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Abstract— Modern modeling tools often give descriptor or
DAE models, i.e., models consisting of a mixture of differential
and algebraic relationships. The introduction of stochastic
signals into such models in connection with filtering problems
raises several questions of well-posedness. The main problem
is that the system equations may contain hidden relationships
affecting variables defined as white noise. The result might
be that certain physical variables get infinite variance or
contain formal differentiations of white noise. The paper gives
conditions for well-posedness in terms of certain subspaces
defined by the system matrices.

I. INTRODUCTION

The increased use of modeling in many fields of en-

gineering has lead to development of new techniques to

make modeling of complex dynamic systems easier. An

increased use of model libraries and so-called object-oriented

modeling is one result of this trend. The output from these

modeling tools is usually not a state-space model but a model

containing a mixture of equations, some of which contain

variables differentiated with respect to time. These models

are usually called descriptor models or DAE (differential-

algebraic equation) models. There is a vast recent literature

about these models but we have not found a complete

treatment of continuous-time filtering problems, in particular

concerning the well-posedness of DAE models with white

noise inputs.

The problem centers around the fact that careless intro-

duction of noise in DAE models might lead to derivatives of

the noise appearing. The question whether these derivatives

are well-defined has to some extent been discussed by other

authors. In [1], it is guaranteed that the noise is not differen-

tiated by assuming that the system is index 1 (see, e.g., [2]).

The assumption that the system is index 1 is more restrictive

than is necessary, and rules out some applications such as

many mechanics systems. This assumption will not be made

in this paper, instead an exact condition for when the model

is well-defined is derived. [1] also notes that some internal

variables actually may be generalized stochastic processes,

that is equal to a white noise process. [3] makes the same

assumption as [1], but also treats a class of nonlinear DAE.

In [4] index 1 is assumed and a Kalman filter is con-

structed. However, in the estimation procedure the authors

seem to overlook the fact that some variables may have
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infinite variance. In [5], the original system specification

may actually specify derivatives of white noise, but a con-

troller is designed that removes any derivatives. In [6] the

restrictive assumption that R ([
F G

]) ⊆ R(E) guarantees

that no derivatives appear (see the next section for notation),

although this is not stated explicitly. Finally, in [7] nonlinear

semi-explicit DAE (see, e.g., [2]) are discussed. Here well-

posedness is guaranteed by only adding noise to the state-

space part of the system. This is a sufficient, but not a

necessary condition to avoid differentiated noise.

In [8] a transformation to a standard form is used to

study when the filter problem is well-defined. Since the

transformation matrices are involved it is fairly difficult to

see the conditions in terms of the original matrices. We will

therefore formulate our results in terms of certain subspaces

instead.

II. PROBLEM FORMULATION AND BASIC STRUCTURE

Consider a physical system described by a DAE model

Eż = Fz + Gu + Jw (1a)

y = Hz + e. (1b)

Here z is an n-vector of physical variables, y an ny-vector

of measurements, u an nu-vector of inputs, w an nw-vector

of process noise variables and e a vector of measurement

noise variables. E and F are square matrices while G, H
and J are rectangular matrices of appropriate dimensions.

With w and e modeled as stochastic processes, we call (1)

a stochastic differential-algebraic equation, SDAE.

It is a feature of the modeling techniques mentioned in the

introduction that they often introduce a number of variables

that only play a role in intermediate calculations and are of

no interest in themselves. Therefore we introduce the variable

z̄ where all (linear combinations of) components of z that

are of interest are collected,

z̄ = Mz

for some rectangular matrix M .

The following assumption is standard in the theory of

descriptor systems and guarantees the existence of a unique

solution in the deterministic case (provided appropriate initial

conditions are specified).

Assumption 1: There exists a scalar λ such that λE + F
is nonsingular.
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Now choose a λ such that λE + F is nonsingular and

define the matrix Ē according to

Ē = (λE + F )−1E (2)

Let V and N denote the range and null spaces of a matrix.

