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Abstract— This paper presents a less conservative approach
to compute, with any prescribed accuracy, the H∞ guaranteed
cost of time-delay continuous-time linear time-invariant systems
subjected to polytopic uncertainties. The proposed analysis
approach is based on a branch-and-bound algorithm that
incorporates a recent LMI-based analysis formulation and
a new polytope partition strategy. In the branch-and-bound
algorithm, the upper bound function is defined as the worst case
guaranteed H∞ disturbance attenuation level computed for the
subpolytopes achieved with successive partitions of the polytope
which describes the uncertainty domain. The lower bound
function is defined as the worst case H∞ norm computed in
the polytope and subpolytope vertices. The difference between
the upper and lower bound functions converges to zero as the
initial polytope is split into smaller subpolytopes resulting in
the H∞ guaranteed cost for the whole initial polytope with
the required accuracy. It is also presented an algorithm to
implement a d−dimensional simplex subdivision technique to
be used in the branch-and-bound algorithm.

Index Terms—H∞ cost computation, time-delay, polytope-
bounded uncertainty, branch-and-bound algorithm, simplex
edgewise subdivision

I. INTRODUCTION AND MOTIVATION

The stability and performance analysis problem of linear
time-invariant systems subjected to parametric uncertainties
and time-delay had received a lot of attention in the control
community, reaching several areas, from the academic area
to the industrial area as well. Many approaches have been
proposed to deal with this problem and are available in
the literature. The recent most effective approaches have
been formulated as an optimization or a feasibility problem
described in terms of linear matrix inequality (LMI) [1]–[6].

Even though stability and performance analysis ap-
proaches based on LMI are proven to be very flexible,
they are still limited. Therefore, conservative results may be
generated.
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The main contribution of this work is to introduce a new
less conservative approach to compute the H∞ guaranteed
cost which could be used as a performance/stability analysis
tool for dynamic systems subjected to uncertainties and time-
delay according to the following representation:{

ẋ(t) = Ax(t) + Adx(t − τ) + Ew(t)
z(t) = Cx(t) + Fw(t)

(1)

where matrices A, Ad, E, C, and F belong to the polytope:

T (α) = {(A,Ad, E,C, F ) =
N∑

i=1

αi (Ai, . . . , Fi) , α ∈ Ω

}
(2)

with Ω �
{

α : αi ≥ 0 ,
∑N

i=1 αi = 1
}

, N the number of

polytope vertices, and α = [ α1 . . . αN ]T the vector that
parametrizes the polytope.

The representation by polytopic uncertainties can be ob-
tained from systems with different models for each operation
point, from non-linear systems, and also from systems with
not precisely known parameters.

The proposed approach to compute less conservative H∞

guaranteed cost for uncertain time-delay linear time-invariant
systems is based on the H∞ performance analysis presented
in [1] and on the branch-and-bound algorithm. The branch-
and-bound algorithm has been already applied in the robust
control area, e.g. as a possibility to reduce conservatism of
robust stability analysis of linear systems with real uncertain
time-invariant parameters [7], to compute the minimum norm
of a linear fractional transformation [8], to solve biaffine
matrix inequality (BMI) feasibility problems [9], and to
solve H2-norm model reduction problems [10]. In section
II, it is presented a general description of the branch-and-
bound algorithm. In sections III and IV, it is presented a
detailed implementation of the proposed branch-and-bound
algorithm where the subdivision operation will be based
on the Delaunay triangulation followed by an edgewise
subdivision of simplex.

II. THE BRANCH-AND-BOUND ALGORITHM

The following description of the branch-and-bound (BnB)
algorithm is adapted from [7]. The BnB algorithm can be
used to compute the global maximum of a function f(p) :
R

d → R, with a prescribed accuracy ε > 0, where the
domain is defined as a d-dimensional hyper-rectangle

Pinit = [p
1
, p1] × [p

2
, p2] × . . . × [p

d
, pd]
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where p
i

and pi, i = 1, . . . , d, are the extreme values of the
entries of the parameter vector p = [p1 p2 . . . pd]

T , i.e.,
pi ∈ [p

i
, pi].

