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Abstract— We study the set MΣ of all generalized solutions
(that may be unbounded and have an unbounded inverse)
of the KYP (Kalman–Yakubovich–Popov) inequality for a
infinite-dimensional linear time-invariant system Σ in contin-
uous time with scattering supply rate. It is shown that if MΣ

is nonempty, then the transfer function of Σ coincides with a
Schur class function in some right half-plane. For a minimal
system Σ the converse is also true. In this case the set of all
H ∈ MΣ with the property that the system is still minimal
when the original norm in the state space is replaced by the
norm induced by H is shown to have a minimal and a maximal
solution, which correspond to the available storage and the
required supply, respectively. We show by an example that
the stability of the system with respect to the norm induced
by some H ∈ MΣ depends crucially on the particular choice
of H . In this example, depending on the choice of the original
realization, some or all H ∈ MΣ will be unbounded and/or
have an unbounded inverse.

I. INTRODUCTION

Linear finite-dimensional time-invariant systems in con-
tinuous time are typically modeled by the equations

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), t ≥ 0,

x(0) = x0,

(1)

on a triple of finite-dimensional vector spaces, namely, the
input space U , the state space X , and the output space
Y . We have u(t) ∈ U , x(t) ∈ X and y(t) ∈ Y . We are
interested in the case where, in addition to the dynamics
described by (1), the components of the system satisfy an
energy inequality. In this paper we shall use the scattering
supply rate

j(u, y) = ‖u‖2 − ‖y‖2 =
〈
[ u
y ] ,

[
1U 0
0 −1Y

]
[ u
y ]

〉
(2)

and the storage (or Lyapunov) function

EH(x) = 〈x, Hx〉, H > 0. (3)

A system is scattering H-passive (or simply scattering
passive if H = 1X ) if for any admissible data (x0, u(·))
the solution of the system (1) satisfies the condition

d
dt

EH(x(t)) ≤ j(u(t), y(t)) a.e. on (0,∞). (4)

This inequality is often written in integrated form

EH(x(t))−EH(x(s)) ≤
∫ t

s

j(u(v), y(v)) dv, 0 ≤ s ≤ t.

(5)
It is not difficult to see that the inequality (4) with supply
rate (2) is equivalent to the inequality

2�〈Ax + Bu,Hx〉 + ‖Cx + Du‖2

≤ ‖u‖2, x ∈ X , u ∈ U ,
(6)

which is usually rewritten in the form[
HA + A∗H + C∗C HB + C∗D

B∗H + D∗C D∗D − 1U

]
≤ 0. (7)

This is the standard KYP (Kalman–Yakubovich–Popov)
inequality for continuous time and scattering supply rate.

In the development of the theory of absolute stability (or
hyperstability) of systems which involve nonlinear feedback
those linear systems which are H-passive with respect to a
scattering supply rate are of special interest, especially in
H∞ control. One of the main problems is to find conditions
on the coefficients A, B, C, and D under which the KYP
inequality has at least one solution H > 0.

To formulate a classical result about the solution of this
problem we introduce the main frequency characteristic of
the system (1), namely its transfer function defined by

D(z) = D + C(z − A)−1B, z ∈ ρ(A). (8)

We also introduce the Schur class S(U ,Y; C+) of holomor-
phic contractive functions D defined on C

+ with values in
B(U ,Y). Here C

+ = {z ∈ C | �z > 0}. If X , U , and Y
are finite-dimensional, then the transfer function is rational
and dimX ≥ deg D, where deg D is the MacMillan
degree of D. A finite-dimensional system is minimal if
dim X = deg D. The state space of a minimal system has
the smallest dimension among all systems with the same
transfer function D.

The (finite-dimensional) system (1) is controllable if,
given any z0 ∈ X and T > 0, there exists some continuous
function u on [0, T ] such that the solution of (1) with
x(0) = 0 satisfies x(T ) = z0. It is observable if it has
the following property: if both the input function u and the
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output function y vanish on some interval [0, T ] with T > 0,
then necessarily the initial state x0 is zero.

Theorem 1.1 (Kalman): A finite-dimensional system is
minimal if and only if it is controllable and observable.

Theorem 1.2 (Kalman–Yakubovich–Popov): Let Σ =
([ A B

C D ] ;X ,U ,Y) be a finite-dimensional system with trans-
fer function D.

