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Abstract— In this paper we present necessary and sufficient
conditions for stabilization of a nonlinear system made up of
M ≥ 2 second order homogeneous subsystems of the same
degree. The analysis is based on the partition of all possible
trajectories in two distinct sets: the first set concerns confined
motions, the second one includes the trajectories rotating
around the origin.

I. INTRODUCTION

The stabilizability of a switching system made up of
unstable nonlinear systems is a interesting control problem.
The planar problem has been solved in [1] for the linear case.

The aim of this paper is to present a simple geometric
procedure capable of facing directly the problem of stabi-
lizability of planar switching systems made up of M ≥ 2
subsystems of a particular class of nonlinear dynamics, i.e.
the homogeneous systems of the same degree.

A key aspect of the procedure is the distinction between
sequences yielding a confinement of the motion in a conic
sector and sequences leaving the motion free to rotate in the
whole state space. The same idea was developed in [2] to
obtain necessary and sufficient conditions for the asympotic
stability under arbitrary switching of planar linear switching
systems. We start with the analysis of the first type of
sequences in order to ascertain the presence of stabilizing
motions. In this case we give also the conditon of reachability
of the region where this motion occurs, from an arbitrary
initial state. Only in absence of this kind of motions we
analyze the second type of sequences. The latter task is
accomplished building two particular switching sequences
(one for each rotation direction) yielding a motion, which
approach the origin as close as possible. From the analysis
of these two sequences we can infer the stabilizability of the
system.

The paper is organized as follows: in Section 2 we define
homogeneous switching systems and give some necessary
preliminary definitions. Section 3 deals with the analysis of
confined motions. Section 4 addresses the construction of
two best trajectories and the proof of the final stabilizability
theorem. In Section 5 two exemples are given and finally, in
Section 6 some conclusions are drawn.

II. DEFINITIONS

In accordance with the most common definition in lit-
erature we define a switching system, a system made up
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of different sub-systems and by a switching law specifying
which sub-system is active at any given instant ([3], [1]).
The sole assumption we make on the switching law is that
there is a finite number of switchings in a finite time, thus
preventing the manifestation of Zeno phenomena.

The model is given by:

ẋ = fi(x) (1)

i(t) = φ
(
x(t), i(t−), t

)
where x ∈ R

2, fi(x) =
[
fi1(x) fi2(x)

]T
, i(t) ∈

{1, . . . , M} ≡ I is a set of indices, φ : R
2 × I ×R −→ I is

a piecewise constant function specifying which subsystem
is active in each time instant. The components of vector
fields fi(x) are time invariant, Lipschitz and homogeneous
functions of the same degree having the origin as unique
unstable equilibrium point. A homogeneous function of
degree k is defined as:

f(cx) = ckf(x).

The Lipschitz condition in the origin requires k ≥ 1([4]).
Definition 1: We define growth angle for the vector field

f in the point x ∈ R
2 \ {0} the angle ϑ clockwise measured

from the ray, going through the origin and x, to the field f .
Definition 2: A vector field (or a dynamic system) in a

point x ∈ R
2 \ {0} is said:

• clockwise (cw) if: ϑ ∈ (0, π);
• counterclockwise (ccw) if: ϑ ∈ (π, 2π);
• radial-ingoing (ri) if: ϑ = π;
• radial-outgoing (ro) if: ϑ = 0 ≡ 2π.
Recalling the properties of the cross product, we can deter-

mine the rotation direction of a vector field f =
[
f1 f2

]T

in a point x =
[
x1 x2

]T
∈ R

2 \ {0} analyzing the sign of
the component of the pseudovector produced:

m = (f ∧ x) · k̂ = (f1x2 − f2x1) � 0 →

⎧⎨
⎩

cw if m > 0
ccw if m < 0

ro if m = 0
(2)

where k̂ is the unit vector perpendicular to f and x, with the
orientation determined by the right-hand rule. It is straight-
forward to prove that the previous relation is equivalent to
the scalar product of f and the vector perpendicular to the

radial direction y = Rx, where R =

[
0 1
−1 0

]
. Therefore,

the determination of rotation directions amounts to solving
the following inequality:

y · f = xT RT
f ≥ 0 (3)
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Definition 3: Given any two vectors v1 and v2 ∈ R
2 with

v1 �= λv2, λ ∈ R, the conic sector centered in the origin
and bounded by the rays �1 = λ1v1 and �2 = λ2v2 with
λ1, λ2 ≥ 0 is the set:

Ω =
{
q ∈ R

2 : q = αv1 + βv2, α, β ≥ 0
}
⊂ R

2.
Definition 4: Given the state space R

2, a state space finite
partition P is a finite set of conic sectors {Ωi}i=1,...,n such
that:

i)
n⋃

i=1

Ωi = R
2;

ii) int {Ωi}∩ int {Ωj} = ∅ ∀i, j ∈ {1, . . . , n} i �= j;
iii) On contiguous sectors different systems are active.

III. CONFINED MOTIONS

Confined motions can be an intrinsic characteristic of
the subsystems (spontaneous confinement) or they can be
produced by switching among them (induced confinement).

Consider the first case. Solving the equality associated to
(3), if a point x̄ is a solution, then all the points lying on
the ray l = λx̄, with λ ≥ 0, are also solutions. Generally,
we can have a finite number of isoleted rays of solutions, an
infinite number or no solutions at all. If the equation have
no solutions, then all the motions produced by the field f

are not confined, instead in the case of finite number of rays
each of them define a particular trajectory of the field that
is ri or ro. Each of these trajectories decomposes the plane
into sectors such that any trajectory originating in one of
them remains inside it forever [4]. However, for our purpose,
we are interesting only in convergent confined motions,
that is motions going towards the origin. According to a
classical classification (see again [4]) we have three kinds
of sectors: hyperbolic, node and elliptic sector. Hyperbolic
sectors are bounded by a ri and a ro trajectories and produce
only divergent motions. Node sectors are bounded by two ri
trajectories and produce convergent motions. Elliptic sectors
are bounded by a ri and a ro trajectories and produce
convergent motions if we exclude the ro ray. However the
trajectories of the elliptic sector can go arbitrarily far from
the origin before converging on it. To distinguish elliptic
from hyperbolic sectors an analysis of the rotation direction
is sufficient. Due to the fact that the rotation direction is
constant in each sector, it is straightforward to see that if we
span the sector from the ro ray to the ri ray in a cw direction
and the field is cw in that sector, then the sector is elliptic,
else it is hyperbolic. The same is true for ccw direction.

If the number of rays of solutions is infinite, there exist
sectors whose trajectories are all rays through the origin. We
are interested only in those of them with ri direction. Hence
for stabilizability we consider node sectors, elliptic sectors
without the ro ray and ri sectors not limited to a single ray.

As concerns induced confined motions, recall that they can
be produced by forcing an inversion of the rotation direction
alternating subsystems with different rotation directions. This
way, equivalent directions of motion other than those of the
single subsystems can be produced. These new directions of

motion are induced by pseudosliding phenomena. Recalling
the Filippov definition [5] of sliding motion:

f(x) = αf1(x) + (1 − α)f2(x) α ∈ [0, 1]

we can note that also for the homogeneous subsystems, if
the sliding condition is verified in a point x ∈ R

2 , then it
holds for the whole ray passing through the origin and x. In
fact, we have:

f(cx) = αf1(cx) + (1 − α)f2(cx)

= ck [αf1(x) + (1 − α)f2(x)] = ck
f(x) α ∈ [0, 1]

because all subsystems have the same degree of homogene-
ity. This allows us to consider any equivalent direction as
another homogeneous system. Therefore all the directions
included in the vector cone bounded by the vectors f1 and
f2 are possible.

With the no Zeno phenomena assumption, the existence
of a real sliding motion is excluded. There is however
the possibility of building admissible switching sequences,
which are potentially profitable by alternating the two fields
producing equivalent directions of motion close to that of
pure sliding (see for instance the time average control of
[6]). From now on, we will use the term pseudosliding
to refer to this type of motions. It can be proven that
convergent pseudosliding motions, i.e. pseudosliding motions
going towards the origin, are possible if and only if the
vector cone generated by f1 and f2 includes the ri direction.
Then, we prove that any kind of induced confined convergent
motions is possible if and only if the previous condition
holds.

Before proceeding, it is necessary to introduce the follow-
ing important definition:

Definition 5: We define best switching law a switching
strategy that associates to every point x ∈ R

2 the subsystem
whose vector field has the minimum1 cosine of the growth
angle in x.

