B ⊂ B′ and B′ ⊂ B, i.e., B = B′. �

If R and R′ have the same number of rows, it is possible to
prove that L and L′ can be taken to be unimodular, [5]. This
yields the following fundamental result. It is the counterpart
for P -periodic behaviors of a similar result for time-invariant
behaviors, [5, Theorem 3.6.2].

Theorem III.7. Let B and B′ be two P -periodic behaviors
with representation matrices R

(
ξ, ξ−1

)
and R′

(
ξ, ξ−1

)
, re-

spectively, possessing the same number of rows. Then B=B′

if and only if there exists a unimodular matrix U
(
ξ, ξ−1

)
such

that
R′

(
ξ, ξ−1

)
=U

(
ξP , ξ−P

)
R

(
ξ, ξ−1

)
. (8)

Example III.8. Recall now example III.6. Taking in (7),
α1 =1 and α2 =α3 =α4 =0, we obtain a unimodular matrix

U
(
ξ, ξ−1

)
=

⎡
⎢⎢⎣
−ξ2 −ξ 0 1
0 1 0 0

ξ−1 0 0 0
0 0 ξ 0

⎤
⎥⎥⎦ ,

such that (8) holds. �

An important issue in the representation of time-invariant
systems is the question of minimality. Given a linear time-
invariant system with behavior B described by:(

R
(
σ, σ−1

)
w

)
(k)=0, k ∈ Z, (9)

with R
(
ξ, ξ−1

)
∈ Rg×q

[
ξ, ξ−1

]
, we say that the represen-

tation (9) is minimal if the number of rows of the matrix
R

(
ξ, ξ−1

)
is minimal (among all the other representations of

B). This means that it is impossible to give a mathematical
description of B with less equations than in (9), and is
equivalent to say that R

(
ξ, ξ−1

)
has full row rank (over

R
[
ξ, ξ−1

]
).

In the periodically time-variant case, we adopt the same
definition of minimality.
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Definition III.9. A representation matrix R ∈ R
g×q

[
ξ, ξ−1

]
of a P -periodic system Σ = (Z, Rq, B) is said to be a
minimal representation if for any other representation R′ ∈
R

g′
×q

[
ξ, ξ−1

]
of Σ, there holds g ≤ g′. �

It is not difficult to check that a representation R
(
ξ, ξ−1

)
of

a P -periodic system Σ is minimal if and only if the same
happens for the corresponding representation RL

(
ξ, ξ−1

)
of the associated time-invariant lifted system ΣL. Thus
R

(
ξ, ξ−1

)
is minimal if and only if RL

(
ξ, ξ−1

)
is full row

rank over R
[
ξ, ξ−1

]
. The next lemma translates this in terms

of the matrix R
(
ξ, ξ−1

)
itself.

Lemma III.10. Let R
(
ξ, ξ−1

)
∈ Rg×q

[
ξ, ξ−1

]
be the

representation matrix of a P -periodic system and consider
the corresponding matrix RL

(
ξ, ξ−1

)
∈ Rg×Pq

[
ξ, ξ−1

]
given by (4) and (5). Then, the following conditions are
equivalent:

i) RL
(
ξ, ξ−1

)
has full row rank over R

[
ξ, ξ−1

]
;

ii) R
(
ξ, ξ−1

)
has full row rank over R

[
ξP , ξ−P

]
( i.e.,

if r
(
ξP , ξ−P

)
∈ R1×g

[
ξP , ξ−P

]
is such that

r
(
ξP , ξ−P

)
R

(
ξ, ξ−1

)
= 0 ∈ R

1×q
[
ξ, ξ−1

]
, then

r
(
ξP , ξ−P

)
= 0).

Proof. Recall that

R
(
ξ, ξ−1

)
=RL

(
ξP , ξ−P

)
ΞP,q (ξ) . (10)

¿From here we can immediately conclude that ii) ⇒ i). In
order to see that i) ⇒ ii), assume that ii) does not hold, i.e.,
that there exists a nonzero row r

(
ξP , ξ−P

)
∈ R1×g

[
ξP , ξ−P

]
such that r

(
ξP , ξ−P

)
R

(
ξ, ξ−1

)
= 0. Then, pre-multiplying

both sides of (10) by r
(
ξP , ξ−P

)
yields that

r
(
ξP , ξ−P

)
RL

(
ξP , ξ−P

)
ΞP,q (ξ)=0∈R

1×q
[
ξ, ξ−1

]
.

