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Abstract— For nonlinear systems with uncertain nonaffine-
in-control dynamics, a direct adaptive model reference control
design is proposed that augments a given baseline/nominal
dynamic inversion controller. The proposed adaptive augmen-
tation is computed online as a solution of a fast dynamical
equation. Such a solution is shown to compensate for control
dependent modeling uncertainties via time-scale separation. A
simulation example which is motivated by aerospace applica-
tions illustrates the theoretical results.

I. INTRODUCTION

In [1], an approximate Dynamic Inversion (DI) methodol-
ogy is developed for nonaffine-in-control systems using time-
scale separation. The methodology invokes fast dynamics to
invert the system, and hence relies on time-scale separation
property between the system dynamics and the dynamics of
the inverting controller. In [2], the methodology is extended
to uncertain systems, by developing a direct adaptive coun-
terpart of the method. In this paper, we present an alternative
design approach and consider an adaptive augmentation of
a fixed gain linear tracking controller for compensation of
control dependent modeling uncertainties.

In order to motivate further discussion, we consider an
unknown scalar system:

ẋ = f(x, u), x(0) = x0, t ≥ 0 , (1)

where f is an unknown function of the system state x and
the control input u. The control objective is to design u(t)
to ensure that x(t) can track a continuously differentiable
bounded r(t). We assume that f(x, u) is invertible with
respect to u. In addition, we assume that the inversion
of f(x, u) can not be obtained analytically even in the
case when f is a known function. Let f̂(x, u) denote an
approximation of the unknown system dynamics. Rewrite
the system in (1) as:

ẋ = f̂(x, u) + ∆(x, u), x(0) = x0, t ≥ 0 , (2)

where ∆(x, u) = f(x, u) − f̂(x, u) is commonly referred
to as the modeling error. Assuming that the approximator
f̂(x, u) was chosen to be invertible with respect to u, the
inversion is written in the form:

u = f̂−1(x, ν) , (3)
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where ν = f̂(x, u) is the so-called pseudo-control. We
choose

ν(t) = −k(x(t) − r(t)) + ṙ(t) − νad(t) , (4)

where νad(t) is the adaptive augmentation term. Let e(t) =
x(t) − r(t) represent the tracking error signal. Substituting
(4) into (2) leads to the following tracking error dynamics:

ė(t) = −ke(t) − νad(t) + ∆(x(t), u(t)), e(0) = e0 . (5)

Thus, the adaptive signal νad is to be designed to compensate
for modeling error ∆(x, u), which in turn depends upon
the control signal u. Notice that u also depends upon νad

via the relationships in (3), (4). To resolve this algebraic
loop, the control design methodologies in [6]–[9] introduced
a fixed-point assumption for the map νad → ∆(x, u(νad)),
which is almost impossible to verify numerically in real-life
applications. The methodology in [3], [4] takes advantage
of the mean value theorem to modify the modeling error to
render it control independent at the price of introducing an
assumption on boundedness of the time-derivative of control
effectiveness, which is also hard to ensure apriori.

Using the results of [1], [2], in this paper we present
a direct adaptive model following control design method-
ology for constructing an on-line approximation of an un-
known/ideal DI based tracking controller. Towards this end,
we utilize the well-known universal approximation property
of Radial Basis Functions (RBF) and parameterize the un-
known function f(x, u) on a compact set Ωx × Ωu:

f(x, u) = W�Φ(x, u) + ε(x, u). (6)

In (6), Φ is a vector of Gaussians, ε(x, u) is a uniformly
bounded approximation error, |ε(x, u)| < ε∗, while W is
a vector of unknown constants (ideal RBF weights). This
implies that the modeling error can be written as ∆(x, u) =
W�Φ(x, u)+ε(x, u)− f̂(x, u). Consider the following one-
step-ahead tracking error predictor dynamics:

˙̂e(t) = −kê(t) − νad(t) + Ŵ�(t)Φ(x, u) − f̂(x, u) (7)

with ê(0) = ê0, where Ŵ (t) is the estimate of W . Subtract-
ing (5) from (7), prediction error dynamics is written:

˙̃e(t) = −kẽ(t) + W̃�(t)Φ(x, u) − ε(x, u) (8)

with ẽ(0) = ẽ0, where ẽ(t) = ê(t)−e(t), W̃ (t) = Ŵ (t)−W .
The projection based adaptive law

˙̂
W (t) = ΓProj(Ŵ (t),−ẽ(t)Φ(x(t), u(t))) (9)
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with Ŵ (0) = W0 leads to ultimate boundedness of the
prediction error ẽ(t) and the parameter estimation error
W̃ (t). Thus, the adaptive control signal νad is sought to be
the solution, with respect to νad for t ≥ 0, of the following
relationship:

νad = Ŵ�(t)Φ(x, f̂−1(x(t), ν(t, νad))) − f̂(x(t), u(t)) (10)

Using eqs. (3), (4), yields the following implicit relationship
for νad in time:

Ŵ�(t)Φ(x(t), f̂−1(x(t), ν(t, νad)))

+ k(x(t) − r(t)) − ṙ(t) = 0 . (11)

Assuming that (11) has an isolated root with respect to νad,
rewrite equation (7) viewing ẽ(t) + r(t) and ṙ(t) as time-
varying signals:

˙̂e(t) = −kê(t) + f(t, ê(t), νad(t)) , (12)

where f(t, ê, νad) = Ŵ�(t)Φ
(
ê+ẽ(t)+r(t), f̂−1(ê+ẽ(t)+

r(t),−k(ê + ẽ(t)) + ṙ(t) − νad)
)

+ k(x(t) − r(t)) − ṙ(t)).
Consider the following fast dynamics:

εν̇ad = −sgn

(
∂f

∂νad

)
f(t, ê, νad) , ε � 1. (13)

We argue that under a set of mild assumptions the solution
of (13) ensures that ê(t) = êr(t) + O(ε), where êr(t) is the
solution of the exponentially stable system ˙̂er(t) = −kêr(t).
Since e(t) = ê(t) + ẽ(t), and ẽ(t) is bounded, then e(t) is
bounded. If RBF approximation error is zero, i.e. ε(x, u) = 0
in (6), then e(t) ≈ O(ε), where ε is introduced in (13). In
summary, the control design proposed in this paper for the
system in (1) is given by (3), (4), with the adaptive signal
νad(t) defined as the solution of (13), and with the adaptive
weights Ŵ (t) propagating according to (9).

The paper is organized as follows. In Section II, we recall
Tikhonov’s theorem from singular perturbation theory, which
is the key result used in proving our main theorem. We give
our main result on tracking a given reference signal for single
input systems in Section III. A relevant simulation example
is given in Section IV.

II. PRELIMINARIES ON SINGULAR PERTURBATIONS

For proving our main result we will use Tikhonov’s
theorem on singular perturbations, which we recall below
(see for instance Theorem 11.2 on page 439 of [10]).

Consider the problem of solving the system

Σ0 :

{
ẋ(t) = f(t, x(t), u(t), ε), x(0) = ξ(ε)
εu̇(t) = g(t, x(t), u(t), ε), u(0) = η(ε)

}
, (14)

where ξ : ε �→ ξ(ε) and η : ε �→ η(ε) are smooth.
Assume that f and g are continuously differentiable in their
arguments for (t, x, u, ε) ∈ [0,∞]×Dx×Du× [0, ε0], where
Dx ⊂ R

n and Du ⊂ R
m are domains, ε0 > 0. In addition,

let Σ0 be in standard form, that is,

0 = g(t, x, u, 0) (15)

has k ≥ 1 isolated real roots u = hi(t, x), i ∈ {1, . . . , k}
for each (t, x) ∈ [0,∞] × Dx. We choose one particular
i, which is fixed. We drop the subscript i henceforth. Let
v(t, x) = u − h(t, x). In singular perturbation theory, the
system given by