Using the previous association (see [1]), we select the
subsystem that drives the system as close as possible to the
origin. Furthermore it is not difficult to prove that given two
vector fields f1 and f2 both cw (ccw) in x ∈ R

2 \ {0} and

defining ϑ1 =
�

xf1 and ϑ2 =
�

xf2 as the growth angles of f1

and f2 (according to Definition 1) we have that cos ϑ1 ≤ cos
ϑ2 iff (f1 ∧ f2) · k̂ ≥ 0 ((f2 ∧ f1) · k̂ ≥ 0), or equivalently:

(f1 ∧ f2) · k̂ ≥ 0 ∼ (Rf2) · f1 = f
T
2 RT

f1 > 0,

∀x s.t. f1, f2 cw,

(f2 ∧ f1) · k̂ ≥ 0 ∼ (Rf1) · f2 = f
T
1 RT

f2 > 0, (4)

∀x s.t. f1, f2 ccw.

Remark 1: We discard the case cos(ϑ) = −1 (ri direction)
due to the previous remark about spontaneous confinement.

We are now ready to establish the following result:
Theorem 1: An induced convergent confined motion is

possible for the switching system (1) iff at least a pair of

1If more than one subsystem satisfies the minimum criterion, then any of
them can be chosen.
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subsystems f1 and f2 produce a vector cone including the ri
direction in a point x ∈ R

2.
Proof: (⇒) If f1 and f2 produce in a point x ∈ R

2

a vector cone including the ri direction, then due to the
homogeneity of systems, the same condition holds for λx,
λ ∈ R. This means a convergent pseudosliding motion takes
place and thus an induced convergent confined motion. (⇐)
Consider a sector Ω ⊂ R

2 bounded by two rays �1 and �2
with �1 �= �2 where fields with opposite rotation directions
are present and consider a point x0i ∈ �1. If one leaves
the system (1) free to evolve according to the minimum
cosine criterion applied to cw subsystems in Ω (the ccw
case is analogous) the motion eventually reaches a point
xFi ∈ �2. Denote with γi

min cw this trajectory and with Ai

the compact connected region enclosed by the portions of
the radial rays passing through the origin and x0i and xFi

and by γi
min cw . For each x0i ∈ �1 we can define such a

region and all these regions define a family FA. Due to the
homogeneity of subsystems the regions are all homothetic
between each other. Suppose now there is a not spontaneous
convergent confined (in Ω) trajectory γd, choosing arbitrarily
a point x0 ∈ γd and a region Ak ∈ FA such that x0 /∈ Ak,
we can see that for γd to be convergent whilst remaining
confined in Ω it has to enter the region Ak crossing γk

min cw .
By construction, γk

min cw is such that each cw system applied
to x ∈ γk

min cw is directed outwards from Ak or is tangent to
γk
min cw . Therefore the only chance that γd has to enter Ak is

by crossing γk
min cw in a point x̄ by means of a ccw system

(say f2)2. If f1 is the cw system tangent to γk
min cw in x̄, then

the vector cone generated by f1 and f2 includes the radial
direction. What is left to determine, is whether the radial
direction is outgoing or ingoing. The system f2 belongs to
the half plane defined by the tangent to γk

min cw in x̄ and
including the inwards normal to Ak in x̄. The ri direction
also belongs to this half plane and therefore the vector cone
generated by f1 and f2 includes the ri direction.

It is not difficult to verify that given two vector fields f1

cw in x ∈ R
2 \ {0} and f2 ccw in the same point, the ri

direction is included in the vector cone generated by f1 and
f2 iff (f1 ∧ f2) · k̂ < 0. As before, we have that (f1 ∧ f2) ·

k̂ = f11f22 − f12f21 where f1 =
[
f11 f12

]T
and f2 =[

f21 f22

]T
, is equivalent to the scalar product between the

vector f̃2 = Rf2 and the vector f1 where R is defined as
above. Hence we have:

(f1 ∧ f2) · k̂ < 0 ∼ f̃2 · f1 = f
T
2 RT

f1 < 0, (5)

∀x s.t. f1 cw and f2 ccw

What remains to prove is the reachability of conic sectors
where convergent confined motions take place. Denoting
with Ωsponti a generic conic sector where a spontaneous
convergent confined motion is present, we define the spon-
taneous domain as follows:

Dspont =
⋃
i

Ωsponti.

