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Abstract— In the context of non-cooperative linear discrete-
time games, invariant equilibria are introduced as an extension
to many players of the corresponding concept for two-player
games (doubly invariant equilibria). It is established that the
set of equilibrium control amplitudes is convex. An efficient
computational procedure for the computation of piecewise
affine equilibrium strategies based on the recent concept of
optimized robust control invariance is proposed. The procedure
makes use of a simple linear programming formulation when
constraints are polytopic, thus avoiding recursive projection of
convex sets. A numerical example for three player game is
presented.

I. INTRODUCTION

Recently, the theory of robust control invariant (RCI) sets
has been used to define a dynamic game in which two play-
ers, each facing own constraints on state and strategy spaces,
tries to make a constraint-feasible subset of state space robust
control invariant with respect to the opponent’s strategies.
Since control amplitude of one player is perceived as distur-
bance by the other, it is possible to define a game-theoretic
equilibrium in control amplitude space. Such an equilibrium,
termed doubly invariant in two-person games, was studied
in the context of discrete-time linear time-invariant (DLTI)
systems subject to polytopic constraints on state and control
variables [1]–[3]. It was noted in [3] that the notion is related
to the Nash equilibrium concept in game theory [4] and
to viability theory in control [5], [6]. In applications, the
concept has potential relevance for diverse fields such as,
for example, fault-tolerant control systems, communication
networks and economics. When extending the notion to many
person non-cooperative games or dealing with relatively high
dimensional state space, the issue of computational efficiency
stands up prominently. Recent developments reported in [7]–
[9] introduced an interesting procedure to characterize RCI
sets. The procedure allows to optimize size and shape of
RCI sets via linear programming (LP), when constraints are
polytopic, while yielding easily computable state feedback
control laws that turn out to be piecewise-affine. In this
paper, using the above developments, we generalize doubly
invariant equilibria to several players and devise a procedure
based on a single LP to compute equilibrium strategies.
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This paper is organized as follows. Section 2 is con-
cerned with preliminaries. Section 3 discusses robust control
invariance issue for the ith player. Section 4 provides a
computationally tractable characterization of robust control
invariant sets for the ith player. Section 5 provides a tractable
optimization problem whose feasibility reveals the existence
of a q-person invariant equilibrium. Section 6 gives an appro-
priate example – three player game case. Finally, Section 7
presents conclusions and indicates possible extensions. A
more detailed exposition and all proofs for the results stated
in this paper can be found in [10].

NOTATION AND BASIC DEFINITIONS: Let R
n
+ be the

set of non-negative n-tuples of R
n (i.e. R

n
+ � {x ∈

R
n | x ≥ 0}), N � {0, 1, 2, . . .}, Nq � {0, 1, . . . , q},

N
+
q � {1, . . . , q}. Given any j ∈ N

+
q let Nq,j � N

+
q \ {j}.

Let 1t denote the vector (1, 1, . . . , 1)′ ∈ R
t. Given two sets

U and V , such that U ⊂ R
n and V ⊂ R

n, the Minkowski
(vector) sum is defined by U ⊕V � {u+v | u ∈ U , v ∈ V}.
Given the sequence of sets {Ui ⊂ R

n}b
i=a, we denote⊕b

i=a Ui � Ua ⊕ · · · ⊕ Ub and
⊗b

i=a Ui � Ua × · · · × Ub.
Given a set U ⊆ R

n, interior(U) denotes its interior. A
polyhedron is the (convex) intersection of a finite number
of open and/or closed half-spaces. A polytope is a compact
(i.e. closed and bounded) polyhedron. A collection of sets
{Ui ⊂ R

n}, i ∈ N
+
q is a C (CP )-collection if for every

i ∈ N
+
q the set Ui is a convex, compact set, (polytope) with

non–empty interior containing the origin in its interior.