For an hyper-rectangle P ⊆ Pinit, one can define

Φmax(P) � max
p∈P

f(p) (3)

The BnB algorithm calculates Φmax(Pinit) based on two
functions, Φlb(P) and Φub(P), defined over {P : P ⊆
Pinit}. These two functions must satisfy the following
conditions:

Φlb(P) ≤ Φmax(P) ≤ Φub(P) (4)

∀ ε > 0, ∃ δ > 0 such that ∀ P ⊆ Pinit,
dim(P) ≤ δ ⇒ Φub(P) − Φlb(P) ≤ ε

(5)

Condition (4) states that Φlb(P) and Φub(P) functions cal-
culate the lower and upper bounds of Φmax(P), respectively.
Condition (5) states that, as the maximum edge length of P ,
denoted by dim(P), tends to zero, the difference between
the lower and upper bounds converges to zero.

The BnB algorithm starts from the cal-
culation of Φlb(Pinit) and Φub(Pinit). If
(Φub(Pinit) − Φlb(Pinit))/Φlb(Pinit) ≤ ε, where
ε is a required relative accuracy, then the algorithm ends.
If the stop criterion is not achieved, it is necessary to
subdivide the hyper-rectangle Pinit into a set of smaller
hyper-rectangles, Pinit = P1 ∪ P2 ∪ . . . ∪ PS , and calculate
Φlb(Pi) and Φub(Pi), i = 1, . . . , S. Therefore

max
1≤i≤S

Φlb(Pi) ≤ Φmax(Pinit) ≤ max
1≤i≤S

Φub(Pi)

supplies the new bounds for Φmax(Pinit). If the relative
difference between the new bounds is smaller or equal
to ε, then the algorithm ends, else the partition of Pinit

is refined again and new bounds are computed. The BnB
algorithm converges, since dim(Pi), i = 1, . . . , S, tends
to zero and the hyper-rectangle tends to a point, causing
Φub(Pinit) − Φlb(Pinit) to tend to zero.

The version of the BnB algorithm used, adapted from [7],
is stated as follows:

Algorithm Branch-and-Bound
k ← 0;
L0 ← {Pinit};
L0 ← Φlb(Pinit);
U0 ← Φub(Pinit);
while (Uk − Lk)/Lk > ε

select P ∈ Lk such that Φub(P) = Uk;
split P in P1, . . . ,PS

Lk+1 ← {Lk − P} ∪ {P1, . . . ,PS};
Lk+1 ← maxP∈Lk+1

Φlb(P);
Uk+1 ← maxP∈Lk+1

Φub(P);
eliminate all P ∈ Lk+1 such that

Φub(P) < Lk+1;
k ← k + 1;

end while
end algorithm

III. THE LESS CONSERVATIVE APPROACH TO COMPUTE

THE H∞ DISTURBANCE ATTENUATION LEVEL

In order to apply the BnB algorithm into a less conserva-
tive approach to compute the H∞ guaranteed cost, γa, with a
required accuracy, it is necessary to find out a lower bound
function Φlb(P) and a upper bound function Φub(P) that
satisfy conditions (4) and (5).

As the guaranteed cost over the polytope is never lower
than the norm in a point of the polytope and as the guaranteed
cost tends to the value of the norm as the polytope tends to
a point (maximum polytope edge tends to zero), the H∞

guaranteed cost and the worst case H∞ norm are qualified
functions to be employed as upper and lower bound functions
respectively. The worst case H∞ norm is computed in a finite
number of polytope points, v, initialized as the polytope
vertices, with N ≤ v < ∞. As the initial polytope is
subdivided in smaller polytopes, new vertices are generated
and included in the set which is computed the worst case
H∞ norm. Since only the polytope with the worst case H∞

guaranteed cost is subdivided at each iteration, the lower
bound function works as a smart grid technique where the
refinements are performed only where it is necessary.

In this way, to implement the proposed analysis approach,
it is necessary formulations to compute the H∞ guaranteed
cost of a uncertain time-delay linear time-invariant system,
with polytope-bounded uncertainty, and the H∞ norm of
a precisely known time-delay linear system. Based on the
results presented in [1], it is possible to determine the
lower and upper functions by means of the the following
optimization problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ =
√

min
λ,X,H,Q,ZeV

λ

subject to:⎡
⎢⎢⎢⎣

Υi XAdi − V XEi τ̄AT
i Z CT

i

∗ −Q 0 τ̄AT
diZ 0

∗ ∗ −λI τ̄ET
i Z FT

i

∗ ∗ ∗ −τ̄Z 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎦ ≺ 0

[
H V
∗ Z

]
� 0, ∀i = 1, . . . , N

Υi � XAi + AT
i X + τ̄H + V + V T + Q

(6)

where τ̄ is the upper bound on state-delay and γ is the H∞

norm in the case of a precisely known system (N = 1), or
the H∞ guaranteed cost in the case of a uncertain system
(N > 1).