Σ00 : ẋ(t) = f(t, x(t), h(t, x(t)), 0), x(0) = ξ(0) (16)

is called the reduced system, and the system given by

Σb :
dv

dτ
= g(t, x, v+h(t, x), 0) (17)

v(0) = η0−h(0, ξ0)

is called the boundary layer system, where η0 = η(0)
and ξ0 = ξ(0), (t, x) ∈ [0,∞) × Dx are treated as fixed
parameters. The new time scale τ is related to the original

time t via the relationship τ =
t

ε
. The following result is due

to Tikhonov.
Theorem 1: Consider the singular perturbation system Σ0

given in (14) and let u = h(t, x) be an isolated root of
(15). Assume that the following conditions are satisfied for
all [t, x, u − h(t, x), ε] ∈ [0,∞) × Dx × Dv × [0, ε0] for
some domains Dx ⊂ R

n and Dv ⊂ R
m, which contain their

respective origins:
A1. On any compact subset of Dx×Dv , the functions f , g,

their first partial derivatives with respect to (x, u, ε), and
the first partial derivative of g with respect to t are con-
tinuous and bounded, h(t, x) and

[
∂g
∂u

(t, x, u, 0)
]

have
bounded first derivatives with respect to their arguments,[

∂f
∂x

(t, x, h(t, x))
]

is Lipschitz in x, uniformly in t, and
the initial data given by ξ and η are smooth functions
of ε.

A2. The origin is an exponentially stable equilibrium point
of the reduced system Σ00 given by equation (16). There
exists a Lyapunov function V : [0,∞) × Dx → [0,∞)
that satisfies

W1(x) ≤ V (t, x) ≤ W2(x)
∂V
∂t

(t, x) + ∂V
∂x

(t, x)f(t, x, h(t, x), 0) ≤ −W3(x)

for all (t, x) ∈ [0,∞) × Dx, where W1,W2,W3 are
continuous positive definite functions on Dx, and let c
be a nonnegative number such that {x ∈ Dx | W1(x) ≤
c} is a compact subset of Dx.

A3. The origin is an equilibrium point of the boundary layer
system Σb given by equation (17) which is exponen-
tially stable uniformly in (t, x).

Let Rv ⊂ Dv denote the region of attraction of the
autonomous system dv

dτ
= g(0, ξ0, v + h(0, ξ0), 0), and let

Ωv be a compact subset of Rv . Then for each compact set
Ωx ⊂ {x ∈ Dx | W2(x) ≤ ρc, 0 < ρ < 1}, there exists
a positive constant ε∗ such that for all t ≥ 0, ξ0 ∈ Ωx,
η0−h(0, ξ0) ∈ Ωv and 0 < ε < ε∗, Σ0 has a unique solution
xε on [0,∞) and

xε(t) − x00(t) = O(ε)

holds uniformly for t ∈ [0,∞), where x00(t) denotes the
solution of the reduced system Σ00 in (16).
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The following Remark will be useful in the sequel.
Remark 1: Assumption A3 can be locally verified by

linearization. Let ϕ denote the map v �→ g(t, ξ, v+h(t, ξ), ε).
It can be shown that if there exists ω0 > 0 such that the
Jacobian matrix

[
∂ϕ
∂v

]
satisfies the eigenvalue condition

Re

(
λ

[
∂ϕ

∂v
(t, x, h(t, x), 0)

])
≤ −ω0 < 0

for all (t, x) ∈ [0,∞)×Dx, then Assumption A3 is satisfied.

III. TRACKING DESIGN FOR SINGLE INPUT SYSTEMS

Consider the following nonaffine-in-control single-input
system in Brunovsky normal form:

ẋ(t) = Ax(t) + Bf(x(t), z(t), u(t))
ż(t) = ζ(x(t), z(t), u(t))

(18)

with x(0) = x0, z(0) = z0, for (x, z, u) ∈ Dx × Dz × Du,
where Dx ⊂ R

r, Dz ⊂ R
n−r and Du ⊂ R are domains con-

taining their respective origins, while A and B correspond
to the controllable canonical normal form representation of
the nonlinear system dynamics, i.e.