II. PRELIMINARIES

Consider the following discrete-time linear time-invariant
q-person game:

x+ = Ax +

q∑
i=1

Biui, (1)

where x ∈ R
n is the current state, x+ is the successor state,

ui ∈ R
mi is the current control action of the ith player,

q ∈ N, q > 0 is a finite integer and (A,B1, B2, . . . , Bq) ∈
R

n×n × R
n×m1 × R

n×m2 × . . . × R
n×mq .

We make the following standing assumption:
Assumption 1: The couples (A,Bi) are controllable for

all i ∈ N
+
q .

Game (1) is subject to the following set of hard state and
control constraints with respect to player i:

(x, ui) ∈ X
i × βiU

i, i ∈ N
+
q (2)

where, for any β = (β1, β2, . . . , βq)
′ ∈ R

q
+, β > 0, sets:

C(β) � {(Xi, βiU
i), i ∈ N

+
q } (3)
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form a C-collection. We call C(1) normalized constraint set
collection for game (1). In this paper we are interested in
a computationally tractable procedure that enables verifying
existence of a properly defined q-person invariant equilibrium
for game (1).

Definition 1: A set of vectors β = (β1, β2, . . . , βq) ∈
R

q
+, β > 0 is called a non-trivial q–person invariant equlib-

rium of game (1) if there exists a collection of compact,
non–empty, sets {Ωi ⊂ R

n}, i ∈ N
+
q such that Ωi for all

i ∈ N
+
q satisfy Ωi ⊆ X

i and for all x ∈ Ωi there exists a
ui ∈ βiU

i such that x+ = Ax+Biui +
∑

k∈Nq,i
Bkuk ∈ Ωi

for all uk ∈ βkU
k and all k ∈ Nq,i.

Any collection of sets {Ωi ⊂ R
n}, i ∈ N

+
q in definition 1

is termed a q–person invariant equilibrium collection. A
trivial q–person invariant equilibrium exists for a vector
β = 0 – the corresponding q–person invariant equilibrium
collection is trivially {{0}, {0}, . . . , {0}}. We are interested
in geometric properties of the set of β’s for which a non–
trivial q–person invariant equilibrium exists. Definition 1 , for
q = 2, reduces to the doubly invariant equilibrium definition
introduced in [1].

For a discrete time-invariant system x+ = f(x, u, w), f :
R

n×R
m×R

p → R
n under constraints (x, u, w) ∈ X×U×W

we recall standard definitions in set invariance theory [6].
Definition 2: A set Ω is robust control invariant (RCI)

for system x+ = f(x, u, w) and constraint set (X, U, W) if
Ω ⊆ X and for all x ∈ Ω there exists a u ∈ U such that
f(x, u, w) ∈ Ω for all w ∈ W.

Given a control law ν : R
n → R

m, let:

Xν � X ∩ {x | ν(x) ∈ U} (4)

Definition 3: A set Ω ⊂ R
n is robust positively invariant

(RPI) for system x+ = f(x, ν(x), w) and constraint set
(Xν , W) if Ω ⊆ Xν and f(x, ν(x), w) ∈ Ω, ∀w ∈ W,
∀x ∈ Ω.

We perform first analysis for a fixed value of the vector β,
i.e. β = β̂ ∈ R

q
+, β̂ > 0. Initially, we assume that, without

loss of generality, C(β̂) (3) has been normalized so that we
can consider the case when the constraint set collection is
given by C(1).

III. ROBUST CONTROL INVARIANCE ISSUE FOR THE ith

PLAYER

From the perspective of player i game (1) is regarded as
an additively disturbed DLTI system:

x+ = Ax + Biui +
∑

j∈Nq,i

wj (5)

where for any j ∈ Nq,i:

wj ∈ W
j � Bj

U
j , (6)

is considered as an external disturbance corresponding to the
possible actions of player j, j ∈ Nq,i. Equation (5) can be
rewritten as:

x+ = Ax + Biui + w, (7)

with

w �
∑

j∈Nq,i

Bjuj , w ∈ W �
⊕

j∈Nq,i

Bj
U

j (8)