2The radial ingoing direction is discarted

Fig. 1. Examples of covering.

Analogously, for the induced convergent confined motion we
define the pseudosliding domain:

Dpseudo =
⋃
i

Ωpseudoi.

Finally the convergent confined domain is defined as
follows:

Dconv = Dspont ∪ Dpseudo.

We denote instead with Ωcw (Ωccw) a conic sector bounded
by two rays �1 and �2 cw (ccw) numbered where it is
possible to define a cw (ccw) trajectory, that is a trajectory
starting from �1 and reaching �2.

Definition 6: We define admissible covering of a conic
region of the plane, a covering obtained with Ωcw and Ωccw

sectors and such that the ray between contiguous sectors does
not behave like an actractive domain (see Fig. 1).

The complement set S = R
2 \ Dconv consists of conic

sectors whose delimiting rays are the external rays of Dspont

and Dpseudo. Finally the reachability condition is:
Proposition 1: It is possible to reach the domain Dconv

from an arbitrary point x ∈ R
2 iff an admissible covering of

S exists.

IV. NOT CONFINED MOTIONS

If the switching system does not present convergent
confined motions, we can continue the analysis with not
confined motions. Firstly, one can reduce the analysis to two
best trajectories monotonically rotating around the origin i.e.
trajectories never inverting their rotation direction. In fact,
Theorem 2 shows that, once a rotation direction is fixed,
there is no advantage in switching on systems with opposite
rotation direction. Recalling Definition 5, it is straigthforward
to see that the best trajectories are obtained choosing the
system having in each point the minimum cosine among
those systems having the same rotation directions. For this,
it is necessary to introduce the following definition:

Definition 7: Given a conic sector Ωj bounded by two
rays �1 and �2 cw (ccw) numbered, an overall clockwise
(counterclockwise) trajectory is a trajectory originating in
x0 ∈ Ωj and leaving the sector Ωj in a point xu ∈ �2 with
a cw (ccw) vector field.

We are now ready to prove the following theorem.
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Theorem 2: Denote with γmin cw (γmin ccw) the trajectory
originating in a point x0 belonging to any conic sector
Ωj bounded by rays �1 and �2 cw (ccw) numbered and
associating every x ∈ R

2 the cw field having the minimum
cosine among the cw (ccw) systems. Then, naming xf ∈ �2
the exit point of γmin cw (γmin ccw) from Ωj and xu ∈ �2
the exit point of any overall cw (ccw) trajectory γ generated
by x0, we have that ‖xu‖ ≥ ‖xf‖ if there is no convergent
pseudosliding.

Proof: The proof is provided only for cw case (ccw
case is similar). As for Theorem 1 we consider the family
FA of regions Ai bounded by portions of radial rays �1 and
�2 and γi

min cw . There exists a k such that γmin cw is a portion
of γk

min cw associated to the region Ak (x0 ∈ γk
min cw). Given

the hypothesis of no convergent pseudosliding, the Theorem
1 holds and therefore any overall cw trajectory originating
in x0 and leaving Ωj in a point xu ∈ �2 lies entirely outside
Ak. This implies ‖xu‖ ≥ ‖xf‖.

Finally, we can apply the minimum cosine criterion among
systems with the same rotation direction thus producing two
best state space partitions Pcw and Pccw .

We now define switching sequence consistent with the
partitions as follows:

Definition 8: Given a finite partition of the state space R
2,

the switching sequence consistent with the partition is the
sequence which associates each sector with its corresponding
system.

We can define two switching sequences consistent with
Pcw and Pccw and as a result obtain two families of periodic
(around the origin) motions to be analyzed for stability.

