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Abstract— This paper deals with the problem of synthesizing
optimal impulse controls in linear systems through appropri-
ate feedback strategies. Solutions are given within an ideal
scheme involving closed-loop delta-function controls, as well as
through a “realistic” approximations with delta-type sequences
of “ordinary” functions. The solution ia presented through a
dynamic programming scheme which indicates related HJB-
type variational inequalities for this problem.

I. INTRODUCTION

Solving the problem of control synthesis is one of the main
topics in control theory. This may be done within various
classes of feedback controls specified in advance. Thus, in
the classical theory with hard bounds on the controls, the
solutions may turn to be of the “bang-bang” type, so that
the synthesized system is described by differential equations
with discontinuous right-hand side [1] and switching surfaces
[2]–[4].

However, in many applied problems, for example, those
related to control in aerospace through instantaneous correc-
tions, control under communication constraints or logically
controlled systems the solutions may turn to be of the
impulse type which requires the control to be of general-
ized nature, consisting of impulse “delta-functions” or their
combination with bang-bang controls or continuous controls.
Problems of such type were mostly treated as those of open-
loop control (see [4]–[7] etc.), with a well-formalized theory
of closed-loop control synthesis still pending.

The present paper indicates the possibility of a dynamic
programming approach to problems of impulse control which
yields solutions in the form of synthesizing control strategies.
The discussion is restricted to linear systems which allows
to incorporate both classical theory of distributions and
the theory of generalized (viscosity) solutions [8]–[10] to
the related variational inequalities of the Hamilton–Jacobi–
Bellman (HJB) type (see [11]).

II. THE PROBLEM

In this paper we consider a problem of minimizing a
generalized Meier–Bolza-type functional along an impulse
control system:⎧⎪⎪⎨

⎪⎪⎩
J(u(·)) = Var

[t0,t1]
U(·) + ϕ(x(t1 + 0)) → inf,

dx(t) = A(t)x(t) dt + B(t) dU(t), t ∈ [t0, t1],

x(t0 − 0) = x0.

(1)
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Here x(t) ∈ R
n is the state vector, U(·) ∈ BV ([t0, t1]; R

m)
is the generalized control, BV ([t0, t1]; R

m) is the space of
m-vector functions of bounded variation. Matrix functions
A(t) ∈ R

n×n, B(t) ∈ R
n×m are assumed continuous. The

terminal time t1 is fixed. ϕ : R
n → R ∪ {∞} is a closed

convex terminal function; its presence in the formula for
J(u(·)) allows to state the principle of optimality.

A particular choice of ϕ(x) = I(x | {x1})
1 leads to the

well-known problem of steering the controlled system from a
point x0 at time t0 to a point x1 at time t1 with the minimum
of variation of the control:⎧⎪⎪⎨

⎪⎪⎩
Var
[t0,t1]

U(·) → inf,

dx(t) = A(t)x(t) dt + B(t) dU(t), t ∈ [t0, t1],

x(t0 − 0) = x0, x(t1 + 0) = x1.

(2)

Problems of such kind have been thoroughly studied (see
[4], [5], [12]–[14]). They may be solved using methods of
functional analysis and convexity theory. The solution is then
an open-loop control. However in the present paper we are
interested in a dynamic programming solution which yields
a closed-loop control. This paper continues the research of
[15].

III. THE IDEAL SCHEME

The value function V (t0, x0) of problem (1) is the optimal
value of J(U(·)) given fixed initial position (t0, x0). An
extended notation V (t0, x0; t1, ϕ(·)) will be also used to
emphasize the dependence of the optimal value V (t0, x0)
on terminal time t1 and terminal function ϕ(·).

Notation W (t0, x0) = W (t0, x0; t1, x1) will be used for
the minimal variation of problem (2). As discussed above,
W (t0, x0; t1, x1) = V (t0, x0; t1, I( · | {x1})).