Then

V(Ē) ⊃ V(Ē2) ⊃ · · · (3)

N (Ē) ⊂ N (Ē2) ⊂ · · · (4)

Since all subspaces are finite-dimensional the inclusions

must become equalities above some power of Ē. Since

dim
(N (Ēj)

)
+ dim

(V(Ēj)
)

= n for every j, this occurs

for the same power in both sequences. We can then write

V(Ē) ⊃ V(Ē2) ⊃ · · · ⊃ V(Ēk) = V(Ēk+1) = · · · (5)

N (Ē) ⊂ N (Ē2) ⊂ · · · ⊂ N (Ēk) = N (Ēk+1) = · · · (6)

for some integer k. We assume that k is taken as the smallest

integer for which (5), (6) holds. It is then called the index
of the system (1). We introduce

Xss = V(Ēk), Xav = N (Ēk) (7)

and define

ns = dim(Xss), na = dim(Xav) (8)

The following properties are easily shown.

Proposition 1: The spaces Xss and Xav have the proper-

ties

(i) Xss, Xav are invariant under Ē
(ii) Xss ∩ Xav = {0}

(iii) Xss, Xav together span R
n

(iv) Ē is nonsingular when restricted to Xss

(v) Ē is nilpotent when restricted to Xav

(vi) Xss, Xav are independent of the choice of λ in (2) (as

long as the inverse is defined)

Proof: Properties (i)–(v) follow directly from the rela-

tions

Xss = V(Ēk) = V(Ēk+1), Xav = N (Ēk) = N (Ēk+1)

Property (vi) can be seen by defining

Ēσ =
(
(σ + λ)E + F

)−1
E.

It follows that

Ēσ =
(
(λE + F )(σĒ + I)

)−1
E = (σĒ + I)−1Ē.

It is easy to see that

(σĒ + I)−1Ē = Ē(σĒ + I)−1

so that for any positive integer j

Ēj
σ = (σĒ + I)−jĒj = Ēj(σĒ + I)−j .

Since the range space of a matrix is not affected by multipli-

cation with a nonsingular matrix from the right, Xss remains

the same if it is computed from Ēk
σ or from Ēk. Since the

null space remains the same when multiplying from the left

by a nonsingular matrix a similar statement holds for Xav.

It follows that we can think of Xss as being the state-space

of the model and of Xav as being a space of auxiliary “non-

dynamic” variables.

To make the division into Xss and Xav explicit it is

convenient to make a state transformation.

Proposition 2: Let T1 and T2 be matrices whose columns

span Xss and Xav respectively (and consequently together

span R
n). Then the transformation

z =
(
T1 T2

)︸ ︷︷ ︸
T

(
xs

xa

)
︸ ︷︷ ︸

x

(9)

gives a system description of the form

Esẋs = (I − λEs)xs + Gsu + Jsw (10a)

Nẋa = (I − λN)xa + Gau + Jaw (10b)

where (
Es 0
0 N

)
= T−1ĒT (11a)(

Js

Ja

)
= T−1(λE + F )−1J (11b)(

Gs

Ga

)
= T−1(λE + F )−1G (11c)

The matrix Es is invertible while N is nilpotent, with k as

its index of nilpotency.

Proof: Adding λEz to each side of the first equation

in (1) and then multiplying from the left with (λE + F )−1

gives

Ē(ż + λz) = z + (λE + F )−1(Gu + Jw)

Substituting z = Tx and multiplying from the left with T−1

gives

T−1ĒT (ẋ + λx) = x + T−1(λE + F )−1(Gu + Jw)

From Proposition 1 it follows that T−1ĒT has the block

structure

T−1ĒT =
(

Es 0
0 N

)
while the nonsingularity of Es and nilpotency of N follow

from Proposition 1 (iv) and (v) respectively.