The stability analysis makes use of the the fact that a
trajectory which starts from a point in the state space will
eventually intersect a ray passing through the origin and
the initial point after a complete rotation (cw or ccw). If
this intersection point has a smaller norm than the original
starting point then the system is asymptotically stable, if
its norm is greater then the system is unstable and if the
two points coincide, then the system is (simply) stable (the
trajectory is a constant oscillation). This approach would
require a repetition of the same procedure for each trajectory
starting from each initial point of the state space. Fortunately,
it is possible to prove that in order to derive the stability
of the system, it is sufficient to analyze only one trajectory
generating from an arbitrary point. This is the matter of the
following theorem:

Theorem 3: Given a Pcw or Pccw partition of the state
space R

2 in conic sectors, chosen arbitrarily a ray � and a
point x0 ∈ � and named xf the point where the trajectory
originating from x0 intersects � for the first time after a
turn around the origin when the switching system evolves
according to a switching law consistent with the partition,
then ‖xf‖

‖x0‖
= η ∈ R

+, η being a constant independent of the
choice of x0.

Proof: The proof is based essentially on the homo-
theticity of the trajectories. We must show that, given a
sector Ω bounded by rays �1 and �2 on which only one
subsystem is active, the trajectory γ(t, x0), generated by a

Fig. 2. Example of Pcw partition and related trajectory.

point x0 ∈ �1 and reaching �2 in a point xf is homothetic to
any other trajectory of the same subsystem originating from
a point x̃0 ∈ �1. Recalling that two curves p(t) and r(s)
are homothetic of ratio λ with respect to the origin if ∀t̄, ∃s̄
such that p(t̄) = λr(s̄) and, chosen x̃0 = λx0, we have the
following well known property of differential systems with
homogeneous right side [4]:

γ(t, λx0) = λγ(λk−1t, x0) = λγ(s, x0). (6)

Let us consider a partition Pcw or Pccw and suppose, without
lack of generality, that x0 ∈ � ⊂ Ω1 and xf as said in the
statement of the theorem. We define η =

‖xf‖
‖x0‖

and x̂(t) the
trajectory from x0 to xf . First we have to prove that η is
a constant independent of the choice of the initial condition
x̂0 if it belongs to x̂(t). To this aim consider the ray �′

that goes through x̂0 and identify with x̂f the point where
the trajectory originating from x̂0 intersects �′ for the first
time after a turn around the origin (see Fig. 2). Let us prove
that ‖x̂f‖

‖x̂0‖
= η. If we put xf as the initial condition of a

new trajectory which arrives on �′, we have that xf = ηx0.
For the linearity of the subsystems all stretches of trajectory
contained in a given sector are homothetic among them.
Hence3 if x0 −→ x̂0 then ηx0 = xf −→ x̂f = ηx̂0. Finally
we have only to prove that any point x̃0 not necessarily
belonging to x̂(t) originates a point x̃f such that ‖x̃f‖

‖x̃0‖
= η.

To prove it let us take a point x̃0 = βx̂0 and recall that
x̃0 −→ x̃f = βx̂f obtaining ‖x̃f‖

‖x̃0‖
= β

β

‖x̂f‖
‖x̂0‖

= η.
After the construction of γmin cw and γmin ccw , we derive

the corrisponding ηcw and ηccw . The stability is insured if at
least one of these constants is less than 1.

Theorem 4: Given a Pcw ( Pccw) partition of the state
space R

2 in conic sectors, then the associated best trajectory
γmin cw (γmin ccw) is asymptotically stable iff the correspond-
ing constant ηcw (ηccw ) is less than 1.

Proof: This theorem can be proved in a manner similar
to Theorem 1 of [1]. However, a different proof can be found
by rearranging the proof given in [2].

3With the notation x −→ y we mean that the state x reaches the state y

living the switching system evolving according to a switching law consistent
with the partition.
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As a final result of inspection of confined and not confined
motions, it follows:

Theorem 5: The switching system (1) is asymptotically
stabilizable iff at least one of the following three conditions
holds:

1) Dconv �= ∅ ∧ ∃ an admissible covering of S = R
2 \

Dconv;
2) γmin cw is asymptotically stable;
3) γmin ccw is asymptotically stable.

V. EXAMPLES

In this section we show three examples: in Example 1
we consider a system with stable confined motion due to
spontaneous confinement, in Example 2 we have a system
with stable confined motion by virtue of pseudosliding, in
Example 3 we have a system with stable not confined motion.

Example 1: Consider a switching system made up of the
following unstable homogeneous subsystems of degree 4:

f1 =

[
−4x3

1x2 + x4
2

−(x2
1 − x2

2)
2

]
, f2 =

[
(x2

1 + 4x2
2)

2√
(x8

1 + 3x4
1x

4
2 + 7x8

2)

]
,

f3 =

[
− (x1 + x2)

2
(3x1 + 2x2)

2

x4
1

]
.