We decompose problem (1) into a pair of subproblems:
• find the optimal terminal state x1 of the trajectory, and
• find the optimal control U(·) in problem (2) under

condition x(t1 + 0) = x1.
The open-loop solution of the second subproblem is given

in [4], [16]. It is summarized in the following statements:
Statement 1: The optimal value in problem (2) may be

presented as

W (t0, x0; t1, x1) = sup
p∈Rn

〈p, x1 − X(t1, t0)x0〉

‖B′(·)X ′(t1, ·)p‖C[t0,t1]

. (3)

Here X(t, τ) is the solution to the matrix differential equa-
tion ∂X/∂t = A(t)X , X(τ, τ) = I .

1By I(x | A) we denote the indicator function of the convex set A (zero
in A and +∞ outside of A).
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Statement 2: Whenever W (t0, x0) < ∞, there exists an
optimal open-loop control U(·) of a special form

dU(t) =

n∑
i=1

hiδ(t − τi) dt, (4)

t0 � τ1 < τ2 < . . . < τn � t1, ui ∈ R
m,

Var
[t0,t1]

U(·) =

n∑
i=1

‖hi‖ = V (t0, x0).

In other words, if it is possible to steer the controlled
system from (t0, x0) to (t1, x1), then there exist controls for
which the optimal value W (t0, x0) is attained. Moreover, the
optimal value may be attained using only n (or less) jumps,
where n is the dimension of the vector x.

Now using (3) the value function of problem (1) may be
presented as

V (t0, x0) = inf
x1∈Rn

{ϕ(x1) + W (t0, x0; t1, x1)}. (5)

Lemma 1: If V (t0, x0) is finite, then there exists an
optimal vector x∗

1 such that V (t0, x0) = ϕ(x∗
1) +

W (t0, x0; t1, x
∗
1).

Proof: Denote Φ(x1) = ϕ(x1) + W (t0, x0; t1, x1).
From (3) it follows that

W (t0, x0; t1, x1) �
‖x1 − X(t1, t0)x0‖

‖B′(t)X ′(t1, ·)p1‖C[t0,t1]

,

where p1 is a unit vector collinear to x1 −X(t1, t0)x0. This
means that W (t0, x0; t1, x1) → ∞ as ‖x1‖ → ∞, and the
level set

L = {x1 | Φ(x1) � V (t0, x0) + ε} (6)

is compact. Thus the function Φ(x1) attains its minimum
value on the set L at some point x∗

1.
A combination of statement 2 and Lemma 1 yields the

following result.
Theorem 1: Whenever V (t0, x0) < ∞ there exists an

open-loop control U(·) of type (4) such that J(U(·)) =
V (t0, x0).

We further introduce a semi-norm on R
n

‖p‖[t0,t1]
= ‖B′(t)X ′(t1, ·)p‖C[t0,t1]

and define a linear subspace P[t0,t1] =
{

p
∣∣∣ ‖p‖[t0,t1]

= 0
}

.
It has a positive dimension iff the system in (1) is not
completely controllable.

For V (t0, x0) to be finite it is necessary and sufficient
that 〈p, x1 − X(t1, t0)x0〉 = 0 when ‖p‖[t0,t1]

= 0, or,
equivalently, x1 ∈ X(t1, t0)x0 + P⊥

[t0,t1]
. Since the ‖·‖[t0,t1]

is a norm on P⊥
[t0,t1]

, we may rewrite (5) as

V (t0, x0) = inf
x1∈X(t1,t0)x0+P⊥

[t0,t1]

sup
p∈B

‖·‖[t0,t1]
∩P⊥

[t0,t1]

{ϕ(x1) + 〈p, x1 − X(t1, t0)x0〉}.

and refer to the min-max theorem of [17] on changing the
order of inf and sup. This yields

V (t0, x0) = sup
p∈Rn

[
〈p,X(t1, t0)x0〉−

− ϕ∗(p) − I
(

p
∣∣∣ B‖·‖[t0,t1]

)]
, (7)

where B‖·‖[t0,t1]
is the unit ball in the introduced semi-norm,

and ϕ∗(p) is the Fenchel conjugate of ϕ(x) [18]. Thus we
have proven the following statement:

Theorem 2: The value function V (t0, x0) is convex in x
and its conjugate is given by