By definition 2, a set Ωi is RCI for system x+ = Ax +
Biui + w with w ∈ W �

⊕
j∈Nq,i

Bj
U

j and constraint set
(Xi, Ui, W) if Ωi ⊆ X

i and for all x ∈ Ωi there exists a
u ∈ U

i such that x+ = Ax+Biui +w ∈ Ωi for all w ∈ W.
We also need to define pairwise robust control invariance:
Definition 4: A set Ω(i,j), j 	= i is robust control invari-

ant for x+ = Ax + Biui + wj , wj � Bjuj and constraint
set (Xi, Ui, Wj) if Ω(i,j) ⊆ X

i and for all x ∈ Ω(i,j) there
exists a u ∈ U

i such that x+ = Ax + Biui + wj ∈ Ω(i,j)

for all wj ∈ W
j � Bj

U
j .

We first establish an interesting and relevant result that
exploits linearity of game (1) and basic properties of
Minkowski set addition. We assume that:

Assumption 2: There exists a collection of sets
{Ω(i,j)}, j ∈ Nq,i such that Ω(i,j) is RCI for system
x+ = Ax + Biui + wj , wj � Bjuj and constraint
set (α(i,j)

X
i, µ(i,j)

U
i, Wj) with W

j � Bj
U

j and
(α(i,j), µ(i,j)) ∈ R+ × R+.
If assumption 2 holds then there exists a collection of
control laws {ν(i,j) : Ω(i,j) → µ(i,j)

U
i, j ∈ Nq,i} such

that sets {Ω(i,j)}, j ∈ Nq,i are RPI for system x+ =

Ax + Biν(i,j)(x) + wj and constraint set (X
(i,j)
ν , Wj) with

wj � Bjuj , wj ∈ W
j � Bj

U
j and X

(i,j)
ν � α(i,j)

X
i ∩

{x | ν(i,j)(x) ∈ µ(i,j)
U

i} for j ∈ Nq,i. We can now formally
state the following results:

Theorem 1: Suppose Assumption 2 holds. Then the set
Ωi �

⊕
j∈Nq,i

Ω(i,j) is RCI for system x+ = Ax +

Biui + w with w ∈ W �
⊕

j∈Nq,i
Bj

U
j and constraint

set (αi
X

i, µi
U

i, W) where αi �
∑

j∈Nq,i
α(i,j) and µi �∑

j∈Nq,i
µ(i,j).

Corollary 1: If assumption 2 holds and (αi, µi) ∈ [0, 1]×
[0, 1], the set Ωi �

⊕
j∈Nq,i

Ω(i,j) is RCI for system x+ =

Ax+Biui+w with w ∈ W �
⊕

j∈Nq,i
Bj

U
j and constraint

set (Xi, Ui, W).
It follows from discussion above that there exists a control
law νi : Ωi → µi

U
i such that the set Ωi is RPI for system

x+ = Ax+Biνi(x)+w with w ∈ W �
⊕

j∈Nq,i
Bj

U
j and

constraint set (Xi
ν , W), where X

i
ν � αi

X
i ∩ {x | νi(x) ∈

µi
U

i}.
Theorem 1 states that the ith player can construct a

feedback strategy robust to all other players in game (1)
by exploiting pairwise feedback control strategies robust to
the individual players in the game. This fact motivates our
investigation into computationally tractable procedures for
checking existence of an RCI set for the ith player with
respect to all other players in non–trivial cases.

IV. A FAMILY OF RCI SETS FOR THE ith PLAYER

An appropriate characterization of a family of RCI sets
for constrained linear discrete time systems was recently
presented in [7]–[9]. We exploit these results to characterize
a family of pairwise RCI sets for player i (with respect to
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player j) and then exploit Theorem 1 to obtain a character-
ization of a family of RCI sets for player i with respect to
all other players.

A. Two families of RCI sets for constrained linear discrete
time systems

Here we consider a standard linear time invariant discrete
time system:

x+ = Ax + Bu + w (9)

subject to constraints:

(x, u, w) ∈ X × U × W. (10)

where the couple (A,B) is assumed controllable and the set
collection (X, U, W) is a C-collection.