(i) If the KYP inequality (7) has a solution H > 0 then
C

+ ⊂ ρ(A) and D|C+ ∈ S(U ,Y; C+).
(ii) If Σ is minimal and D|C+ ∈ S(U ,Y; C+), then

the KYP inequality (7) has a solution H , i.e., Σ is
scattering H-passive for some H > 0.

Here D|Ω is the restriction of D to Ω ⊂ ρ(A).
It is can be shown that H > 0 is a solution of (7) if

and only if H̃ = H−1 is a solution of the the dual KYP
inequality[

H̃A∗ + AH̃ + BB∗ H̃C∗ + BD∗

CH̃ + DB∗ DD∗ − 1Y

]
≤ 0. (9)

The discrete time scattering KYP inequality is given by[
A∗HA + C∗C − H A∗HB + C∗D

B∗HA + D∗C D∗D + B∗HB − 1U

]
≤ 0. (10)

The corresponding Kalman–Yakubovich–Popov theorem is
still valid with C

+ replaced by D
+ = {z ∈ C | |z| > 1}

and with the transfer function defined by the same formula
(8).1

In the seventies the classical results on the KYP inequal-
ities were extended to systems with dimX = ∞ by V. A.
Yakubovich and his students and collaborators (see [22],
[23], [8] and the references listed there). There is now a rich
literature on this subject; see, e.g., the discussion in [10] and
the references cited there. However, as far as we know, in
these and all later generalizations it was assumed (until [2])
that either H itself is bounded or H−1 is bounded.2 This is
not always a realistic assumption. The operator H is very
sensitive to the choice of the state space X and its norm,
and the boundedness of H and H−1 depends entirely on
this choice. By allowing both H and H−1 to be unbounded
we can use an analogue of the standard finite-dimensional
procedure to determine whether a given transfer function θ
is a Schur function or not, namely to choose an arbitrary
minimal realization of θ, and then check whether the KYP
inequality (7) has a positive (generalized) solution. This
procedure would not work if we require H or H−1 to
be bounded, because our first main theorem (Theorem 3.3)
is not true in that setting. We shall discuss this further in
Section V by means of an example.

A generalized solution of the discrete time KYP inequal-
ity (10) that permits both H and H−1 to be unbounded was

1This is the standard “engineering” version of the transfer function. In
the mathematical literature one usually replace z by 1/z and D+ by the
unit disk D = {z ∈ C | |z| < 1}.

2Results where H−1 is bounded are typically proved by replacing the
primal KYP inequality by the dual KYP inequality (9).

developed by Arov, Kaashoek and Pik in [2]. There it was
required that

AD(
√

H) ⊂ D(
√

H) and R(B) ⊂ D(
√

H), (11)

and (10) was rewritten using the corresponding quadratic
form defined on D(

√
H)⊕U . Here we extend this approach

to continuous time.

II. CONTINUOUS TIME SYSTEM NODES

In discrete time one always assumes that A, B, C, and D
are bounded operators. In continuous time this assumption
is not reasonable. Below we will use a natural continuous
time setting, earlier used in, e.g., [3], [9], [12], [13], and
[14] (in slightly different forms).

In the sequel, we think about the block matrix S = [ A B
C D ]

as one single closed (possibly unbounded) linear operator
from [XU ] (the cross product of X and U) to

[X
Y

]
with dense

domain D(S) ⊂ [XU ], and write (1) in the form[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0. (12)

In the infinite-dimensional case such an operator S need
not have a four block decomposition corresponding to the
decompositions [XU ] and

[X
Y

]
of the domain and range

spaces. However, we shall throughout assume that the
operator

Ax := PXS [ x
0 ] ,

x ∈ D(A) := {x ∈ X | [ x
0 ] ∈ D(S)}, (13)

is closed and densely defined in X (here PX is the orthog-
onal projection onto X ). We define X 1 := D(A) with the
graph norm of A, X 1

∗ := D(A∗) with the graph norm of A∗,
and let X−1 to be the dual of X 1

∗ when we identify the dual
of X with itself. Then X 1 ⊂ X ⊂ X−1 with continuous
and dense embeddings, and the operator A has a unique
extension to an operator Â = (A∗)∗ ∈ B(X ;X−1), where
we interpret A∗ as an operator in B(X 1

∗ ;X ).3 Additional
assumptions on A will be added in Definition 2.1 below.