The partition of Pinit in the BnB algorithm can be
implemented by several different techniques. In this paper,
the polytope is initially decompose in a set of simplices
applying the Delaunay triangulation. The Delaunay trian-
gulation subdivides a 2-dimensional region into triangles
(tetrahedra in 3-dimensional or simplices in d-dimensional
spaces). The Delaunay triangulation maximizes the minimal
angle between edges for all possible triangulations of a set of
points. A simplex achieved with the Delaunay triangulation
determines a hypersphere that does not contain any other
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(a) Delaunay triangulation.

(b) General triangulation.

Fig. 1. Triangulations of 5 points in the 2-d space.

point of the set of points, unless the d + 1 vertices of the
simplex (see Fig. 1). There is a straight relation between
the Delaunay triangulation of a set of points and the convex
hull of the lifting transformation [11] of these points in
one higher dimension. Therefore, algorithms to compute the
convex hull in (d+1)-dimensional spaces can be used to
compute the Delaunay triangulation in d-dimensional spaces.
This is done in the MATLAB� function delaunayn(·) that
is based on the Quickhull algorithm [12].

After the initial triangulation of Pinit, succeeding re-
finements will be accomplished by a simplex edgewise
subdivision technique [13]. Subdivisions are obtained by the
introduction of new points over the edges of the simplex
P which fulfills the condition Φub(P) = Uk. These new
points supply the conditions to subdivide P into 2d new
simplices. The 2d edgewise subdivision of a triangle and a
tetrahedron are shown in Fig. 2, where Pij � (Pi + Pj)/2.
There are many advantages in applying the simplex edgewise
subdivision [13]. Two of them have special importance to the
considered application. First, all simplices achieved with the
subdivision have the same volume, which guarantees that the
volume tends to zero with successive subdivisions. Second,
the number of congruence classes of simplices that results
from successive refinements are limited to d!/2, which is
the optimum value for simplex subdivision [13], [14]. This
feature means that this subdivision technique avoids to create
degenerated simplices, i.e., simplices with too small angles
between edges. This property operates in favor of the branch-
and-bound algorithm convergence. Notice that, differently
from other Engineering applications, such as finite elements,
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Fig. 2. Triangle and tetrahedron partitions using an edgewise subdivision.

there is no concern in guaranteeing the division consistency
by not using simplex vertices over the edge of another one.
The proposed algorithm to implement a simplex edgewise
subdivision will be introduced in the next section.

The advantage provided by the combination of Delaunay
triangulation and simplex subdivision is that it allows the
proposed analysis approach be employed with polytopes
of general shape not limited to hyper-rectangles. Another
advantage of dealing with simplices is that a simplex is
the polytope with lower number of vertices. This feature is
useful to reduce the computational time to compute the H∞

guaranteed cost with formulation (6).

IV. SIMPLEX EDGEWISE SUBDIVISION

The algorithm proposed on this section implements an
edgewise subdivision of a d-dimensional simplex into kd

simplices, being inspired by the color scheme concept pre-
sented in [13]. Much of the following notation and terminol-
ogy is from [13]. Consider a d-simplex σ defined as a d + 1
points sequence, P0, P1, . . . , Pd, which are independent in
R

d. Consider the notation

Pχ1χ2...χk
= (Pχ1

+ Pχ2
+ . . . + Pχk

)/k (7)

with χi ∈ {0, 1, . . . , d}, i = 1, . . . , k.
The edgewise subdivision of σ into kd simplices will be

obtained from the simplex vertices P0, P1, . . . , Pd and from
new points Pχ1χ2...χk

, as defined in (7). The points that
define each new simplex will be obtained from a matrix M ∈
N

k×(d+1), denominated color scheme, which entries are
integer numbers in the set {0, 1, . . . , d}, denominated colors,
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which represent the indices of the vertices P0, P1, . . . , Pd

[13]. The i-th column of M will define the i-th point
Pχ0,iχ1,i...χk−1,i

of the new simplex. In order to improve the
readability of the algorithm that will be proposed, the lines
of M are numbered from 0 instead of from 1 as in [13]. The
main characteristics of the color scheme are that its elements
appear in a non-decreasing order when they are read as text:

χ0,0 ≤ χ0,1 ≤ . . . ≤ χ0,d ≤ χ1,0 ≤ . . . ≤ χk−1,d

and the i-th column differs from the (i-1)th column by an
unitary increment in only one entry.