Let Mi ∈ R
m×n, i ∈ N and for each k ∈ N let

Mk � (M0,M1, . . . ,Mk−2,Mk−1). An appropriate char-
acterization of a family of RCI sets for (9) and constraint set
(Rn, Rm, W), is given by the following sets for k ≥ n

Rk(Mk) �

k−1⊕
i=0

Di(Mk)W (11)

where the matrices Di(Mk) are defined by:

D0(Mk) � I,

Di(Mk) � Ai +

i−1∑
j=0

Ai−1−jBMj , i ≥ 1 (12)

and Mk satisfies:
Dk(Mk) = 0. (13)

Since the couple (A,B) is controllable such a choice exists
for all k ≥ n. Let Mk denote the set of all matrices Mk

satisfying condition (13):

Mk � {Mk | Dk(Mk) = 0} (14)

Theorem 2: [7], [9] Given any Mk ∈ Mk, k ≥ n

and the corresponding set Rk(Mk) there exists a control
law ν : Rk(Mk) → R

m such that Ax + Bν(x) ⊕ W ⊆
Rk(Mk), ∀x ∈ Rk(Mk), i.e. the set Rk(Mk) is RCI for
the system (9) and constraint set (Rn, Rm, W).
The feedback control law ν : Rk(Mk) → R

m in Theorem 2
is a selection from the set valued map:

U(x) � MkW(x) (15)

where Mk ∈ Mk and the set of disturbance sequences W(x)
is defined for each x ∈ Rk(Mk) by

W(x) � {w | w ∈ W
k, Dw = x}, (16)

where w = {w0, . . . , wk−1}, W
k � W× . . .×W and D =

[Dk−1(Mk) . . . D0(Mk)]. A ν(·) satisfying Theorem 2 can
be defined, for instance, as follows:

ν(x) � Mkw
0(x) (17a)

w
0(x) � arg min

w

{|w|2 | w ∈ W(x)} (17b)

The feedback control law ν : Rk(Mk) → R
m is a

piecewise affine function of x ∈ Rk(Mk) when constraint
set (X, U, W) is a CP collection [7]. Let

U(Mk) �

k−1⊕
i=0

MiW (18)

The set Rk(Mk) and the feedback control law ν(·) are
parametrized by the matrix Mk. It should be observed that
since each Di(Mk) is affine in Mk and when constraint
set (X, U, W) is a CP collection it follows, by standard
duality arguments used in linear programming, that we can
pose a linear programming problem, whose feasibility yields
the RCI set Rk(Mk) for system (9) and constraint set (10).
However, a family of sets Rk(Mk) (11) is merely a subset
of the second and richer family of RCI sets defined below.

Let F denote the set of equilibrium points for the nominal
part of (9) (x+ = Ax + Bu)

F � {(x̄, ū) | (A − I)x̄ + Bū = 0} (19)

If A − I is invertible than x̄(ū) � −(A − I)−1Bū is a
singleton for any ū ∈ R

m. If F∩interior(X)×interior(U) 	=
∅ it is easy to show that the family of RCI sets (11) for
the system (9) and constraint set (Rn, Rm, W) is merely a
subset of a richer family of RCI sets for system (9) defined
for k ≥ n by:

Sk(x̄, ū,Mk) � x̄ ⊕ Rk(Mk) (20)

and for a triple (x̄, ū,Mk) ∈ F × Mk.
Theorem 3: [7], [8] Given any triple (x̄, ū,Mk) ∈ F ×

Mk, k ≥ n and the corresponding set Sk(x̄, ū,Mk) there
exists a control law θ : Sk(x̄, ū,Mk) → R

m such that
Ax + Bθ(x)⊕W ⊆ Sk(x̄, ū,Mk), ∀x ∈ Sk(x̄, ū,Mk), i.e.
the set Sk(x̄, ū,Mk) is RCI for the system (9) and constraint
set (Rn, Rm, W).
Analysis in the sequel of this paper is developed for sets
Rk(Mk) (11). However, it is straightforward to extend it
with a set of minor but appropriate modifications to sets
Sk(x̄, ū,Mk) (20).