(11)
Since, as earlier mentioned, the decomposition of matrices
M

(
ξ, ξ−1

)
over R

[
ξ, ξ−1

]
as a product M

(
ξ, ξ−1

)
=

ML
(
ξP , ξ−P

)
ΞP,q (ξ) is unique, (11) implies that

r
(
ξP , ξ−P

)
RL

(
ξP , ξ−P

)
= 0 ∈ R1×Pq

[
ξP , ξ−P

]
, which in

turn leads to r
(
ξ, ξ−1

)
RL

(
ξ, ξ−1

)
= 0 ∈ R1×Pq

[
ξ, ξ−1

]
,

thus showing that RL
(
ξ, ξ−1

)
has not full row rank over

R
[
ξ, ξ−1

]
. Therefore i) ⇒ ii).

Together with the previous considerations, this result yields
the following characterization of minimality.

Theorem III.11. Let R
(
ξ, ξ−1

)
∈ Rg×q

[
ξ, ξ−1

]
be

the representation matrix of a P -periodic system. Then
R

(
ξ, ξ−1

)
is a minimal representation if and only if it has

full row rank over R
[
ξP , ξ−P

]
.

Example III.12. The representation R
(
ξ, ξ−1

)
∈

R3×2
[
ξ, ξ−1

]
of example (II.2) is minimal. Indeed,

although it is clearly not full row rank over R
[
ξ, ξ−1

]
, it

can be shown that it has full row rank over R
[
ξ2, ξ−2

]
. �

IV. CONTROLLABILITY AND AUTONOMICITY

We next consider some questions related to the behavioral
controllability of a P -periodic system, such as the relation-
ship between this property and the controllability of the
associated lifted time-invariant system and the existence of
a behavior autonomous/controllable decomposition (which
is well known in the behavioral theory of time-invariant
systems, [5]). We start by recalling the behavioral definition
of controllability.

Definition IV.1. A system Σ is said to be controllable if for
all w1, w2 ∈ B and k0 ∈ Z, there exists w ∈ B and k1 ≥ 0
such that (12) holds,

w (k)=

{
w1 (k) , k ≤ k0

w2 (k) , k > k0+k1
. (12)

�
Theorem IV.2 below, states that the controllability of a P -
periodic system is equivalent to the controllability of the
corresponding lifted system.

Theorem IV.2. A P -periodic system Σ is controllable if and
only if the associated lifted system ΣL is controllable.

Proof.

(⇒): Assume that Σ is controllable. Let w̃1, w̃2 ∈ LB and
k̃0 ∈ Z. By construction there exist w1, w2 ∈ B such
that Lwi = w̃i, i=1, 2.

Take k0 :=P k̃0+P . Then, by the controllability of Σ,
there exist k1 ∈ Z and a trajectory w ∈ B satisfying:
w (k) = w1 (k) for k ≤ k0 and w (k) = w2 (k) for

k > k0+k1. Take k̃1 = 	
k1

P

+2. Then, the trajectory

w̃ :=Lw ∈ LB coincides with w̃1 for instants k ≤ k̃0

and with w̃2 for instants k > k̃0+k̃1, showing that LB

is controllable.

(⇐): Assume now that ΣL is controllable. Let w1, w2 ∈ B

and k0 ∈ Z. By construction there exist w̃1, w̃2 ∈ LB

such that Lwi = w̃i, i=1, 2.

Define k̃0 = 	
k0

P

−1. Since LB is controllable, there

exist k̃1 ∈ Z (which can clearly always taken to be
not less than 1) and a trajectory w̃ ∈ LB such that
w̃ (k) = w̃1 (k) for k ≤ k̃0 and w̃ (k) = w̃2 (k) for

k > k̃0 + k̃1. Take k1 := P
(
k̃1−1

)
+1 ≥ 0, and let

w := L−1 (w) ∈ B. Then, w (k) = w1 (k) for k ≤ k0

and w (k)=w2 (k) for k > k0+k1, which proves that
B is controllable.

This result, together with the characterization of behavioral
controllability given in [4, Theorem V.2], allows to conclude
the following.

Proposition IV.3. Let Σ = (Z, Rq, B) be a P -periodic
system, represented by (1), with representation matrix R as in
(3). Then Σ is controllable if and only if the corresponding
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matrix RL (see (4) and (5)) is such that RL
(
λ, λ−1

)
has

constant rank over C\{0}.