V ∗(t0, p) = ϕ∗(X ′(t0, t1)p)+

+ I
(

X ′(t0, t1)p
∣∣∣ B‖·‖[t0,t1]

)
. (8)

Using (8) one may prove the next result:
Theorem 3: The value function V (t, x; t1, ϕ(·)) of prob-

lem (1) satisfies the principle of optimality in the form of
the semigroup property. Namely, for each τ ∈ [t0, t1]

V (t0, x0; t1, ϕ(·)) = V (t0, x0; τ, V (τ, ·; t1, ϕ(·))).
Note that, unlike problems without impulse controls, in

the general case V (t1, x; t1, ϕ(·)) � ϕ(x), since from (8) it
follows that

V ∗(t1, p) = ϕ∗(p) + I(B(t1)p | B1).

For example, if ϕ(x) = I(x | {x1}) and B(t1) = I , then
V (t1, x; t1, ϕ(·)) = ‖x − x1‖ ≤ ϕ(x).

Theorem 4: The value function V (t, x) is the viscosity
solution [8] to the Hamilton–Jacobi–Bellman equation:

min {H1(t, x, Vt, Vx), H2(t, x, Vt, Vx)} = 0, (9)

V (t1, x) = V (t1, x; t1, ϕ(·)).

H1(t, x, ξt, ξx) = ξt + 〈ξx, A(t)x〉,

H2(t, x, ξt, ξx) = min
u∈S1

〈ξx, B(t)u〉 + 1.

Proof: First estimate the subdifferential ∂−
x V (t0, x0) in

x of the value function:

∂−
x V (t0, x0) ⊆ domV ∗(t0, ·) ⊆ X ′(t1, t0)B‖·‖[t0,t1]

⊆

X ′(t1, t0)B‖·‖[t0,t0]
= {p | ‖B′(t0)p‖ � 1}.

which gives V ′(t0, x0; 0, B(t)u) � −1 for ‖u‖ � 1. Here
V ′(t0, x0; τ, ξ) denotes the directional derivative of V (t0, x0)
in direction (τ, ξ). If V (t, x) is differentiable at (t0, x0), this
turns into H2(t0, x0, Vt, Vx) � 0.

Then setting in (5) t1 = t0 + σ, ϕ(·) = V (t0 + σ, ·) and
choosing x1 = X(t0 + σ, t0)x0, we get

V (t0, x0) � V (t0 + σ,X(t0 + σ, t0)x0) = w(σ).

Due to the principle of optimality the function w(σ) is non-
decreasing in σ, hence its right derivative exists: w′(σ+0) =
0. This yields V ′(t0, x0; 1, A(t0)x) � 0, and if V (t, x) is
differentiable at (t0, x0), it becomes H1(t0, x0, Vt, Vx) � 0.

Finally take an optimal control of the type (4). Then
either τ1 > t0 and H1 = 0, or τ1 = t0 and H2, that is,
min {H1,H2} = 0.
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Due to (9), in any position (t, x) there are two possibilities
for the control. Either H1 = 0, and the control may choose
dU(t) = 0, or H1 > 0, in which case it is necessary the
H2 = 0, and the control has a jump in direction −B′(t)Vx.
The magnitude of the jump is to be selected in such a way
that after the jump we again have H1 = 0.

However, such reasoning is not yet rigorous enough, since
it is still unclear what would a closed-loop system be under
such control. A possible way to overcome this difficulty lies
in using the extended space-time system [6], [7], [19]:⎧⎪⎨

⎪⎩
dx

ds
= A(t(s))x(s) · ut(s) + B(t(s))ux(s),

dt

ds
= ut(s).

(10)

Here s is the parameterizing variable for trajectories of x and
t, s ∈ [0, S], and the right end S is not fixed. The extended
control u(s) = (ux(s), ut(s)) ∈ R

m × R is restricted by
hard bound u(s) ∈ B1 × [0, 1]. The original impulse control
problem (1) corresponds to the following problem for system
(10):⎧⎪⎨

⎪⎩
J(u(·)) =

∫ S

0

‖ux(s)‖ ds + ϕ(x(S)) → inf,

t(0) = t0, t(S) = t1.