The condition (13) can be relaxed as shown in [7], [9];
also the sets Rk(Mk) (11) and Sk(x̄, ū,Mk) (20) can
be characterized without having to explicitly compute the
Minkowski set additions involved in their definition. For
instance, it follows from (11) and (16) that for a given Mk

the set Rk(Mk) is also characterized by:

Rk(Mk) = {x | W(x) 	= ∅}

= {x | ∃w ∈ W
k s.t. Dw = x}

When constraint set (X, U, W) is a CP collection, an equiv-
alent representation of Rk(Mk) is given by a polytopic set
{(x,w) | w ∈ W

k, Dw = x} in x–w space so that
checking whether x ∈ Rk(Mk) can be verified by solving a
single LP.
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B. Pairwise RCI problem for player couple (i, j), i 	= j

Here we consider the (i, j)th system in game (1):

x+ = Ax + Biui + wj , i 	= j (21)

where wj � Bjuj and wj ∈ W
j � Bj

U
j . System (21) is

subject to constraints

(x, ui, wj) ∈ X
i × U

i × W
j . (22)

Exploiting this fact and the discussion in [7], [9] it can be
shown that a RCI set (a member of a family of RCI sets (11))
for system (21) and constraint set (Xi, Ui, Wj) can be ob-
tained as follows . Let δ(i,j) � {M(i,j), α(i,j), µ(i,j), γ(i,j)},
(the index k appearing in the equations in subsection IV-A
is omitted in order to simplify notation), and let

∆(i,j) � {δ(i,j) | M
(i,j) ∈ M

(i,j),

R(M(i,j)) ⊆ α(i,j)
X

i,

U(M(i,j)) ⊆ µ(i,j)
U

i,

(α(i,j), µ(i,j), γ(i,j)) ∈ [0, 1]3,

α(i,j) ≤ γ(i,j), µ(i,j) ≤ γ(i,j)} (23)

with R(·) defined by (11), U(·) defined by (18) with respect
to the constraint set (22). The constraint γ(i,j) ≤ 1 ensures
that, if ∆(i,j) 	= ∅, the set R(i,j) = R(M(i,j)) (11) is RCI
for system (21) and constraint set (22). We remark that a
suitable M

(i,j) that yields a RCI set for the system (21) and
constraint set (22) can be obtained by solving the following
convex optimization problem:

P
(i,j) : δ(i,j)0 = arg min

δ(i,j)
{γ(i,j) | δ(i,j) ∈ ∆(i,j)} (24)

Note that if ∆(i,j) 	= ∅ the solution to problem P
(i,j)

yields a set R(i,j)0 � R(M(i,j)0) and feedback control law
ν(i,j)0(x) = M

(i,j)0
w

0(x) satisfying

R(i,j)0 ⊆ α(i,j)0
X

i, ν(i,j)0(x) ∈ U(M(i,j)0) ⊆ µ(i,j)0
U

i,

(25)
for all x ∈ R(i,j)0. We now proceed to exploit the structure
of the sets ∆(i,j) and to provide an efficient procedure for
checking existence of the RCI set for the ith player with
respect to all other players for the relevant case when C(1)
is a CP collection.

C. RCI problem for player i with respect to all others

Discussion in Subsection IV-B and Theorem 1 suggest that
existence of an RCI set characterized by Theorem 1 and the
sets {R(M(i,j))}, j ∈ Nq,i for system (7) and constraint
set (8) can be verified by checking feasibility of a set of
linear inequalities (and equalities). Let δi � (δ(i,j), γi) where
j ∈ Nq,i and define:

∆i �
⊗

j∈Nq,i

∆(i,j) × R+ (26)

so that δi ∈ ∆i, where the sets ∆(i,j) are defined by (23).
Let the set ∆̄i ⊆ ∆i be defined as follows:

∆̄i � {δi ∈ ∆i |
∑

j∈Nq,i

γ(i,j) ≤ γi, γi ∈ [0, 1]} (27)