Proposition 3: The auxiliary variables xa can be solved

from (10b) to give

xa = −
(

I +
( d

dt
+ λ

)
N + · · ·

· · · +
( d

dt
+ λ

)k−1

Nk−1

)(
Gau + Jaw

)
(12)

Proof: Writing (10b) as

xa = N
( d

dt
+ λ

)
xa −

(
Gau + Jaw

)
(13)
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and differentiating successively gives

N
( d

dt
+λ

)
xa = N2

( d

dt
+λ

)2

xa−N
( d

dt
+λ

)(
Gau+Jaw

)
...

Nk−1
( d

dt
+ λ

)
xa = −Nk−1

( d

dt
+ λ

)k−1(
Gau + Jaw

)
where we have used Nk = 0 in the last equation. A

successive substitution from these equations into (13) then

gives (12).

III. WELL-POSEDNESS OF THE FILTERING PROBLEM

We now consider the question of well-posedness of the

solution z of (1) when w is interpreted as white noise. To

formulate the result, the concept of an oblique projection will

be defined.

Definition 1: Let B and C be spaces with B ∩ C = {0}
that together span R

n. Let the matrices B̄ and C̄ be bases

for B and C respectively. The oblique projection of a matrix

A along B on C is defined as

A/B C �
(
0 C̄

) (
B̄ C̄

)−1
A (14)

Note that the projection is independent of the choice of bases

for B and C.

This definition basically follows the definition in [9,

Section 1.4.2]. However, we here consider projections along

column spaces instead of row spaces. Also, the conditions

on the spaces B and C give a simpler definition. The more

general version in [9] is not necessary here.

Note the important properties

C̄
/

B
C = C̄ (15a)

B̄
/

B
C = 0 (15b)

of the oblique projection. They will be utilized later. The

main result can now be formulated.

Theorem 1: Consider the DAE model (1) with w regarded

as white noise. There exists a unique well defined solution

z, in the sense of linear stochastic differential equations,

with all components of z having finite variance, provided

the condition

(λE + F )−1J ∈ Xss (16)

is satisfied. If it is only required that z̄ is well defined with

finite variance, then the condition can be relaxed to[
Ēj(λE + F )−1J

]/
Xss

Xav ∈ N (M), j = 0, . . . , k − 1.
(17)

Proof: Transforming the system into the form (10), we

see that the equation for xs can be interpreted as a stochastic

differential equation

dxs = (E−1
s − λI)xsdt + E−1

s Gsudt + E−1
s Jsdw (18)

so that xs gets a well-defined solution. From Proposition 2,

equation (11b) we see that the condition (16) means that

Ja = 0 in (12). It follows that xa is a deterministic variable

and that

z = T1xs + T2xa

is well-defined with finite variance. If it is only required that

z̄ = Mz is well-defined, then it is sufficient that MT2xa is

well-defined. Equation (12) shows that this is equivalent to

MT2N
jJa = 0, j = 0, 1, . . . , k − 1.

This condition can be rewritten according to

0 = MT2N
jJa

= M
[
T1E

j
sJs + T2N

jJa ]
/
V(T1)

V(T2)

= M

[(
T1 T2

) (
Ej

s 0
0 N j

) (
Js

Ja

)]/
V(T1)

V(T2)

= M
[
Ēj(λE + F )−1J

]/
V(T1)

V(T2)

= M
[
Ēj(λE + F )−1J

]/
Xss

Xav (19)

where the relations V(T1) = Xss and V(T2) = Xav were

used in the last step. This gives the condition (17).

We can now consider the filtering problem for (1).

Theorem 2: Consider the DAE model (1) with w and e
regarded as white noises. A filter estimate of z̄ = Mz, with z
given by the DAE model (1) can be computed using standard

Kalman filter techniques, provided the conditions[
Ēj(λE + F )−1J

]/
Xss

Xav ∈ N (M), j = 0, . . . , k − 1
(20a)[

Ēj(λE + F )−1J
]/

Xss
Xav ∈ N (H), j = 1, . . . , k − 1.