The remaining blocks of S will be only partially defined.
The ‘block’ B will be an operator in B(U ;X−1). In
particular, it may happen that R(B) ∩ X = {0}. The
‘block’ C will be an operator in B(X 1;Y). We shall make
no attempt to define the ‘block’ D in general since this
can be done only under additional assumptions (see, e.g.,
[14, Chapter 5] or [17], [18]). Nevertheless, we still use a
modified block notation S =

[
A&B
C&D

]
, where A&B = PXS

and C&D = PYS.
Definition 2.1: By a system node we mean a colligation

Σ := (S;X ,U ,Y), where X , U and Y are Hilbert spaces
and the system operator S =

[
A&B
C&D

]
is a (possibly

unbounded) linear operator from [XU ] to
[X
Y

]
with the

following properties:

3This construction is found in most of the papers listed in the bibliog-
raphy (in slightly different but equivalent forms), including [3], [9], and
[11]–[19].
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(i) S is closed.
(ii) The operator A defined in (13) is the generator of a

C0 semigroup t → T t, t ≥ 0, on X .
(iii) A&B has an extension

[
Â B

] ∈ B([XU ] ;X−1)
(where B ∈ B(U ;X−1)).

(iv) D(S) =
{
[ x
u ] ∈ [XU ]

∣∣ Âx + Bu ∈ X}
, and A&B =[

Â B
] |D(S);

It can be shown that (ii)–(iv) imply that the domain of S
is dense in [XU ]. It is also true that if (ii)–(iv) holds, then
(i) is equivalent to the following condition:

(v) C&D ∈ B(D(S);Y), where we use the graph norm
of A&B on D(S).

We call A ∈ B(X 1;X ) the main operator of Σ, t → T t,
t ≥ 0, is the evolution semigroup, B ∈ B(U ;X−1) is the
control operator, and C&D ∈ B(V ;Y) is the combined
observation/feedthrough operator. From the last operator
we can extract C ∈ B(X 1;Y), the observation operator
of Σ, defined by

Cx := C&D

[
x
0

]
, x ∈ X 1. (14)

It can be proved that[
(z − Â)−1Bu

u

]
∈ D(S)

for all z ∈ ρ(A) and u ∈ U . We can therefore define the
transfer function D of Σ by

D(z) = C&D
[

(z−Â)−1B
1U

]
, z ∈ ρ(A). (15)

In the case where the ‘block’ D is well-defined, e.g., in the
case where R(B) ⊂ X , the formula (15) can be written in
the standard form (8).

If Σ := (S;X ,U ,Y) is a system node, then (12) has
(smooth) trajectories of the following type.

Lemma 2.2: Let Σ := (S;X ,U ,Y) be a system node.
Then for each x0 ∈ X and u ∈ W 2,2

loc ([0,∞);U) such
that

[ x0
u(0)

] ∈ D(S), there is a unique function x ∈
C1([0,∞);X ) (called a state trajectory) satisfying x(0) =
x0,

[
x(t)
u(t)

]
∈ D(S), t ≥ 0, and ẋ(t) = A&B

[
x(t)
u(t)

]
, t ≥ 0.

If we define the output by y(t) = C&D
[

x(t)
u(t)

]
, t ≥ 0,

then y ∈ C([0,∞);Y), and the three functions u, x, and y
satisfy (12).

The lemma is contained in [14, Lemmas 4.7.7–4.7.8].
By the system induced by a system node Σ :=

(S;X ,U ,Y) we mean the node itself together with all the
trajectories of Σ. We use the same notation Σ for the system
as for the node.

A system Σ is (approximately) controllable if the set of
all possible states x(t) in Lemma 2.2 with x0 = 0 and
u(0) = 0 is dense in X (i.e., we let u vary over all functions
in u ∈ W 2,2

loc ([0,∞);U) with u(0) = 0, and let t vary
over [0,∞)). It is (approximately) observable if the only
trajectory x(·) with x(0) ∈ D(A) for which both the input

function u(·) and output function y(·) vanish identically is
the zero trajectory x(·) = 0. Finally, we define Σ to be
minimal if it is both controllable and observable. It can be
shown that Σ is controllable if and only if∨

λ∈ρ+
∞(A)

R((λ − Â)−1B) = X , (16)

where ρ+
∞(A) is the connected component of A which

contains a right half-plane. Similarly, Σ is observable if
and only if ⋂

λ∈ρ+
∞(A)

N (C(λ − A)−1) = 0. (17)

Finally, it is minimal if and only if both (16) and (17) hold.