The following optimization problem

P
i : δi0 = arg min

δi
{γi | δi ∈ ∆̄i} (28)

is a linear programming problem. If ∆̄i 	= ∅, the solution to
problem P

i yields a collection of sets R(i,j)0 � R(M(i,j)0)

and a collection of feedback control laws ν(i,j)0(x) =

M
(i,j)0

w
0(x) for j ∈ Nq,i. By Theorem 1, a collection of

sets {R(i,j)0}, j ∈ Nq,i yields a set

Ri0 �
⊕

j∈Nq,i

R(i,j)0 (29)

Note that if ∆̄i 	= ∅, we have γi0 ≤ 1 so that the set Ri0is
RCI for the system (7) and constraint set (Xi, Ui, W) where
W is given by (8). The corresponding feedback control law
νi0 : Ri0 →

∑
j∈Nq,i

µ(i,j)0
U

i can be defined by:

νi0(x) �
∑

j∈Nq,i

ν(i,j)0(x(i,j)) (30)

where the vectors {x(i,j) ∈ R(i,j)0}, j ∈ Nq,i are a
decomposition of the actual state x ∈ Ri0 satisfying:

x =
∑

j∈Nq,i

x(i,j) (31)

An appropriate selection of decomposition (31) can be ob-
tained as follows. Let x � {x(i,j)}, j ∈ Nq,i and define the
selection of the decomposition (31) by:

x
0(x) � arg min

x

{|x|2 | x ∈ X (x)} (32a)

X (x) � {x | x(i,j) ∈ R(i,j)0, x =
∑

j∈Nq,i

x(i,j)} (32b)

We now proceed, in similar fashion, to exploit the structure
of sets ∆̄i, i ∈ N

+
q to propose a computationally efficient

procedure for checking existence of a q-person invariant
equilibrium collection for game (1) and (CP ) constraint set
collection C(1) – see (3).

V. q-PERSON INVARIANT EQUILIBRIA

A. Checking existence of a q-person Invariant Equilibria
for game (1) and constraint (CP ) set collection C(1) given
by (3)

Since existence of an RCI set for the ith player, i.e.
system (7) and constraint set (Xi, Ui, W) where W is given
by (8) can be verified by solving a single linear programming
problem (when constraints are polytopic), we proceed to
exploit the structure in order to pose a single linear program-
ming problem to verify existence of an invariant equilibrium
set collection for system (1) and constraint set collection
C(1) given by (3).

Let δ � {δi, γ} where i ∈ N
+
q and define:

∆ �
⊗
i∈N

+
q

∆̄i × R+ (33)
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so that δ ∈ ∆, where sets ∆̄i are defined by (27). Let the
set ∆̄ ⊆ ∆ be defined as follows:

∆̄ � {δ ∈ ∆ | γi ≤ γ, ∀i ∈ N
+
q , γ ∈ [0, 1]} (34)

and consider the following linear programming problem:

P : δ0 = arg min
δ

{γ | δ ∈ ∆̄} (35)

If ∆̄ 	= ∅ the solution to problem P yields a collection of sets
{Ri0} and a collection of feedback control laws {νi0(·)} for
i ∈ N

+
q as already discussed in Subsection IV-C. The optimal

value γ0 ≤ 1 (if ∆̄ 	= ∅) ensures that the collection of sets
{Ri0}, by Definition 1, constitute an invariant equilibrium
collection for game (1) and (CP ) constraint set collection
C(1) given by (3).

Note that if ∆̄ 	= ∅, any element of ∆̄ yields a q–person
invariant equilibrium collection.

B. q-person Invariant Equilibria for constraint set collection
C(β) with β ∈ R

q
+

The above analysis is performed for the case of fixed
vector of control amplitudes, i.e.β = β̂. Allowing control
amplitudes β to vary it is, in principle, possible to pose
a single bi–linear programming problem (when constraints
are polytopic), whose feasibility would reveal a q-person
invariant equilibrium and a corresponding q-person invariant
equilibrium set collection with respect to the particular
parametrization of RCI sets, used in previous sections.