(20b)

are satisfied.

Proof: In the transformed variables the measurement

equation can be written

y = Hz + e = HT1xs + HT2xa + e

Replacing xa using (12) gives

y = HT1xs − HT2

(
I +

( d

dt
+ λ

)
N + · · ·

· · · +
( d

dt
+ λ

)k−1

Nk−1

)(
Gau + Jaw

)
+ e.

In order to avoid derivatives of the white noise w in the

measurement equation we have to require that

HT2N
jJa = 0, j = 1, . . . , k − 1.

Repeating the calculation (19) gives that this is equivalent to

H
[
Ēj(λE + F )−1J

]/
Xss

Xav = 0, j = 1, . . . , k − 1

which gives the condition (20b). If this condition is satisfied,

the measurement equation becomes

y = HT1xs −
HT2

(
I + · · · +

( d

dt
+ λ

)k−1

Nk−1

)
Gau −

HT2Jaw + e. (21)

Together with the state-space description for xs (18),

dxs = (E−1
s − λI)xsdt + E−1

s Gsudt + E−1
s Jsdw, (22)
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(21) gives a well-defined filtering problem. The continuous-

time Kalman filter can thus be used to compute an estimate

of xs from (21) and (22). As in Theorem 1, the condition

(20a) ensures that MT2xa is a function of the deterministic

input u,

MT2xa = −MT2

(
I + · · · +

( d

dt
+ λ

)k−1

Nk−1

)
Gau.

The estimate of z̄ is thus given as a linear combination of

xs and the deterministic input u,

z̄ = Mz = MT1xs + MT2xa.

It can be noted that the initial value z(t0) cannot be chosen

freely, since xa is determined by the deterministic input u.

Only the part of z(t0) determined by xs, that is

[z(t0)]/Xav
Xss, (23)

can be given an arbitrary value. Any conflicting values of

z(t0) will be ignored and have no consequence for the

estimation of z(t), t > t0.

IV. AN EXAMPLE

Consider two bodies, each with unit mass, moving in one

dimension with velocities v1 and v2 and subject to external

forces w1 and w2 respectively. If the two bodies are joined

together the situation is described by the following set of

equations

v̇1 = f + w1

v̇2 = −f + w2

0 = v1 − v2

(24)

where f is the force acting between the bodies. It is typical of

the models obtained when joining components from model

libraries that too many variables are included. (In this simple

case it is of course obvious to the human modeler that this

model can be simplified to that of a body with mass 2

accelerated by w1 + w2.) In the notation of (1) we have,

with z = [v1 v2 f ]T ,

E =

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ F =

⎛
⎝0 0 1

0 0 −1
1 −1 0

⎞
⎠ J =

⎛
⎝1 0

0 1
0 0

⎞
⎠ .

With λ = 1 we get

Ē =
1
2

⎛
⎝1 1 0

1 1 0
1 −1 0

⎞
⎠

which gives k = 2 and

Xss = sp

⎧⎨
⎩

⎛
⎝1

1
0

⎞
⎠

⎫⎬
⎭ , Xav = sp

⎧⎨
⎩

⎛
⎝ 1
−1
0

⎞
⎠ ,

⎛
⎝0

0
1

⎞
⎠

⎫⎬
⎭

With

xs = x1 =
v1 + v2

2
, xa =

(
x2

x3

)
=

(
(v1 − v2)/2

f

)

the transformed system (10a), (10b) becomes

ẋ1 =
1
2
(w1 + w2)

0 = x2

ẋ2 = −x2 + x3 +
1
2
(w1 − w2)

(25)

Since

(λE + F )−1J =
1
2

⎛
⎝1 1

1 1
1 −1

⎞
⎠ �∈ Xss

it follows that not all physical variables are well defined

with finite variance. This is in agreement with the equations

above that show x3 with a white noise component. Using

the condition (17) we get that

[
Ēj(λE + F )−1J

]/
Xss

Xav =

{
1
2

(
0 0
0 0
1 −1

)
j = 0

0 j > 0.