III. THE GENERALIZED KYP INEQUALITY

In our study of the KYP inequality we do not only allow
the operators A, B, and C to be unbounded (as explained
above), but we allow both the storage operator H > 0 and
its inverse H−1 to be unbounded as well. This means that
one must be very careful about the domain on which the
different operators act.

In the case of an unbounded operator H we rewrite the
storage function EH in (3) in the form

EH(x) = ‖
√

Hx‖2, x ∈ D(
√

H). (18)

This is equivalent to replacing the operator H > 0 by
the corresponding (closed) quadratic form induced by H .
In addition we shall require D(

√
H) to be invariant under

trajectories of Σ.
Definition 3.1: A system node Σ := (S =[

A&B
C&D

]
;X ,U ,Y) is (scattering) H-passive (or simply

passive if H = 1X ) if the following conditions hold:

(i) H is a positive (injective, possibly unbounded) self-
adjoint operator on X . We denote the positive self-
adjoint square root of H by Q :=

√
H .

(ii) If u ∈ W 2,2
loc ([0,∞);U) and

[ x0
u(0)

] ∈ D(S) with x0 ∈
D(Q) and A&B

[ x0
u(0)

] ∈ D(Q), then the solution x
in Lemma 2.2 satisfies x(t), ẋ(t) ∈ D(Q) for all
t ≥ 0, and both Qx and Qẋ are continuous in X on
[0,∞).

(iii) Each solution of the type described in (ii) satisfies

〈Qx(t), Qx(t)〉X +
∫ t

s

‖y(v)‖2
Y dv

≤ 〈Qx(s), Qx(s)〉X +
∫ t

s

‖u(v)‖2
U dv,

0 ≤ s ≤ t.

(19)

In the present infinite-dimensional case the connection
between the H-passivity of a system node and the gen-
eralized KYP inequality is more subtle than in the finite-
dimensional case. In particular, solutions of the generalized
KYP inequality must satisfy a certain invariance condition.
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The following is our first main result.
Theorem 3.2: Let Σ = (S;X ,U ,Y) be a system node

with main operator A and control operator B, and let
ρ+
∞(A) be the connected component of ρ(A) ∩ C

+ which
contains some right half-plane. Then Σ is H-passive if and
only if the following conditions hold:

(i) H is a positive (injective, possibly unbounded) self-
adjoint operator on X . We denote the positive self-
adjoint square root of H by Q :=

√
H .

(ii) (λ − A)−1D(Q) ⊂ D(Q) for some λ ∈ ρ+
∞(A).

(iii) (λ − Â)−1BU ⊂ D(Q) for some λ ∈ ρ+
∞(A).

(iv) The operator QAQ−1, defined on its natural domain
consisting of those x ∈ R(Q) for which Q−1x ∈
D(A) and AQ−1x ∈ D(Q), is closable.

(v) For all [ x0
u0 ] ∈ D(S) with x0 ∈ D(Q) and

A&B [ x0
u0 ] ∈ D(Q) we have

2�〈Q[A&B] [ x0
u0 ] , Qx0〉X

+ ‖C&D [ x0
u0 ]‖2

Y ≤ ‖u0‖2
U .

(20)

Here conditions (ii) and (iv) can alternatively be replaced
by the condition
(ii’) T tD(Q) ⊂ D(Q) for all t ≥ 0, and the function

t → QT tx0 is continuous on [0,∞) (with values in
X ) for all x0 ∈ D(Q),

where t → T t is the evolution semigroup of Σ.
One half of the proof of Theorem 3.2 is easy, namely the

claim that (i)–(iii) in Definition 3.1 imply (i)–(v) in The-
orem 3.2. The most difficult part of the opposite direction
of the proof is to show that (i)–(v) in Theorem 3.2 imply
condition (ii) in Definition 3.1.