A =

⎡
⎢⎢⎢⎣

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 . . . 0 0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ .

Here [x�(t) z�(t)]� denotes the state vector of the system,
x(t) = [x1(t) · · · xr(t)]

�, u(t) is the control input, r is the
relative degree of the system, and f : Dx × Dz × Du → R,
ζ : Dx × Dz × Du → R

n−r are continuously differentiable
unknown functions of their arguments. Furthermore, assume
that ∂f

∂u
is bounded away from zero for (x, z, u) ∈ Ωx,z,u ⊂

Dx × Dz × Du, where Ωx,z,u is a compact set of possible

initial conditions; i.e. there exists b0 > 0 such that
∣∣∣∂f
∂u

∣∣∣ >

b0. This assumption guarantees existence of an ideal DI
tracking solution. In addition, assume that a known model
f̂(x, z, u) of the unknown function f(x, z, u) is available
over the compact set Ωx,z,u ∈ Dx × Dz × Du, which
is invertible with respect to u, and, in addition, it permits
a representation of the unknown nonlinearity f(x, z, u) =
f̂(x, z, u) + ∆(x, z, u), where ∆(x, z, u) = f(x, z, u) −
f̂(x, z, u) is referred to as the modeling error. Let r(t) be an
r-times continuously differentiable reference input signal of
interest to track. The control objective is to design a tracking
control law to ensure that x(t) → r(t) as t → ∞, where
r(t) � [r(t), ṙ(t), · · · , r(r−1)(t)]�, while all other error
signals in the closed-loop system remain bounded.

If ∆(x, z, u) = 0, then the dynamic inversion controller is
defined as the solution of the following algebraic equation

f̂(x, z, u) = ν0 , (19)

where ν0 is commonly referred to as the nominal pseudo-
control and it is designed to achieve exponential stability of
the error dynamics via the following relationship:

ν0(t) = −k1(x1(t) − r(t)) − k2(x2(t) − ṙ(t)) − · · ·

− kr(xr(t) − r
(r−1)(t)) + r

(r)(t), ki > 0 . (20)

Indeed, in that case the system dynamics in (18) is reduced
to

ẋ(t) = Ax(t) + Bf̂(x(t), z(t), u(t)). (21)

Since f̂(x, z, u) is invertible with respect to u, then upon
substitution of (19) and (20) into (21), one obtains an
asymptotically stable error dynamics ė(t) = Ake(t), where
e(t) = [x1(t)−r(t), x2(t)− ṙ(t), · · · , xr(t)−r

(r−1)(t)]�

is the tracking error vector, while Ak is the Hurwitz matrix
of the coefficients ki, i = 1, · · · , r, positioned on its last row.

For a nonzero ∆(x, z, u) 	= 0, consider an RBF ap-
proximation of f(x, z, u) over the compact set Ωx,z,u ∈
Dx × Dz × Du:

f(x, z, u) = W�Φ(x, z, u) + ε(x, z, u) , (22)

where W is a vector of unknown constants, while Φ is a
vector of known basis functions (Gaussians), and ε(x, z, u) is
a uniformly bounded approximation error, |ε(x, z, u)| < ε∗.
Then ∆(x, z, u) = W�Φ(x, z, u) + ε(x, z, u) − f̂(x, z, u).

Rewrite the system dynamics in (18) in the following
form:

ẋ(t) = Ax(t) + B
(
f̂(x(t), z(t), u(t))

+ ∆(x(t), z(t), u(t)
)

ż(t) = ζ(x(t), z(t), u(t)) .