(11)

It is known [7] that any impulse control and its corre-
sponding state trajectory of the original system (1) may be
presented as similar elements of the extended system (10),
and that the set of trajectories of (1) is dense in the set of
trajectories of (10).

The value function of the problem (11) is the viscosity
solution to the the Hamilton–Jacobi–Bellman equation

min
ut∈[0,1]
ux∈B1

H(t, x, Vt, Vx, ut, ux) = 0, (12)

H(t, x, τ, ξ, ut, ux) =
{
[τ + 〈ξ,A(t)x〉]ut+

+ [〈ξ,B(t)ux〉 + ‖ux‖]
}

= 0,

which is equivalent to the HJB equation (9) for the impulse
control problem.

Now using (12) it is possible to define control synthesis
for (11) as the set of minimizing control vectors in (12):

U∗(t, x) =
⋃

(τ,ξ)∈∂CV

{
u

∣∣ H(t, x, τ, ξ, ut, ux) = 0
}
, (13)

Here ∂CV is the Clarke subdifferential [20] of the value
function with respect to both variables (t, x).

Since (10) describes all the trajectories of (1), the control
(13) may be regarded as a control synthesis for (1).

The closed-loop system under control (13) is a differential
inclusion:

d

ds

(
x
t

)
∈

{(
A(t)x B(t)

1 0

)
u

∣∣∣∣ u ∈ U∗(t, x)

}
. (14)

Since U∗(t, x) is an upper semicontinuous set-valued func-
tion with non-empty compact convex values (this follows
from the properties of ∂C), the solutions to (14) exist and are

extendable within the region (t, x) ∈ [t0, t1] × R
n (see [1]).

Any optimal control and the corresponding state trajectory of
(1) satisfies (14). In other words, (14) generates all possible
optimal trajectories. However, there still remains an open
question whether all trajectories of (14) reaching t = t1 are
optimal, which will be the subject of the future work.

Example 1: Consider a one-dimensional impulse control
problem of type (2):{

Var
[−1,1]

u(·) → inf, dx = B(t) dU(t), t ∈ [−1, 1],

x(−1 − 0) = x0, x(1 + 0) = 0.

We shall present the exact formulas for the value function
(5) and for the control synthesis (13) for certain choices
of B(t). To shorten the expressions we use the following
abbreviations for the control vectors u = (ux, ut): ◦ = (0, 0),
↑= (1, 0), ↓= (−1, 0), →= (0, 1).

• For B(t) = 1 − t, V (t, x) |x| /(1 − t) and

U∗(t, x) = conv

⎧⎨
⎩

{◦, ↓}, x > 0,
{◦, ↑}, x < 0,
{◦, ↓, ↑,→}, x = 0.

Since B(t) is decreasing, the control should jump to
zero as soon as possible.

• For B(t) = 1 + t, V (t, x) = |x| /2 and

U∗(t, x) = conv

⎧⎪⎪⎨
⎪⎪⎩

{◦,→}, t < 1,
{◦,→, ↓}, t = 1, x > 0,
{◦,→, ↑}, t = 1, x < 0,
{◦, ↓, ↑,→}, t = 1, x = 0.

Here B(t) is increasing and the control should wait until
the final instant of time to make a jump.

• For B(t) = 1 − t2 one has V (t, x) = |x|, t � 0 and
V (t, x) = |x| /(1 − t2), t � 0.

U∗(t, x) = conv

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{◦,→}, t < 0,
{◦,→, ↓}, t = 0, x > 0,
{◦,→, ↑}, t = 0, x < 0,
{◦, ↓, ↑,→}, t � 0, x = 0,
{◦, ↓}, t > 0, x > 0,
{◦, ↑}, t > 0, x < 0.

When t < 0, the control should wait for a jump at time
t = 0, when B(t) is at maximum. When t � 0, the
control should jump immediately, since further on B(t)
will only decrease.