Note that if in addition the matrix RL
(
ξ, ξ−1

)
∈

Rg×Pq
[
ξ, ξ−1

]
has full row rank, the condition that

RL
(
λ, λ−1

)
has constant rank over C\ {0} is equivalent to

say that RL
(
ξ, ξ−1

)
is left-prime, i.e, all its left divisors

are unimodular matrices in Rg×g
[
ξ, ξ−1

]
. It turns out that

the left-primeness of RL
(
ξ, ξ−1

)
can be related with the

following primeness property for R
(
ξ, ξ−1

)
.

Definition IV.4. A Laurent-polynomial matrix
R

(
ξ, ξ−1

)
∈ R

g×q
[
ξ, ξ−1

]
with full row rank

over R
[
ξP , ξ−P

]
is said to be left-prime over

R
[
ξP , ξ−P

]
, or simply P -left-prime, if whenever it is

factored as R
(
ξ, ξ−1

)
= D

(
ξP , ξ−P

)
R

(
ξ, ξ−1

)
, with

D
(
ξP , ξ−P

)
∈ Rg×g

[
ξP , ξ−P

]
, then the factor D

(
ξP , ξ−P

)
and, equivalently, D

(
ξ, ξ−1

)
, are unimodular (over

R
[
ξP , ξ−P

]
and R

[
ξ, ξ−1

]
, respectively). �

Lemma IV.5. Let P ∈ N and R
(
ξ, ξ−1

)
∈ Rg×q

[
ξ, ξ−1

]
have full row rank over R

[
ξP , ξ−P

]
. Consider the

associated matrix RL
(
ξ, ξ−1

)
∈ Rg×Pq

[
ξ, ξ−1

]
according

to the decomposition (4). Then, the following conditions are
equivalent:

i) RL
(
ξ, ξ−1

)
is left-prime;

ii) R
(
ξ, ξ−1

)
is P -left-prime.

Proof. In order to prove that i) ⇒ ii), assume that R
(
ξ, ξ−1

)
is not P -left-prime. Then there exist a non-unimodular
square matrix D

(
ξP , ξ−P

)
and a matrix R

(
ξ, ξ−1

)
∈

Rg×q
[
ξ, ξ−1

]
such that R

(
ξ, ξ−1

)
= D

(
ξP , ξ−P

)
R

(
ξ, ξ−1

)
.

Letting R
L (

ξ, ξ−1
)

be the matrix corresponding to
R

(
ξ, ξ−1

)
according to the decomposition (4), we have

that R
(
ξ, ξ−1

)
= D

(
ξP , ξ−P

)
R

L (
ξP , ξ−P

)
ΞP,q (ξ), which

is a decomposition (4) for R
(
ξ, ξ−1

)
. Due to the

uniqueness of such decomposition, we conclude that
RL

(
ξP , ξ−P

)
= D

(
ξP , ξ−P

)
R

(
ξP , ξ−P

)
and hence

RL
(
ξ, ξ−1

)
= D

(
ξ, ξ−1

)
R

(
ξ, ξ−1

)
with D

(
ξ, ξ−1

)
non-

unimodular, showing that RL
(
ξ, ξ−1

)
is not left-prime.

To derive implication ii) ⇒ i) assume now that RL
(
ξ, ξ−1

)
is not left-prime. Then, there exist a non-unimodular square
matrix D

(
ξ, ξ−1

)
and a matrix R

L (
ξ, ξ−1

)
∈ Rg×Pq

[
ξ, ξ−1

]
such that RL

(
ξ, ξ−1

)
=D

(
ξ, ξ−1

)
R

L (
ξ, ξ−1

)
, which implies

that R
(
ξ, ξ−1

)
= D

(
ξP , ξ−P

)
R

L (
ξP , ξ−P

)
ΞP,q (ξ). Hence

R
(
ξ, ξ−1

)
has a non-unimodular left factor D

(
ξP , ξ−P

)
and

is therefore not P -left-prime.

This leads to the following direct characterization of control-
lability.

Theorem IV.6. A P -periodic system Σ = (Z, Rq, B) is
controllable if and only if its minimal representation matrices
R

(
ξ, ξ−1

)
are P -left-prime.

As an opposite situation to controllability, which, roughly

speaking, is the possibility of changing from one system
trajectory to any other one, stands autonomicity, that
corresponds to the impossibility of connecting a system
trajectory with another different one.

Definition IV.7. The P -periodic system Σ = (Z, Rq, B) is
said to be autonomous if for all k0 ∈ Z and all w1, w2 ∈ B

w1 (k)=w2 (k) for k < k0 ⇒ {w1 =w2} . �

Proposition IV.8. [1] Let Σ=(Z, Rq, B) be a P -periodic
system. Then B is autonomous if and only if LB is au-
tonomous.