We shall call (20) the generalized (continuous time scat-
tering) KYP inequality, and we call H a solution of this
inequality if and only if (i)–(v) in Theorem 3.2 hold. Thus,
by Theorem 3.2, H is a solution of the generalized KYP
inequality if and only if Σ is H-passive. If all the operators
in (20) are bounded together with H−1, then (20) reduces
to the standard KYP inequality (7).

For the formulation of our next main theorem we recall
the definition of the restricted Schur class S(U ,Y; Ω),
where Ω is an open connected subset of C

+: θ ∈ S(U ,Y; Ω)
means that θ is the restriction to Ω of a function in the Schur
class S(U ,Y, C+). It is known that θ ∈ S(U ,Y; Ω) if and
only if θ is a B(U ,Y)-valued holomorphic function on Ω
and the kernel

Kθ(z, ω) =
1Y − θ(z)θ(ω)∗

z + ω
, z, ω ∈ Ω,

is positive definite on Ω×Ω (or more generally, on Ω0×Ω0

where Ω0 ⊂ Ω contains some interior cluster point; see [1]).
Theorem 3.3: Let Σ := (S;X ,U ,Y) be a system node

with main operator A and transfer function D. Let ρ+
∞(A)

be the connected component of ρ(A)∩C
+ which contains

some right half-plane.
(i) If the generalized KYP inequality (20) has a solu-

tion H , i.e., if Σ is H-passive, then D|ρ+
∞(A) ∈

S(U ,Y; ρ+
∞(A)).

(ii) Conversely, suppose that Σ is minimal and that
D|ρ+

∞(A) ∈ S(U ,Y; ρ+
∞(A)). Then the generalized

KYP inequality (20) has a solution H satisfying the
two additional minimality conditions∨

λ∈ρ+
∞(A)

R(
√

H(λ − Â)−1B) = X ,

⋂
λ∈ρ+

∞(A)

N (C(λ − A)−1|D(
√

H)) = 0.
(21)

These minimality conditions mean that if we replace the
original norm in the state space by the norm obtained from
the storage function EH (and then complete the space with
respect to the new norm), then the resulting system ΣH is
still minimal. The KYP inequality says that this new system
is scattering passive. If both H and H−1 are bounded, then
the conditions (21) hold if and only if the original system
Σ is minimal.

In our third main theorem we compare solutions of the
generalized KYP inequality to each other by using the
partial ordering of nonnegative self-adjoint operators on X :
if H1 and H2 are two nonnegative self-adjoint operators on
the Hilbert space X , then we write H1 � H2 whenever
D(H1/2

2 ) ⊂ D(H1/2
1 ) and ‖H1/2

1 x‖ ≤ ‖H1/2
2 x‖ for all

x ∈ D(H1/2
2 ). For bounded nonnegative operators H1 and

H2 with D(H2) = D(H1) = X this ordering coincides with
the standard ordering of bounded self-adjoint operators.

We denote the set of all solutions H of the generalized
KYP inequality (20) satisfying the additional minimality
conditions (21) by Mmin

Σ .
Theorem 3.4: Let Σ := (S;X ,U ,Y) be a minimal sys-

tem node with transfer function D satisfying the condition
D|ρ+

∞(A) ∈ S(U ,Y; ρ+
∞(A)) (this notation is explained

before and in Theorem 3.3). Then Mmin
Σ is nonempty, and

it contains a minimal element H◦ and a maximal element
H•, i.e.,

H◦ � H � H•, H ∈ Mmin
Σ .

The two extremal storage functions EH◦ and EH• corre-
spond to Willems’ [20], [21] available storage and required
supply, respectively. See [14, Remark 11.8.11] for details.
We define H� ∈ Mmin

Σ to be the balanced solution of the
generalized KYP inequality (20), i.e., the solution H� for
which the system ΣH� is the passive balanced realization
constructed in [14, Theorem 11.8.14].4

IV. H -STABILITY

The possible unboundedness of H and and H−1 where
H is a solution of the generalized KYP inequality (20)
has important consequences for the stability analysis of Σ.
Indeed, in the finite-dimensional setting it is sufficient to
prove stability with respect to the storage function EH

defined in (3) in order to get stability with respect to
the original norm in the state space, since all norms in