(23)

Augment the pseudo-control in (20) with an additional
adaptive signal for compensation of the control dependent
modeling error ∆(x, z, u):

ν(t) = ν0(t) − νad(t) . (24)

Thus the control signal u is defined as the solution of

f̂(x, z, u) = ν , (25)

where ν is given by (24). This leads to the following closed-
loop error dynamics of the form:

ė(t) = Ake(t) − B
(
νad(t) − ∆(t, e(t), z(t), u(t))

)
ż(t) = ζ(x(t), z(t), u(t)),

(26)
which can be otherwise presented as:

ė(t) = Ake(t) − B
(
νad(t) − W�Φ(x(t), z(t), u(t))

− ε(x(t), z(t), u(t)) + f̂(x(t), z(t), u(t))
)

ż(t) = ζ(x(t), z(t), u(t)) .
(27)

Substituting (24) and (25) yields:

ė(t) = Ake(t) + B
(
W�Φ(x(t), z(t), u(t))

+ ε(x(t), z(t), u(t)) − ν0(t)
)

ż(t) = ζ(x(t), z(t), u(t)) .

(28)

Since W are unknown parameters, we consider the following
one-step-ahead error predictor using the following series
parallel model:

˙̂e(t) = Akê(t) + B
(
Ŵ�(t)Φ(x(t), z(t), u(t)) − ν0(t)

)
ż(t) = ζ(x(t), z(t), u(t)) (29)
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with ê(0) = ê0. In (29), Ŵ (t) is the adaptive parameter for
estimating W , while ν0(t) is the same as in (20). Then the
prediction error dynamics for the series parallel model in
(29) is:

˙̃e(t) = Akẽ(t) + B
(
W̃�(t)Φ(x(t), z(t), u(t))

− ε(x(t), z(t), u(t))
)

, (30)

ż(t) = ζ(x(t), z(t), u(t)) (31)

with ẽ(t) = ê(t)− e(t), ẽ(0) = e0 − ê0, z(0) = z0, W̃ (t) =
Ŵ (t) − W .

Theorem 2: The adaptive law

˙̂
W (t) = ΓProj(Ŵ (t),−Φ(x(t), z(t), u(t)) ẽ�(t)PB) (32)

with Ŵ (0) = W0, where Proj(·, ·) denotes the Projection
operator [5], P = P� > 0 solves the Lyapunov equation
A�

k P + PAk = −Q for arbitrary Q > 0, Γ > 0 is
the adaptation gain matrix, ensures that the prediction error
dynamics (30), (31) is ultimately bounded with respect to
ẽ(t), W̃ (t), uniformly in z0.

Proof: Consider the following Lyapunov function can-
didate

V (ẽ(t), W̃ (t)) = ẽ�(t)P ẽ(t) + W̃�(t)Γ−1W̃ (t) . (33)

Its derivative along the trajectories of (30), (32) can be upper
bounded V̇ ≤ −λmin(Q)‖ẽ‖2 + 2‖ẽ‖PBε∗ ≤ 0, where
the following property of the Projection operator is used
W̃�(Proj(Ŵ , y) − y) ≤ 0, which is true for all vectors y
[5], while λmin(Q) denotes the minimum eigenvalue of Q.
Hence V̇ ≤ 0 outside the compact set{

‖ẽ‖ ≤
2ε∗‖PB‖

λmin(Q)

} ⋂ {
‖W‖ ≤ W ∗

}
, (34)

where W ∗ is the maximum allowable norm upper bound
selected for the Projection operator, ‖·‖ denotes the 2-norm.
Following standard invariant set arguments one can conclude
that the prediction error dynamics (30), (31) is ultimately
bounded with respect to ẽ(t), W̃ (t), uniformly in z0.

Remark 2: If ε∗ = 0, then the adaptive law

˙̂
W (t) = −ΓΦ(x(t), z(t), u(t))ẽ�(t)PB , Ŵ (0) = W0

yields asymptotic prediction, i.e. ẽ(t) → 0 as t → ∞. Indeed,
in that case, V̇ = −ẽ�Qẽ ≤ 0, and application of Barbalat’s
lemma further implies that lim

t→∞
ẽ(t) = 0 uniformly in z0.