The problem treated here is how to obtain the kd color
schemes to generate the complete simplex subdivision. In
this section, it is proposed a read-to-implement algorithm to
accomplish the task of automatically generate all the color
schemes. Consider χn

i,j the entry of the i-th row and j-th
column of the n-th color scheme, n = 0, . . . , kd − 1. In
the proposed algorithm, the n-th color scheme, Mn, will be
created line by line starting from χn

0,0 = 0. In order to know
if the next element of the matrix will be kept or will be
incremented by one, it is necessary to represent the index n
of Mn in a k based numeric system:

n = xd−1 × kd−1 + xd−2 × kd−2 + . . . + x0 × k0 (8)

The values of the digits xd−i, i = 1, 2, . . . , d, will deter-
mine which entry of the (i-1)th column will be incremented
by one to generate the i-th column. When finishing a row, the
next row starts with the last color of the previous row, that
is, χn

i,0 = χn
i−1,d. The described procedure is implemented

by the following proposed algorithm:

Algorithm Color Scheme
for n = 0, 1, . . . , kd − 1 do

xd−1 . . . x0 ← conversion of n to base k;
color ← 0;
for i = 0, 1, . . . , k − 1 do

χn
i,0 ← color;

for j = 1, . . . , d do
if xd−j = i then color ← color + 1;
χn

i,j ← color;
end

end
end

end

Consider, for example, a tetrahedron subdivision in
kd = 23 sub-tetrahedrons. The color schemes Mn,
n = 0, . . . , 7, have k rows and d + 1 columns:

Mn =

[
χn

0,0 χn
0,1 χn

0,2 χn
0,3

χn
1,0 χn

1,1 χn
1,2 χn

1,3

]

To calculate the sub-tetrahedron with n = 5, M5, the
color change will be specified by writing 5 in base 2, i.e.,
x = 1012, which means that the first color change occur in
row 1, the second one in row 0, and the last one in row 1:

M5 =

[
0 0 � 1 1
1 � 2 2 � 3

]

P

P

P

P

P
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12

13

P
0

P
02

P
01

Fig. 3. Sub-tetrahedron generated by a tetrahedron partition in 23 parts.

This color scheme shows that the sub-tetrahedron is de-
fined by the set of points {P01, P02, P12, P13} as shown in
Fig. 3, where point Pχ0,iχ1,i

is calculated by (7).
The abacus presented in [13, Fig. 3], dealing with a 37

subdivision, can be generated by the proposed algorithm
considering that 137110 = 1 × 36 + 2 × 35 + 1 × 34 + 2 ×
33 + 2 × 32 + 1 × 31 + 0 × 30 ≡ 12122103:

M1371 =

⎡
⎣ 0 0 0 0 0 0 0 1

1 2 2 3 3 3 4 4
4 4 5 5 6 7 7 7

⎤
⎦

V. ILLUSTRATIVE EXAMPLE

Consider the uncertain continuous-time linear time-
invariant system subjected to a constant time-delay in the
state vector:

ẋ(t) = Ax(t) + Adx(t − τ) + Bu(t) + Ew(t)
z(t) = Cx(t)

(9)

with matrices

A =

[
α 0
0 1 + α

]
, Ad =

[
−1 + β −1

0 −0.9 + β

]

B =

[
0
1

]
, E =

[
1
1

]
, C = [ 0 1 ]

|α| ≤ 0.2, |β| ≤ 0.2

This system has been widely referenced in the literature
[1]–[5], [15].

Considering the problem of obtaining a state feedback
controller, K, that stabilizes and guarantees the lowest H∞

disturbance attenuation level, for the condition of maximum
admissible time-delay size, one can obtain, through synthesis
theorems proposed in [1], the controller

K = [−17.626 −58.668 ]

which guarantees quadratic stability for the system (9), sub-
jected to time-delays not greater than τ̄ = 1.1s and minimum
H∞ disturbance attenuation level of γ = 21.03. Using this
controller on the closed loop system, one can assure, with
the application of the H∞ performance analysis technique
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Fig. 4. Evolution of Φlb(P) and Φub(P) on the exact calculus of the
assured H∞ disturbance attenuation level.

described in the works [1] or [2], the H∞ guaranteed cost
level of γ = 20.42.

Although the analysis and synthesis techniques, introduced
in [1] and [2], allow to attain good performance results for
this kind of problem, a certain degree of conservatism still
exists on the solutions.