4H� can in a certain sense be interpreted as a geometric mean of H◦
and H•.
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a finite-dimensional space are equivalent. This is not true
in the infinite-dimensional setting unless H and H−1 are
bounded. Stability with respect to one storage function EH1

is not equivalent to stability with respect to another storage
function EH2 . Moreover, the natural norm to use for the
adjoint system is the one obtained from EH−1 instead
of EH , taking into account that H is a solution of the
generalized KYP inequality (20) if and only if H̃ = H−1

is a solution of the adjoint generalized KYP inequality.
Definition 4.1: Let H be a solution of the generalized

KYP inequality (20). Then the evolution semigroup t → T t,
t ≥ 0, is

(i) strongly H-stable, if

lim
t→∞‖H1/2T tx‖ → 0 for all x ∈ D(H1/2),

(ii) strongly H-∗-stable, if

lim
t→∞‖H−1/2(T t)∗x∗‖ → 0 for all x∗ ∈ R(H1/2),

(iii) strongly H-bistable if both (i) and (ii) above hold.

Theorem 4.2: Let Σ := (S;X ,U ,Y) be a minimal sys-
tem node with transfer function D satisfying the condition
D|ρ+

∞(A) = θ|ρ+
∞(A) for some θ ∈ S(U ,Y; C+). Let H◦,

H•, and H� be the special solutions in Mmin
Σ defined in

and after Theorem 3.4. Let t → T t, t ≥ 0, be the evolution
semigroup of Σ. Then the following claims are true:

(i) t → T t is strongly H◦-stable if and only if the
factorization problem

ϕ(z)∗ϕ(z) = 1U − θ(z)∗θ(z) a.e. on iR

has a solution ϕ ∈ S(U ,Yϕ; C+) for some Hilbert
space Yϕ.

(ii) t → T t is strongly H•-∗-stable if and only if the
factorization problem

ψ(z)ψ(z)∗ = 1Y − θ(z)θ(z)∗ a.e. on iR

has a solution ψ ∈ S(Uψ,Y; C+) for some Hilbert
space Uψ .

(iii) t → T t is strongly H�-bistable if and only if both
the factorization problems in (i) and (ii) are solvable.

V. AN EXAMPLE

In this section we present an example where all the
solutions H of the generalized KYP inequality (20) are
unbounded and have an unbounded inverse. This example
is a continuous time analogue of the discrete time examples
given in [7, p. 267] and [2]. The same example will be used
to illustrate the conclusion of Theorem 4.2.

The impulse response of a suitably normalized damped
heat equation on [0,∞) with Neumann control and Dirichlet
observation at the origin is given by b(t) = 1√

π
t−1/2e−2t,

t ≥ 0, with transfer function θ(z) = 1/
√

z + 2, z ∈ C
+.

This is a Schur function on C
+, and it is possible to

realize this function with the help of the damped heat

equation. However, instead we choose another realization,
namely an exponentially weighted version of one of the
standard Hankel realizations. We begin by first replacing θ
by the shifted function θ0(z) := 1/

√
z + 3, z ∈ C

+. The
corresponding impulse response is b0(t) = 1√

π
t−1/2e−3t,

t ≥ 0. We realize θ0 by means of the standard time domain
output normalized Hankel realization described in, e.g.,
[14, Example 2.6.5(ii)], and we denote this realization by
Σ0 := (S0;X , C, C). The state space of this realization is

X = L2(0,∞) and the system operator S0 =
[

[A&B]0
[C&D]0

]
is defined as follows. We take the main operator to be
(A0x)(ξ) = x′(ξ) for x ∈ D(A0) := W 2,1(0,∞).
Then X−1 = W−1,2(0,∞), and Â0x is the distribution
derivative of x ∈ L2(0,∞). We take the control operator
to be (B0c)(ξ) = b0(ξ)c for c ∈ C. We define D(S0)
to consist of those [ x

c ] for which x ∈ L2(0,∞) is of
the form x(ξ) = x(0) +

∫ ξ

0
h(ν) dν − c

∫ ξ

0
b0(ν) dν for

some h ∈ L2(0,∞), and define [A&B]0 [ x
c ] = h and

[C&D]0 [ x
c ] = x(0). This realization is output normalized

in the sense that the observability Gramian is the identity,
and it is minimal because the range of the Hankel operator
induced by b0 is dense in L2(0,∞) (see [7, Theorem 3-
5, p. 254]). The evolution semigroup t → T t