As already discussed in previous sections, for a fixed value
of β̂ ∈ R

q
+, β̂ > 0 and with the considered parametrization

of RCI sets the corresponding problem is a convex prob-
lem (35). We proceed to check whether the convexity result
of a doubly invariant equilibrium established in [3] can be
established in many player game case. This fact is formally
given by the following result established for the general case
of q-person invariant equilibrium set collection.

Theorem 4: The set of non–trivial q-person invariant equi-
libria for system (1) is either an empty or a convex set.

The result of Theorem 4 suggests that the set of non–
trivial q–person equilibria is also a convex set (if it is not an
empty set) for the class of RCI sets considered in this paper.
Furthermore, it is possible to show that the set of non–trivial
q-person invariant equilibria β is bounded, since X

i, i ∈ N
+
q

are compact sets (otherwise X
i would contain a RCI set for

player i with respect to unbounded control actions of some
other player/s). Hence a notion of extremal q-person invariant
equilibrium, generalizing to many players doubly invariant
Nash equilibrium defined in [3] can be defined as follows:

Definition 5: A vector β̂ ∈ R
q
+, β̂ > 0 is an extremal non-

trivial q-person invariant equilibrium if β̂ is such that there
does not exists a q–person invariant equilibrium β satisfying
that β 	= β̂ and β ≥ β̂.

An iterative procedure for the computation of the extremal
equilibrium can be obtained as follows. Let, for any i ∈ N

+
q ,

fi : R
q
+ → R+ be defined by:

fi(β) � sup
β

{βi | β is a q person invariant equilibrium}

(36)

where βi is the ith coordinate of a vector β. We observe
that fi(β) maps the ith coordinate βi of a vector β into β+

i

such that β+
i ≥ βi. The functions fi : R

q
+ → R+ are non–

decreasing (for all i ∈ N
+
q ). An algorithmic procedure for the

determination of the extremal q–person invariant equilibrium
is formulated in Algorithm 1.

Algorithm 1 Computation of the extremal q–person invariant
equilibrium

Require: β0 – an initial q–person invariant equilibrium,
kmax ∈ N

1: Set k = 0, where k is iteration index.
2: repeat
3: Increment k by one.
4: Set j = 0 and β̂(k,j) = βk−1, where j is player index.
5: repeat
6: Increment j by one.
7: Set β̂

(k,j)
j = fj(β̂

(k,j−1)) where fj(·) is defined in

in (36), where β̂
(k,j)
j is the jth coordinate of β̂(k,j),

8: Set β̂
(k,j)
i = β̂

(k,j−1)
i for all i ∈ Nq,j ,

9: until j ≤ q.
10: Set βk = β̂(k,q).
11: If βk = βk−1 terminate the algorithm.
12: until k ≤ kmax.

Since the functions fi : R
q
+ → R+ are non–decreasing

for all i ∈ N
+
q , each β̂(k,j) ≥ β̂(k,j−1) implying that

the Algorithm 1 generates a non–decreasing sequence {βk}
of q–person invariant equilibria, since βk−1 = β̂(k,1) ≤
β̂(k,2) ≤ . . . ≤ β̂(k,q) = βk by construction. Since the set
of equilibrium points is bounded and convex by Theorem 4
it follows that βk as kmax → ∞ approaches the extremal
q person invariant equilibrium β̂. If the stopping criteria
in step 11 of algorithm 1 is not satisfied, kmax should
be increased or otherwise βkmax is a q–person invariant
equilibrium that is an approximation of the extremal q–
person invariant equilibrium. The selection of β0 can be
done by a grid search or a generalization of the tatonnement
process described in [3] although further research is needed
to handle the case in which the set of invariant equilibria has
empty interior. An improved algorithmic procedure for the
computation of β0 is under current investigation.