Applying the BnB algorithm to compute the actual H∞

guaranteed cost disturbance attenuation level, γa, considering
the stop criterion ε = 0.001, it is possible to obtain the
convergence of the lower bound function Φlb(P) and upper
bound function Φub(P) to 8.6900 and 8.6965, respectively,
after 19 iterations and 32.781s of processing time (Pentium 4
2.8GHz, 512MB computer). Therefore, it can be concluded
that γa = 8.6965 is the actual H∞ guaranteed cost valid for
the whole uncertainty domain of system (9).

Fig. 4 shows the lower and upper bound functions evo-
lution where one can observe how the H∞ guaranteed cost
computation is gradually improved. Fig. 5 shows the partition
of the uncertain space, after 19 iterations. In this case, it is
more efficient to parametrize the uncertain domain by the
uncertain parameters. The first partition, performed by the
delaunayn(·) function, split the rectangle in two triangles.
After that, the triangle with worst case guaranteed cost is
subdivided in four triangles based on the edgewise simplex
subdivision technique. Fig. 6 shows the surface of the H∞

disturbance attenuation level computed for the uncertain
parameters varying between its limits. One can notice that
the actual H∞ cost never exceeds the achieved maximum
value γa = 8.6965.

To illustrate the usefulness and flexibility of the proposed
analysis approach, it will be considered different uncertain
specifications in spite of the fact that the controller was
not designed considering then. First, instead of polytope-
bounded uncertainty, consider norm-bounded uncertainty:
α2+β2 ≤ 1. To apply the proposed approach, it is considered
the norm- to polytope-bounded approximation presented in

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
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−0.15
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0.2

α
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Fig. 5. Partition of Pinit after 19 iterations.
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Fig. 6. Values of the level γ of H∞ disturbance attenuation, calculated
for α and β varying within their extreme values.

[16]. In [16], the 2-dimensional norm-bound space (disk) is
approximated by the polytope defined by the following N
vertices:[

αi

βi

]
=

[
cos(2πi/N)
sin(2πi/N)

]
, i = 1, . . . , N. (10)

Fig. 7 shows the partition of Pinit after 95 iterations and
150.969s of processing time, in the case of norm-bounded
uncertainty approximation with N = 8 in eq. (10). It is
achieved the guaranteed cost of 7.4665. This example proves
the capability of the proposed approach to be applied for
polytope of any shape.

Finally, consider that the uncertain parameters are in the
ranges: |α| ≤ 0.25, |β| ≤ 0.25. In this case, the H∞ per-
formance analysis technique leads to an infeasible problem
being incapable to compute the guaranteed cost as expect,
since the control gain had not been designed to this larger
uncertain parameters. The proposed analysis approach results
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Fig. 7. Partition of Pinit after 95 iterations in the case of norm-bounded
uncertainty.
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Fig. 8. Evolution of Φlb(P) and Φub(P) on the exact calculus of the
assured H∞ disturbance attenuation level.

in the convergence of the lower bound function Φlb(P)
and upper bound function Φub(P) to 10.3644 and 10.3721,
respectively, for ε = 0.001, after 21 iterations and 35.172s
of processing time (see Fig. 8). Only after two partitions
of the uncertain space, the LMI-based analysis formulation
becomes feasible.

VI. CONCLUSION

In this paper, it is proposed a new approach to compute the
H∞ disturbance attenuation level of continuous-time linear
time-invariant systems subjected to polytopic uncertainties
and time-delay. The proposed approach is based on a com-
bination of the branch-and-bound algorithm and an up-to-
date LMI-based formulation that allows to compute the H∞

guaranteed cost with a prescribed accuracy. When dealing
with systems which have only few uncertain parameters, the
algorithm efficiently converges to the value of the cost with
the required accuracy. For a greater number of uncertain

parameters and/or greater sensitivity of the model to the
variation of parameters, it becomes necessary to consider
the computational effort involved. Even in these cases in
which convergence is slower, the algorithm proposed still
should be considered since it provides accurate results under
situations in which LMI-based formulations alone are not
feasible and when they are, they can produce results too
conservative. Besides, it is presented an efficient and simple
algorithm to subdivide a d−simplex in kd simplices that
can be used, together with the Delaunay triangulation, to
implement the partition operation in the branch-and-bound
algorithm, which is frequently used in the robust control
area. The methodology proposed can be easily extended to
the discrete-time case.
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