IV. THE DOUBLE CONSTRAINT APPROACH

In the previous section an ideal scheme has been consid-
ered where solutions to the control problem are generalized
functions. Here we shall present a “realistic” approach in
which controls are “ordinary” bounded functions, though
their bound may be arbitrarily large or even tend to infinity.

Let us introduce an additional hard bound on the control
in (1), u(t) ∈ Bµ, and consider the corresponding problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
J(u(·)) =

∫ t1

t0

‖u(t)‖ dt + ϕ(x(t1)) → inf,

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ [t0, t1],

x(t0) = x0, ‖u(t)‖ � µ.

(15)
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Remark 1: The solution of problem (15) exists due to
the theorem of Weierstrass: the set of admissible controls
is weakly compact (since it is bounded, closed and convex
in L2([t0, t1]; R

m)), and the objective function J(u(·)) is
weakly lower semicontinuous (because it is convex and lower
semicontinuous in L2([t0, t1]; R

m)).
The value function Vµ(t0, x0) = Vµ(t0, x0; t1, ϕ(·)) of this

problem is the viscosity solution [8] to the Hamilton–Jacobi–
Bellman equation

∂Vµ

∂t
+ min

u∈µB1

{〈
∂Vµ

∂x
,A(t)x(t) + B(t)u

〉
+ ‖u‖

}
= 0

(16)
with initial condition Vµ(t1, x) = ϕ(x). Thus, except for
some degenerate cases the control values are only from Sµ∪
{0}.

The solution of (15) may be presented as an optimal value
in a finite-dimensional optimization problem:

Vµ(t, x) = sup
p∈Rn

{
〈p,X(t1, t0)x0〉−

− µ

∫ t1

t

(‖B′(τ)X ′(t1, τ)p‖ − 1)+ dτ − ϕ∗(p)
}

, (17)

and its conjugate function in x is given by

V ∗
µ (t, p) = ϕ∗(p) + µ

∫ t1

t

(‖B′(τ)X ′(t1, τ)p‖ − 1)+ dτ.

(18)
Here a+ = max {a, 0}.

Note that as µ tends to infinity, the expressions (17), (18)
turn into (7) and (8) respectively. For the case x ∈ R

1 it may
further be shown that for each position (t, x) there exists a
constant C > 0 such that

0 � V (t, x) − Vµ(t, x) = Cµ−1

The HJB equation (9) may be also formally derived through
a limit transition from (16) as µ → ∞.

The optimal feedback control strategy is the minimizer in
(16), and at points of differentiability of Vµ(t, x) it may be
written as follows:

U∗
µ(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

{0}, ‖ζ‖ < 1;
[0,−µζ], ‖ζ‖ = 1;{
−µ

ζ

‖ζ‖

}
, ‖ζ‖ > 1,

(19)

where ζ = B′(t)
∂Vµ

∂x . The strategy (19) satisfies the con-
ditions of existence and extendability of trajectories of the
closed-loop system in the form of the differential inclusion
[1]:

ẋ(t) ∈ A(t)x(t) + B(t)U∗
µ(t, x). (20)

However, in (19) it is not possible to proceed to the limit as
in (17) and (16). In particular, it is not clear what the closed-
loop system for the problem (1) will look like. Another
problem is that if the closed-loop (20) were implemented
using some discretization technique (e.g. Euler’ scheme with
time step σ), one should choose σ = O(µ−1) in order
to attain admissible approximation accuracy, which may be

unfeasible for large values of µ. To avoid this difficulties,
we introduce the following definition of control synthesis
for this problem.

Definition 1: The pair of functions U =
{u(t, x;µ), θ(t, x;µ)} (“magnitude” and “duration”),
such that

u(t, x;µ) ∈ S1 ∪ {0}, u(t, x;µ) →
µ→∞

u∞(t, x),

θ(t, x;µ) � 0, µθ(t, x;µ) →
µ→∞

m∞(t, x),

is called the feedback control strategy for (1).
The components u and θ of such feedback strategy resem-

ble the components ux and ut in the ideal feedback control
(13). The component u(t, x) is the direction of the control
impulse which is issued on interval [t, t + θ(t, x)]. Note that
as µ → ∞, θ → 0 and in the limit one has a delta-function
as control.