Solving the equality associated to (3) and letting w1 =[
1 0.4168

]T
, w2 =

[
1 1.491

]T
, w3 =

[
−1 0.4117

]T
,

we have that the vector field f1 is ri for every x ∈ αw1 ∪
βw2 ∪ γw3, with α, β, γ > 0. The region of spontaneous
convergence is:

Dspont =
{
x ∈ R

2 : x = αw1 + βw3 with α, β > 0
}
−→ f1.

Letting v1 =
[
1 0.2027

]T
, v2 =

[
−1 −0.0585

]T
, v3 =[

−1 −1.1578
]T

, an admissible covering is:

x = αv1 + βw1 with α,β > 0 −→ f3

x = αv1 + βv3 with α,β > 0 −→ f2

x = αv2 + βv3 with α,β > 0 −→ f3

x = αv2 + βw3 with α,β > 0 −→ f2

Choosing as initial state the point x0 =
[
−5 −1

]T
, the

evolution of the system is given in Fig. 3.
Example 2: Consider a switching system made up of the

following unstable homogeneous subsystems of degree 3:

f1 =

[
x5

1

x2

1
+x2

2

−x2
1x2 − x3

2

]
, f2 =

[√
(x6

1 + 3x6
2)

x1x
2
2

]
,

f3 =

[
(x1 + x2)

3

−x3
1

]
.

Solving inequality (3) we have that the vector field f3 is cw
for every x ∈ R

2, the vector field f2 is cw in the I◦ and II◦

quadrant and ccw in the III◦ and IV◦ quadrant. The vector
field f1 is cw in the I◦ and III◦ quadrant and ccw in the II◦

and IV◦ quadrant. Solving inequality (5) we ascertain the
presence of pseudosliding and we have:

Dpseudo =
{
x ∈ R

2 : x1 < 0
}

.

−10 −5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1

x 2

f
2

f
2

f
3

f
3f

1

D
spont

x
0

Fig. 3. Convergent spontaneous motion.

Fig. 4. Convergent pseudosliding (the Dpseudo domain is the left half
plane).

Arbitrarily choosing a conic sector Ω ⊂ Dpseudo and x0 =[
90 −120

]
/∈ Dpseudo as starting point, the reachability

is obtained by means of f3. The evolution of the switching
system is shown in Fig. 4.

Note that, the time spent by f1 and f2 to cross the sector
Ω decreases approaching the origin, but it is zero only in the
origin. Hence the no Zeno phenomena assumption is still
satisfied.

Example 3: Consider a switching system made up of the
following unstable homogeneous subsystems of degree 2:

f1 =

[
−x2

1 + x1x2 − x2
2

x2
1

]
, f2 =

[
(x1 + x2)

2

−3x2
1

]
,

f3 =

[
−x1x2 + 1

4
x2

2

x2
1 + 1

2
x1x2

]
.

Solving inequality (3) and letting v1 =
[
−0.8815 0.4720

]T

, v2 =
[
−0.4252 0.9051

]T
and v3 =
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Fig. 5. Convergent not confined motion.

[
0.1994 0.9799

]T
we have:

f1 is ccw ∀x > αv1, cw elsewhere

f2 is ccw ∀x > αv2, cw elsewhere

f3 is ccw ∀x > αv3, cw elsewhere

for α ∈ R.4 Solving the inequalities (4) we can build the
following Pccw partition5:

Pccw :

⎧⎨
⎩

x = αv2 − βv1 with α,β > 0 −→ f1

x = αv2 − βv3 with α,β > 0 −→ f2

x = −αv1 − βv3 with α,β > 0 −→ f3

.

The evolution of the switching system is stable (see Fig. 5).

VI. CONCLUSIONS

Necessary and sufficient conditions for stabilizability of a
class of non-linear planar systems are presented. The proce-
dure consists in the division between confined motions and
those which are not confined. The first type of convergence
is connected to the existence of spontaneous or induced
confined motions. The second type involves the study of two
particular monotonic (in direction of rotation) trajectories.
With this analysis we can infer the stabilizability of the whole
system.
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