From (24) and (25) it follows that

u = f̂−1(x, z, ν0 − νad) ,

where the inversion is performed with respect
to the last argument. Then the forcing term
Ŵ�(t)Φ(x(t), z(t), u(t)) − ν0(t) in (29) can be
represented as: Ŵ�(t)Φ(x(t), z(t), u(t)) − ν0(t) =
Ŵ�(t)Φ(x(t), z(t), f̂−1(x(t), z(t), ν0(t)− νad(t)))− ν0(t).
Thus, the adaptive controller νad(t) is defined implicitly as
the solution of the following equation:

Ŵ�(t)Φ(x(t), z(t), f̂−1(x(t), z(t), ν0(t) − νad)) = ν0(t)
(35)

resulting in asymptotically stable estimator dynamics ˙̂e(t) =
Akê(t).

Assumption 3: Using Projection Operator and a proper
choice of the regressor vector Φ (other than RBFs), the
adaptive process in (32) can be constructed such that the
control effectiveness of the estimator is bounded away from
zero for all t > 0:∣∣∣Ŵ�(t)

∂Φ(x, z, u(t, νad))

∂νad

∣∣∣ > a0 > 0 . (36)

Notice that using the definition of the pseudo-control from
(24) yields

∂Φ(x, z, u(t, νad))

∂νad

=
∂Φ(x, z, u)

∂u

∂u

∂ν

∂ν

∂νad

= −
∂Φ(x, z, u)

∂u

∂f̂−1(x, ν)

∂ν
.

If the inversion model is chosen to be linear f̂(x, u) = ku,
then

∂Φ(x, z, u(t, νad))

∂νad

= −
1

k

∂Φ(x, z, u)

∂u
,

which is just a scaled version of the bounded derivative of
the regressor.

Remark 3: Assumption 3 is required to ensure exponential
stability of the boundary layer system in application of
Tikhonov’s theorem as discussed below. One way to satisfy
this assumption is to redefine the regressor vector, include
the control signal as its first component, bu+W�Φ(x, z, u),
and define the estimator to be b̂(t)u(t)+Ŵ (t)Φ(x, z, u). The
requirement

b0 > W ∗φ∗ ,

where W ∗ is a norm bound imposed by the Projection
operator ‖Ŵ (t)‖ ≤ W ∗, while φ∗ ≥ ‖∂Φ(x,z,u)

∂u
‖, will

ensure that the control effectiveness of this estimator b̂(t)u+
Ŵ (t)Φ(x, z, u) is bounded away from zero:

∣∣∣b̂(t) + Ŵ�(t)
∂Φ(x, z, u)

∂u

∣∣∣ > a0 > 0 , (37)

where a0 = b0 − W ∗φ∗.
Subject to Assumption 3, we consider the following fast

dynamics:

εν̇ad = −sign

(
∂f

∂νad

)
f(t, ê, z, νad), νad(0) = νad0

,

(38)
where

f(t, ê, z, νad) = Ŵ�(t)Φ
(
ê + r(t) + ẽ(t), z,

f̂−1(ê + r(t) + ẽ(t), z, ν0(t) − νad)
)
− ν0(t).

Let νad = h(t, ê, z) be an isolated root of f(t, ê, z, νad) = 0.
The reduced system for the dynamics in (29), (38) is given
by:

˙̂e(t) = Akê(t) (39)

ż(t) = ζ(t, ê(t), z(t), h(t, ê(t), z(t))) (40)
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with ê(0) = ê0, z(0) = z0, where ζ(t, ê, z, h) = ζ
(
ê +

r(t)+ ẽ(t), z, f−1
(
ê+r(t)+ ẽ(t), z, ν0(t)−h(t, ê, z)

))
. The

boundary layer system is given by:

dv

dτ
= −sign

(
∂f

∂νad

)
f(t, ê, z, v + h(t, ê, z)). (41)

Applying Theorem 1, we now get the following result for
single input systems:

Theorem 4: Assume that the adaptive process is such that
the following conditions are satisfied for all [t, ê, z, νad −
h(t, ê, z), ε] ∈ [0,∞)×Dê,z×Dv× [0, ε0] for some domains
Dê,z ⊂ R

n and Dv ⊂ R, which contain their respective
origins:
B1. On any compact subset of Dê,z × Dv , the functions

f , ζ, and their first partial derivatives with respect to
(ê, z, νad), and the first partial derivative of f with
respect to t are continuous and bounded, h(t, ê, z) and