Definition 2: Fix a control strategy U, number µ > 0 and
a partition t0 = τ0 < τ1 < . . . < τs = t1 of interval [t0, t1].
An approximating motion of system (1) is the solution to the
differential equation

τ∗
i = τi ∧ θ(τi−1, x∆(τi−1);µ),

ẋ∆(τ) = µB(t)u(τi−1, x∆(τi−1);µ), τi−1 < τ < τ∗
i ,

x∆(τi) = x∆(τ∗
i ).

Number σ = max {τi − τi−1} is the diameter of the parti-
tion.

Definition 3: A constructive motion of system (1) under
feedback control U is a piecewise continuous function x(t),
which is the pointwise limit of approximating motions x∆(t)
as µ → ∞ and σ → 0.

Suppose that current position of (1) is (t̄, x̄), and from
(9) it follows that control has a jump h̄δ(t − t̄). Then the
corresponding feedback strategy values ū = u(t̄, x̄;µ), θ̄ =
θ(t̄, x̄;µ) are to be chosen in such a way that the following
equality would hold:

B(t)h̄ = µ

[∫ t̄+θ̄

t̄

B(t) dt

]
ū.

In the limit this yields

u(t̄, x̄;µ) =
µ→∞

h̄∥∥h̄
∥∥ , µθ(t̄, x̄;µ) =

µ→∞

∥∥h̄
∥∥.

That is, an impulse h̄δ(t− t̄) is (approximately) replaced by
a platform of magnitude µ, with direction h̄ and duration
µ−1

∥∥h̄
∥∥.

V. THE TWO-DIMENSIONAL CASE

In this section special case of (2) is studied, namely the
two-dimensional stationary system with a scalar control:⎧⎪⎨

⎪⎩
dx(t) = Ax(t) dt + b dU(t), t ∈ [t0, t1],

x(t0 − 0) = x0, x(t1 + 0) = x1,

x(t) ∈ R
2, b ∈ R

2, U(t) ∈ R
1.

(21)

For such systems the time-optimal and fuel-optimal control
problems are considered. It is possible to construct an explicit

8218



form of optimal control and to study the so-called IG
(Impulse-Generating) surfaces (the analogues of switching
surfaces in bang-bang control) on which optimal control
has a jump and controlled trajectory is discontinuous. These
results are based on the geometry of reachability sets and on
the related theorem on impulse control structure.

The following theorem shows the structure of forward and
backward reachability sets for the controlled system (21):

Theorem 5: Let Xµ[t; t0,X0] be the reachability set for
system (21) and Wµ[t; t1,X1] be the backward reachability
set for this system under the condition Var[t0,t1] U(·) � µ.
Then these sets may be presented in the following form:

Xµ[t; t0,X0] = eA(t−t0)X0 + µ conv
⋃

τ∈[t0,t]

eA(t−τ)[−b, b],

Wµ[t; t1,X1] = eA(t−t1)X1 + µ conv
⋃

τ∈[t,t1]

eA(t−τ)[−b, b].

Consider x0 ∈ Wµ[t0; t1, {x1}]. Then, due to the state-
ment 4 there exists an impulse control of type (4) with at
most two impulses, i.e. for some s ∈ [t0, t1)

U(t) = h1χ(t − s) + h2χ(t − t1), h1, h2 ∈ R
1, (22)

which translates system (21) from the position (t0 − 0, x0)
to the position (t1 + 0, x1), and

Var
[t0,t1]

U(·) =
2∑

i=1

|hi| � µ.

Consider the time-optimal control problem for system
(21), looking for t1 − t0 → min. Without any loss of
generality one may fix x1 = 0. If it is possible to steer
this system from the state x0 to the origin, it is also possible
to do this only with two impulses. Thus the optimal control
can be presented as in (22).