The condition is thus satisfied as soon as the last column

of M is zero, showing that all linear combinations of v1

and v2 are well-defined with finite variance. Furthermore,

condition (20b) gives that we can have any measurement

matrix H and still get a well-defined Kalman filter problem.

This is consistent with (25), since x3 contains white noise

that is allowed in the Kalman filter measurement but not any

derivative of white noise (which would not be allowed).

V. FORMULATIONS WITHOUT CONTINUOUS-TIME WHITE

NOISE

The stochastic state-space formulations naturally contain

continuous-time “white noises”, like w and e in (1). These

are not mathematically solid objects, but the interpretations

of the equations can be made rigorous, in terms of stochastic

differential equations, like (18). See, e.g., [10]. Yet, it is

natural to be ambivalent about these signals, since they are

not physically realizable. We shall in this section give a

formulation of a SDAE-filtering problem that only explicitly

employs stochastic variables with finite variance. We shall

then investigate if it corresponds to a mathematically well-

posed problem.

A. Problem Formulation

Consider the SDAE

Eż(t) = Fz(t) + Gu(t) +
nw∑
r=1

Jrwr(t) (26a)

z(t0) = z0 (26b)

dim z(t) = n (26c)

where wr(t) is a Gaussian second order stationary process

with spectrum

Φwr (ω) (26d)

which is rational in ω with pole excess 2pr. This means that

0 < lim
ω→∞ω2prΦwr (ω) < ∞ (26e)
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The input u(t) is known for all t ∈ [0, T ]. It will also be

assumed that it is differentiable a sufficient number of times.

The condition that the input is known for every t typically

means that it is given at a finite number of sampling instants,

and its intersample behavior between these is known. (like

piecewise constant, piecewise linear, or band-limited).

An output vector is measured at sampling instants y(tk):

y(tk) = Hz(tk) + e(tk), k = 1, . . . , N (26f)

where e(tk) is a Gaussian random vector with covariance

matrix Rk, such that e(tk) and e(ts) are independent for

k �= s and also independent of all the processes wr(t).
Definition 2: The problem to estimate z̄(t) = Mz(t) from

y(tk), tk < t; u(s), s ≤ t is well posed if Hz(t) and Mz(t)
have finite variances.

We shall find that a well posed filtering problem can be

solved by the regular Kalman filter. As discussed previously,

the initial value z0 may not be chosen freely. The possibly

conflicting values in z0 will be ignored, and actually have

no consequence for the computation of z(t) for t > t0.

Of course, one approach to dealing with this problem

would be to realize the stochastic processes wr(t) as white

noises through linear filters in state-space form, and then

apply the results of Section III. Instead we shall here give a

result that can be directly applied to (26).

B. Main Result

Theorem 3: Consider (26). Let λ be a scalar such that

(λE + F ) is invertible. Let

Ē = (λE + F )−1E. (27)

Suppose
[
HT MT

]
has full rank. Then the estimation

problem (26) is well posed if and only if

Ēpr (λE + F )−1Jr ∈ Xss ∀r. (28a)

For general H , M , the problem is well posed if and only if

[
Ēj(λE + F )−1Jr

]/
Xss

Xav ∈ N
([

M
H

])
j = pr, pr+1, . . . , k − 1,∀r. (28b)

Here k is the index of the SDAE, defined as in (5) and pr

is defined as in (26e).

Proof: The proof uses calculations similar to those

of Theorems 1 and 2. It is possible to group H and M
together since the condition is that neither Hz(t) nor Mz(t)
contains any white noise component. (This differs from

Theorem 2 where white noise is allowed in the measurement

equation, following continuous-time Kalman filter theory.)

The conditions in (28) need only apply to Ēpr and higher

powers of Ē, since wr(t) can be differentiated pr − 1 times.