VI. ILLUSTRATIVE EXAMPLE

To illustrate our procedure we consider a three person
dynamic game:

x+ =

[
0.2 0.9
−0.9 0.1

]
x +

[
2
1

]
u1

+

[
1
2

]
u2 +

[
1.5
1.5

]
u3 (37)

which is subject to the control constraints

ui ∈ U
i � { ui ∈ R | − βi ≤ ui ≤ βi}, i = 1, 2, 3

(β1, β2, β3) = (0.0508, 0.0461, 0.0485) (38)
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and respective state constraints for the first, the second and
the third player are

X
1 � { x ∈ X | − 6 ≤ 2x1 + 3x2 ≤ 6},

X
2 � { x ∈ X | − 4 ≤ −x1 + 2x2 ≤ 4},

X
3 � { x ∈ X | − 2 ≤ x2 ≤ 2},

X � {(x1, x2) ∈ R
2 | |x|∞ ≤ 4} (39)

In Figure 1 we show the 3 person invariant equilibrium col-
lection constructed by our procedure and computed by solv-
ing a single linear programming problem with parameters
characterizing the sets R1, R2 and R3 (see subsection IV-A)
(k(1,2), k(1,3)) = (k(2,1), k(2,3)) = (k(3,1), k(3,2)) = (11, 11).
The sets R1, R2 and R2 are shaded with different levels of
gray shading and in this case they satisfy R1 ⊆ R3 ⊆ R2 so
that ∩i=1,2,3R

i = R1. An improved the 3–person invariant

Fig. 1. A 3–person invariant equilibrium collection for three player game

equilibrium collection {Ω1,Ω2,Ω3}, in sense that Ri ⊆
Ωi, i = 1, 2, 3 together with the set Ω(1,2,3) = ∩i=1,2,3Ω

i is
shown in Figure 2. This improved 3–person invariant equi-

Fig. 2. A 3 person invariant equilibrium collection for three player game

librium collection was computed by exploiting the standard
set recursions [11]–[14] for computation of the RCI sets for
robust time optimal control problem for constrained linear
time invariant discrete time systems, where the appropriate

target set collection was chosen to be the initial 3–person
invariant equilibrium collection {R1, R2, R3}.

VII. CONCLUSIONS

This paper introduced a computationally tractable proce-
dure, requiring solution to a number of linear programming
problems when constraints are polytopic, for verifying ex-
istence of a q–person invariant equilibrium and the corre-
sponding q–person invariant equilibrium collection within
a particular family of RCI sets for game (1). A relevant
consequence of Theorem 1 is the fact that each player
in the game can construct the feedback strategies robust
with respect to all other players by exploiting the pairwise
feedback strategies robust with respect to each individual
player in game.

A set of results has been obtained for the case of a fixed
vector of control amplitudes requiring merely solution of
a single linear programming problem when constraints are
polytopic in contrast to the standard recursive set compu-
tations employed in set invariance theory. These results are
then exploited in an iterative algorithmic procedure for the
computation of the extremal q–person invariant equilibrium
and the corresponding q–person invariant equilibrium collec-
tion. The proposed procedure was illustrated by a numerical
example.
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[10] S. V. Raković, E. De Santis, and P. Caravani, “Invariant
Equilibria of Polytopic Games via Optimized Robust Control
Invariance,” Imperial College London, Downloadable from
http://www2.ee.ic.ac.uk/cap/cappp/ projects/11/reports.htm, Tech.
Rep. EEE/C&P/SVR/9-c/2005, 2005.

[11] D. P. Bertsekas and I. B. Rhodes, “On the minimax reachability of
target sets and target tubes,” Automatica, vol. 7, pp. 233–247, 1971.

[12] F. Blanchini, “Minimum-time control for uncertain discrete-time linear
systems,” in Proc. 31st IEEE Conference on Decision and Control,
vol. 3, Tuczon AZ, USA, December 1992, pp. 2629–34.

[13] D. Q. Mayne and W. R. Schroeder, “Robust time-optimal control of
constrained linear systems,” Automatica, vol. 33, pp. 2103–2118, 1997.

[14] D. Q. Mayne, “Control of constrained dynamic systems,” European
Journal of Control, vol. 7, pp. 87–99, 2001, survey paper.

7691


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