∂f

∂νad

(t, ê, z, νad) have bounded first derivatives with
respect to their arguments, ∂f

∂ê
, ∂f

∂z
as functions of

(t, ê, z, h(t, ê, z)) are Lipschitz in ê, z, uniformly in t.
B2. The origin is an exponentially stable equilibrium point

of the system

ż = ζ(r(t)+ẽ(t), z, f−1(r(t)+ẽ(t), z, ν0(t)−h(t, 0, z)))

The map (ê, z) �→ ζ(ê + r(t) + ẽ(t), z, f−1(ê + r(t) +
ẽ(t), z, ν0(t)−h(t, ê, z))) is continuously differentiable
and Lipschitz in (ê, z), uniformly in t.

B3. The adaptive process is such that (t, ê, z, v) �→
∂f

∂νad

(t, ê, z, v + h(t, ê, z)) is bounded away from zero
for all (t, ê, z) ∈ [0,∞) × Dê,z .

Then the origin of (41) is exponentially stable. Moreover, let
Ωv be a compact subset of Rv, where Rv ⊂ Dv denotes the
region of attraction of the autonomous system

dv

dτ
= −sign

(
∂f

∂νad

)
f(0, ê0, z0, v + h(0, ê0, z0)).

Then for each compact subset Ωz,ê ⊂ Dz,ê there exist a
positive constant ε∗ and a T > 0 such that for all t ≥ 0,
(ê0, z0) ∈ Ωê,z , νad0

− h(0, ê0, z0) ∈ Ωv and 0 < ε < ε∗,
the system of equations (29), (38) has a unique solution êε(t)
on [0,∞), and êε(t) = êr(t) + O(ε) holds uniformly for
t ∈ [T,∞), where êr(t) denotes the solution of the reduced
system (39).

Proof: We need to verify that Assumptions A1, A2, A3
in Theorem 1 are satisfied. Assumption B1 clearly implies
that A1 holds.

We now show that Assumption A2 holds. Assumption
B2 implies (see Lemma 4.6, page 176 of [10]), that the
system (40) (with ê viewed as the input) is input to state
stable. Thus there exists class K and class KL functions
γ and β, respectively, such that ‖z(t)‖ ≤ β(‖z(t0)‖, t −
t0) + γ

(
supt0≤τ≤t ‖ê(τ)‖

)
for all t ≥ t0, t0 ∈ [0,∞).

Furthermore from the proof of Lemma 4.6 of [10], it follows
that γ(ρ) = cρ, for some constant c > 0. Using the fact
that the unforced system has 0 as an exponentially stable
equilibrium point, it can be seen from the proof of Lemma
4.6 of [10] that β(ρ, t) = kρ exp(−ωt) for some positive

constants k and ω. Thus the solution to the reduced system
(39)-(40) satisfies ‖ê(t)‖ ≤ ‖ê0‖c1 exp(−ω0t) and ‖z(t)‖ ≤
(‖x0‖ + ‖z0‖)c2 exp(−ω0t) for all t ≥ 0 and for some
ω0 > 0. Hence, the origin (0, 0) is an exponentially stable
equilibrium point of (39)-(40). From a converse Lyapunov
theorem (Theorem 4.14 on pages 162-163 of [10]), it follows
that there exists a Lyapunov function V : [0,∞) × Dê,z →
R such that w1‖(ê, z)‖2 ≤ V (t, ê, z) ≤ w2‖(ê, z)‖2 and
∂V
∂t

(t, ê, z) + ∇ê,zV · F(t, ê, z) ≤ −w3‖(ê, z)‖2, where

F(t, ê, z) =
[
(Akê)� ζ(t, ê, z, h)�

]�
. We note that any

positive c can be chosen in A2 of Theorem 1, and so a
compact Ωê,z ⊂ {(ê, z) ∈ Dê,z | W2(ê, z) ≤ ρc, 0 < ρ <
1} can be chosen to be any subset of Dê,z .