We will study a special case when s = t0, i.e. when the
optimal control has an impulse at the starting time. The set
of such states x0 will be referred to as the IG-set Jt[µ]. It
is convenient to represent Jt[µ] as a union of sets of equal
impulses {r(h1, h2)}. By definition, if x0 ∈ r(h1, h2), then
the optimal control from x0 to the origin has impulses h1 at
the starting instant of time and h2 at the final instant. So that
if T0(x

0) is the optimal time to steer the system (21) from
the state x0 to the origin, then the set of equal impulses is

r(h1, h2) =
{

x ∈ R
n

∣∣∣ x + h1b + h2e
−T0(x)Ab = 0

}
Lemma 2: Divide all systems (21) into two classes:

1) matrix A has real eigenvalues of different sign, and
2) all other systems.

In the first case r(h1, h2) ={
−h1b − h2e

−τAb
∣∣ τ ∈ [0, t∗]

}
. In the second case

r(h1, h2) =

{ {
−h1b − h2e

−τAb
∣∣ τ ∈ [0, t∗]

}
, h1h2 < 0;

∅, h1h2 � 0.

Here t∗ = min {ta, tb}, and

ta = inf
{

t
∣∣ e−tAb ∈ intWµ[0; t, {0}]

}
,

tb = inf { t | b ∈ intWµ[0; t, {0}]}.
The following theorem describes the structure of the IG-

set:
Theorem 6: The IG-set Jt[µ] is the union of equal im-

pulses sets

Jt[µ] =
⋃

|h1|+|h2|=µ,h1 	=0

r(h1, h2)

After calculating the IG-set the optimal control synthesis
is expressed in the following form. When x0 ∈ r(h1, h2),
for some h1 and h2 such that |h1|+ |h2| = µ, then there is a
jump h1δ(t− t0). Otherwise, that is when x0 �∈ Jt[µ], there
is no jump at time t0.

A similar result may be established for the energy-optimal
control problem. It simply follows from the theorem about
IG-set structure in case of the time-optimal problem:

Theorem 7: An IG-set Jµ[t] has the following represen-
tation:

• if t > t∗ then Jµ[t] = ∅;
• If t � t∗ then Jµ[t] =

{
−h1b − h2e

−tAb
}

where h1

and h2 must have the same sign for case 2) of Lemma
2 and arbitrary signs for case 1).

The time parameter t∗ may be calculated directly from
system (21).

The control synthesis strategy is also similar to the one
for the time-optimal system.

Example 2: Consider the following problem of stopping
a pendulum by impulse controls:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Var
[0,

π
2 ]

U(·) → inf,

{
dx1(t) = x2(t) dt,

dx2(t) = −x1(t) dt + dU(t),
0 � t �

π
2 ,

x1(0 − 0) = x0
1, x2(0 − 0) = x0

2,

x1(
π
2 + 0) = 0, x2(

π
2 + 0) = 0.

The exact solution of this problem is as follows. If at
current position (t, x) one has

t > − arcsin((x2 sign x1)(x
2
1 + x2

2)
−1/2),

then optimal control has a jump of an amplitude h1 that
solves

t = − arcsin((x2 + h1) sign x1(x
2
1 + (x2 + h1)

2)−1/2).

Otherwise the control should wait until x1 = 0 to have a
jump with amplitude h2 = −x2 straight to the origin. The
optimal trajectories that start at t = 0 are shown in Fig. 1.

The corresponding double-constraint control synthesis de-
fined by (19) (for t = 0) is shown in Fig. 2. Note that the
state space is divided into four domains: three domains R0,
R−µ, Rµ correspond to control values 0, µ, −µ and an outer
domain R∅ contains starting positions from which it is not
possible to attain the origin (the problem is not solvable).

As µ → ∞, the domain R0 fills the second and fourth
quadrants, the domains R−µ and Rµ are to fill the first and
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third quadrant respectively (Fig. 3). This exactly corresponds
to the ideal impulse control presented in Fig. 1.

VI. CONCLUSION

This paper presents a Dynamic Programming theory for
closed-loop impulse control in systems with original linear
structure through equations or variational inequalities of the
HJB type. The suggested approach allows propagation to
impulse control problems which involve derivatives of delta-
functions along the lines of [16].
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