0 is the left-
shift semigroup on L2(0,∞), i.e., (T t

0x)(ξ) = x(t + ξ)
for t, ξ ≥ 0, and the spectrum of A0 is the closed
left half-plane {�z ≤ 0}. From this realization we get
a minimal realization Σ := (S;X , C, C) of the original
transfer function θ by taking S = S0 +

[
1X 0
0 0

]
. Clearly the

spectrum of the main operator A := A0 + 1X is the closed
half-plane {�z ≤ 1}, the evolution semigroup t → T t,
given by (T tx)(ξ) = etx(t+ ξ) for t, ξ ≥ 0, is unbounded,
and the transfer function D is the restriction of θ to the
half-plane �z > 1.

Since θ is a Schur function, it follows from Theorem
3.3 that the generalized KYP inequality (20) has a solution
H . Suppose that both H and H−1 are bounded. Then
our original realization becomes passive if we replace the
original norm by the norm induced by the storage function
EH . In particular, with respect to this norm the evolution
semigroup is contractive. However, this is impossible since
we known that the semigroup is unbounded with respect
to the original norm, and the two norms are equivalent.
This contradiction shows that H or H−1 is unbounded.
In this particular case it follows from [14, Theorems 9.4.7
and 9.5.2] that H−1 is bounded, hence H itself must be
unbounded.

From the above example we can get another one where
both H and H−1 must be unbounded as follows. We take
two independent copies of the transfer function θ considered
above, i.e, we look at the matrix-valued transfer function[

θ(z) 0
0 θ(z)

]
. We realize this transfer function by taking two

independent realizations of the two blocks, so that we
realize one of them with the exponentially weighted output
normalized shift realization described above, and the other
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block with the adjoint of this realization. This will force
both H and H−1 to be unbounded for every solution H
of the generalized KYP inequality (20) for the combined
system.

The above example illustrates our earlier claim that it
is possible that all the solutions of the generalized KYP
inequality (20) are unbounded and have an unbounded
inverse. However, taking a closer look at the situation
we find that there is another even more severe problem.
Through a careful choice of the original realization one
can always assure that the identity is a solution of (20) (in
particular, H and H−1 are bounded) whenever the function
θ that we want to realize is a Schur function (one way to do
this is to start with an arbitrary minimal realization, find an
arbitrary solution of the generalized KYP inequality (20),
replace the norm in the state space by the norm induced
by the storage function EH , and finally complete the space
with respect to this norm). However, it will still be true in
many cases that (20) also has other solutions H for which
H or H−1 is unbounded. In particular, if we choose the
original realization to be the passive balanced realization
constructed in [14, Theorem 11.8.14] (which corresponds to
the balanced solution H� of the generalized KYP inequality
(20)), then it is more a rule than an exception that the
maximal solution H• in Theorem 3.4 is unbounded, and that
the minimal solution H◦ in Theorem 3.4 has an unbounded
inverse. The only case where this is not true is where
the norms induced by the two storage functions EH◦ and
EH• are equivalent.5 In the example discussed above the
balanced realization can be identified with the standard
realization based on the damped heat equation, and its
spectrum is the half-line (−∞,−2]. If we want to study
this example by starting from the damped heat equation
realization, then H• is unbounded and H◦ has an unbounded
inverse.

To illustrate Theorem 4.2 we observe that in the example
studied above with θ(z) = 1/

√
z + 2 both factorization

problems (i) and (ii) in that theorem coincide, and they are
solvable. Consequently, the evolution semigroup t → T t is
strongly H◦-stable, strongly H•-∗-stable, and strongly H�-
bistable (and even exponentially H�-stable in this case).
Nevertheless, t → T t is not strongly H◦-∗-stable or strongly
H•-stable. This follows from the fact that θ does not have
a meromorphic pseudo-continuation into the left half-plane
(see [5] and [6] for details).

The proofs of all the results mentioned above are given
in [6]. They are based on the corresponding results for the
discrete time case proved in [2], some new results on the
pseudo-similarity of continuous time system nodes obtained
in [6], and the connection between discrete and continuous
time-invariant systems via the Cayley transform, considered
in [3] (this transform is described in detail in [14]).

5Necessary and sufficient condition on the transfer function for these
two norms to be the same or equivalent can be derived from [4, Theorems
2 and 3].
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