In light of the Remark 2.1, it is easy to see that with the
definition of the boundary layer system given by (41), subject
to Assumption 3, its exponential stability can be verified
locally by linearization with respect to v.

Hence Theorem 1 applies and so it follows that for each
compact set Ωê,z ⊂ Dê,z there exist a positive constant ε∗ >
0 and T > 0, such that for all (ê0, z0) ∈ Ωê,z , νad0

−
h(0, ê0, z0) ∈ Ωv and 0 < ε < ε∗, the system of equations
given by (29), (38) has a unique solution êε, zε on [0,∞)
and

êε(t) = êr(t) + O(ε), zε(t) = zr(t) + O(ε) (42)

hold uniformly for t ∈ [T,∞), while êr, zr denote the
solution of the reduced system (39)-(40).

Corollary 5: From Theorems 2 and 4, it follows that x(t)
tracks r(t) with bounded errors.

IV. SIMULATIONS

Consider tracking problem for the scalar nonlinear system
given by

ẋ(t) = 0.5x(t)+tanh(u(t)+3)+tanh(u(t)−3)+0.01u(t)
(43)

with x(0) = 0. It is easy to see that the system dynamics
is invertible, but not in terms of elementary functions. This
system is motivated by aircraft applications, in which control

effectiveness
∂f

∂u
is small for both small and large control

inputs u.
Dynamic inversion is performed using the following model

f̂(x, u) = 0.5u, implying that u = 2ν, with the follow-
ing choice of pseudo-control ν(t) = −10(x(t) − r(t)) +
ṙ(t) − νad(t). Thus, the modeling error can be written as:
∆(x, u) = 0.5x + tanh(u + 3) + tanh(u − 3) − 0.49u. The
error dynamics are ė(t) = −10e(t)+∆(x(t), u(t))−νad(t),
with e(t) = x(t) − r(t). The series parallel model is
designed with the use of 25 RBFs, distributed over the grid
x ∈ [−2, 2], u ∈ [−2, 2] with the step size equal to 1 in both
dimensions: Φi(x, u) = exp(−3((x − xi)

2 + (u − ui)
2)/2),

where the point (xi, ui) represents the center of the ith RBF.
The one-step-ahead error predictor is designed as:

˙̂e(t) = −20ê(t) + Ŵ�(t)Φ(x(t), u(t)) + 10e(t) − ṙ(t) .

The norm upper bound for the projection operator is set to
W ∗ = 10, adaptation gain is set to Γ = 25. Simulation
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Fig. 1. Tracking without adaptive augmentation
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Fig. 2. Tracking performance with adaptive augmentation

is performed using the following reference input r(t) =
1

1+exp(t−8) −
1.5

1+exp(t−15) + 1
1+exp(t−30) . The fast dynamics

are designed as:

0.05ν̇ad = −(Ŵ�(t)Φ(x(t), 2(−10e(t) + ṙ(t) − νad(t)))

+ 10e(t) − ṙ(t)).

Figure 1 demonstrates closed-loop performance of the
dynamic inversion controller, when applied to the nonlinear
system without adaptive augmentation. Turning adaptive
augmentation on, Figure 2 shows significant improvement of
the tracking performance. Finally, Figure 3 shows estimation
of the nonlinearity via the adaptive signal over time, and
Figure 4 demonstrates total control effort.

V. CONCLUSIONS

For nonlinear systems with uncertain nonaffine-in-control
dynamics, a direct adaptive model reference control design is
presented that augments an approximate dynamic inversion
controller. The proposed adaptive augmentation is computed
online as a solution of a fast dynamical equation. Such
a solution is shown to compensate for control dependent
modeling uncertainties via time-scale separation. The open
problem in this context is the choice of adaptive law and
a regressor vector to ensure exponential stability of the
boundary layer system associated with the fast dynamical
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Fig. 3. Estimation of nonlinearity over time
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Fig. 4. Control history

equation. One way to ensure this is discussed in Remark 3.
Alternate ways are currently under investigation.
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