Now consider the problem to estimate z̄(t) using the

Kalman filter. First note that since the disturbances wr(t)

have rational spectra, they can be written as outputs from

linear filters driven by white noise,

żw(t) = Awzw(t) + Bwv(t) (29a)

w(t) = Cwzw(t) + Dwv(t) (29b)

where

w(t) =
(
w1(t) · · · wnw

(t)
)T

(30)

and v(t) is white noise. With

J =
(
J1 · · · Jnw

)
, (31)

(26a) and (29) can be combined to give(
E 0
0 I

) (
ż(t)
żw(t)

)
=

(
F JCw

0 Aw

) (
z(t)
zw(t)

)
+(

G
0

)
u(t) +

(
JDw

Bw

)
v(t) (32)

Using the methods described in Section II, this SDAE can

be transformed into(
z(t)
zw(t)

)
=

(
T1 T2

) (
xs(t)
xa(t)

)
(33a)

ẋs(t) = (E−1
s − λI)xs(t) + E−1

s Gsu(t) +

E−1
s Jsv(t) (33b)(

M 0
)
T2xa(t) = − (

M 0
)
T2 ×(

I + · · · +
( d

dt
+ λ

)k−1

Nk−1

)
Gau(t)

(33c)(
H 0

)
T2xa(t) = − (

H 0
)
T2 ×(

I + · · · +
( d

dt
+ λ

)k−1

Nk−1

)
Gau(t)

(33d)

provided that the estimation problem is well posed so that

Hz(t) and Mz(t) do not contain white noise components.

Together with the measurement equation

y(tk) = Hz(tk) + e(tk) =(
H 0

) (
T1 T2

) (
xs(tk)
xa(tk)

)
+ e(tk) (34)

this finally gives the state-space description

ẋs(t) = (E−1
s − λI)xs(t) + E−1

s Gsu(t) +

E−1
s Jsv(t) (35a)

y(tk) =
(
H 0

)
T1xs(tk) +

(
H 0

)
T2 ×(

I + · · · +
( d

dt
+ λ

)k−1

Nk−1

)
Gau(tk) + e(tk).

(35b)

This state-space description gives a filtering problem with

continuous-time dynamics and discrete-time measurements.

The Kalman filter for this setting provided, e.g., in [11] can

be used to estimate xs. The estimate of z̄ is then computed

from the estimate of xs and the deterministic input using

(33).
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C. Integrating sampling

It may happen that a selected output zk has infinite

instantaneous variance. This happens when condition (28)

is violated. This could be handled by integrating sampling.

This is best illustrated by an example: Let the DAE be

ż1(t) = −2z1(t) + v1(t) (36a)

0 = −z2(t) + v1(t) (36b)

y(t) = z1(t) + z2(t) + v2(t) (36c)

where vk(t) are continuous-time white noises. This is not a

well posed problem since z2 has infinite variance. A common

way to handle this would be to apply integrated sampling

to y (see e.g. [12]). This would give finite variances to the

sampled values y(tk), and it would also introduce correlation

between the “process noise” v1 and the measurement noise.

A more convenient way of dealing with this in a modeling

situation, would be to explicitly introduce a presampling, low

pass filter, to make the measured variable

z3(t) =
1

0.01p + 1
(
z1(t) + z2(t)

)
Including this new variable in the DAE gives

ż1(t) = −2z1(t) + v1(t)
ż3(t) = −100z3(t) + 100z1(t) + 100v1(t)

0 = −z2(t) + v1(t)

with the sampled measurements

y(tk) = z3(tk) + e(tk)

This is a well posed problem with no correlation between

v1(t) and e(tk).

VI. CONCLUSIONS

We have stated conditions for stochastic differential-

algebraic equations and related filtering problems to be well

defined. The conditions are formulated in terms of certain

subspaces generated by the system matrices. Since these

calculations involve rank tests, they are not straightforward

on numeric data involving roundoff errors. The task of

calculating the subspaces accurately using numerical algebra

software thus contains several topics for future research.
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