It is well-known that every linear time-invariant behavior B

which is a closed subspace of (Rq)Z can be decomposed
as the direct sum of an autonomous sub-behavior with a
controllable sub-behavior, more concretely the following
result holds true.

Theorem IV.9. [5] Let Σ = (Z, Rq, B) be linear, time-
invariant and such that B is a closed subspace of (Rq)

Z.
Then:

i) there exist an autonomous sub-behavior, Ba, of B, and
a controllable sub-behavior, Bc, of B, such that B=
Ba ⊕ Bc;

ii) if Ba, autonomous, and Bc
1, B

c
2, controllable, are all

sub-behaviors of B such that B=Ba⊕Bc
1 =Ba⊕Bc

2,
then Bc

1 =Bc
2.

Remark IV.10. The controllable behavior Bc is defined by

Bc :=Bcp

where Bcp is the set of trajectories of B with compact
support and its closure is taken w.r.t. the topology of point-
wise convergence. �
We now prove a similar result for periodic behaviors.

Theorem IV.11. Let Σ = (Z, Rq, B) be P -periodic. Then
there exist Ba, Bc⊂B such that:

i) Ba is autonomous;
ii) Bc is controllable;

iii) B=Ba ⊕ Bc.

Proof. Define B̃ := LB. Then, there exists sub-behaviors
B̃a and B̃c such that

B̃=B̃
a ⊕ B̃

c.

As stated in Proposition II.3 L is a homeomorphism and
therefore its inverse L−1 is well defined. Let’s use it to
define Ba := L−1B̃a and Bc := L−1B̃c. Remark that, see
Proposition IV.8, Ba is autonomous and Bc is controllable
(due to theorem IV.2).

Since L is a homeomorphism, we then have that:

Ba ∩ Bc = L−1B̃a ∩ L−1B̃c = L−1
(
B̃a ∩ B̃c

)
= L−1 ({0}) = {0} .
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Finally take w ∈ B. Let w̃ :=L (w) and take w̃a and w̃c to
be such that

w̃= w̃a+w̃c, w̃a ∈ B̃
a, w̃c ∈ B̃

c.

Define wa :=L−1 (w̃a), wc :=L−1 (w̃c). Then,

w = L−1 (w̃)=L−1 (w̃a+w̃c) = L−1 (w̃a)+L−1 (w̃c)

= wa+wc.

Example IV.12. Let Σ =
(
Z, R2, B

)
be the 2-periodic

system with representation matrix

R
(
ξ, ξ−1

)
=

[
ξ3−ξ ξ5−ξ

]
=RL

(
ξ2, ξ−2

)
Ξ2,2 (ξ) ,

with RL
(
ξ, ξ−1

)
=

[
ξ−1 ξ2−1 0 0

]
. It can be

shown that the time-invariant lifted behavior LB, represented
by RL

(
ξ, ξ−1

)
, has the following autonomous/controllable

decomposition:

LB=(LB)
a
⊕ (LB)

c
,

where the autonomous behavior (LB)a is represented by

RL
a

(
ξ, ξ−1

)
=

⎡
⎢⎢⎣

ξ−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

and the controllable behavior (LB)
c has a representation

RL
c

(
ξ, ξ−1

)
=

[
1 ξ+1 0 0

]
.

We refer the reader to [5] for further details on how to
obtain such a decomposition for time-invariant systems. This
implies that B can be decomposed as B = Ba ⊕ Bc, with
Ba =L−1 ((LB)a) represented by

Ra

(
ξ, ξ−1

)
=RL

a

(
ξ2, ξ−2

)
Ξ2,2 (ξ)=

⎡
⎢⎢⎣

ξ3−ξ 0
0 ξ

ξ2 0
0 ξ2

⎤
⎥⎥⎦

and Bc =L−1 ((LB)
c
) represented by

Rc

(
ξ, ξ−1

)
=RL

c

(
ξ2, ξ−2

)
Ξ2,2 (ξ)=

[
ξ ξ3+ξ

]
. �

V. CONCLUSIONS

In this paper we derived results about periodic behaviors
concerning classification of representations, minimality of
representations, and controllability. The main tool was the
lifting technique that enabled us to exploit known results for
time-invariant behaviors. Further results are underway. These
concern topics like observability, stability, and controller
design.
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