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Abstract— In this paper, we apply internal model principle
for plants that are passive nonlinear systems, to solve tracking
of constant reference signal and disturbance rejection of a finite
superposition of sine waves of arbitrary known frequencies.
A desirable passivity property around an equilibrium (x0,u0)
which generates y0 is used to design the controller. The proposed
controller is an LTI system, which assures that the state
trajectories of the closed loop system is bounded and the error
signal converges to zero.

I. INTRODUCTION

The internal model principle for LTI systems suggests that
the dynamic structure of the exosystem must be included in
the controller (see also [7]). For example, to eliminate the
steady-state error for step reference or disturbance signals,
we need integrators in the loop. If an internal model with
transfer function s/(s2 + ω2) (with suitable multiplicity) is
in the feedback loop and the closed-loop system is stable,
then we obtain tracking and/or disturbance rejection for
sinusoidal reference and disturbance signals of frequency ω .
If the reference and disturbance signals are periodic, then the
internal model principle leads to repetitive control (see for
example [20]).

The idea of an internal model has been generalized for
output regulation of nonlinear systems by Byrnes et al. [2].
Jayawardhana and Weiss [11] explore a simple LTI controller
using an LTI internal model to solve a disturbance rejection
problem for passive nonlinear plants, where the exosystem
produces a finite superposition of sine waves of arbitrary
known frequencies. In [11], the reference signal is taken to
be zero and the solution of regulator equations is trivial.

In this paper, we propose a simple controller design
method for nonlinear passive plants, which leads to an
LTI controller (based on the internal model principle), to
track a constant reference signal and to reject disturbance
signals added to the control input. Here, a desirable pas-
sivity property around an equilibrium point (x 0,u0), which
generates the output y0, is studied. If a storage function can
be found such that the system is again passive with supply
rate 〈y− y0,u−u0〉, then we solve the tracking problem for
constant signals by recasting it into an input disturbance
rejection problem for constant signal. Thus, the result in [11]
can be applied directly to the new system to achieve the main
objective.

The asymptotic tracking and disturbance rejection problem
for constant signals using PI controllers for nonlinear plants
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has been discussed, for example, in Desoer and Lin [5]
and Khalil [14]. Recently, a passivity-based PI controller
for switched power converters has been introduced in Perez
et al [16]. The local output regulation problem for signals
generated by finite-dimensional exosystems (e.g., sinusoidal
signals) for nonlinear plants has been investigated, for exam-
ple, in Byrnes et al [2], Huang and Lin [9], using the internal
model principle. The internal model is in fact an observer for
the state of the exosystem. The proposed controller in [9]
requires the solution of the regulator equations, which may
be difficult to solve and it requires a precise model of the
plant and the exosystem. In our work, we try to generalize the
result of [16] for tracking a constant reference signal, while
at the same time, the controller is able to reject disturbance
signal added to the input without the need for a precise model
of the plant.

Recent results in output regulation problem for nonlinear
systems can be found in [3], [4], [6], [8], [10], [17] and
references therein.

Passive systems have a C 1 storage function H (defined
on the state space) which has the intuitive meaning of stored
energy. The input signal u and the output signal y take values
in the same inner product space. We denote the state of the
system at time t by x(t). The defining property of a passive
system is that

Ḣ ≤ 〈y,u〉, where Ḣ =

〈
∂H(x)

∂x

T

, ẋ

〉
. (1)

The function H is often used as a Lyapunov function in
analyzing the system stability. The interconnection of several
passive systems leads to a passive closed-loop system if the
interconnection is neutral with respect to the power supply,
see [18]. Many physical systems (electrical circuits, mechan-
ical systems, etc.) are passive if the input and output variables
are chosen carefully such that their product represents the
flow of power into the system.

For nonlinear plants, passivity can be used for controller
design, see for example [1], [11], [15] and [18].

II. PRELIMINARIES

Notation. Throughout this paper, the inner product on any
Hilbert space is denoted by 〈·, ·〉 and R+ = [0,∞). We refer
to [14] and [18] for basic concepts on nonlinear systems and
on passivity theory. For a finite-dimensional vector x, we

use the norm ‖x‖=
(
∑n |xn|2

) 1
2 and for matrices, we use the

operator norm induced by ‖ · ‖ (the largest singular value).
For any ε ≥ 0, we denote Bε = {x ∈ R

n | ‖x‖ ≤ ε}. For a
square matrix A, σ(A) denotes the set of its eigenvalues.
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The space C 1(Rl ,Rp) consists of continuously differen-
tiable functions f : R

l → R
p.

We consider a nonlinear plant P described by

ẋ = f (x,u),
y = h(x), (2)

where the state x, the input u and the output y are functions
of t ≥ 0, such that x(t) ∈ R

n, u(t),y(t) ∈ R
m, f ∈ C 1(Rn ×

R
m,Rn) with f (0,u) = 0 ⇔ u = 0 and h ∈ C 1(Rn,Rm) with

h(0) = 0. Let Y ⊂ R
m be a domain of constant reference

signal containing 0.
For the nonlinear plant P in (2) and Y , we assume the

following:

• A1. For any y0 ∈ Y , there exists a unique x0 ∈ R
n, a

unique u0 ∈ R
m and H(x,y0) ∈ C 1(Rn ×Y ,R+) such

that
f (x0,u0) = 0, h(x0) = y0, (3)

and
∂H(x,y0)

∂x
f (x,u) ≤ 〈y− y0,u−u0〉. (4)

Assumption A1 shows that for any constant signal y0 ∈
Y , the plant P is passive with respect to storage function
H(x,y0) and supply rate 〈y − y0,u − u0〉, i.e., Ḣ(x,y0) ≤
〈y−y0,u−u0〉. One particular class of port-controlled Hamil-
tonian systems, where the storage function H(x,y0) in As-
sumption A1 can be constructed, is presented in [12].

Note that the Assumption A1 shows that there exists an
injective (one-to-one) mapping Y 
→ R

n and an injective
mapping Y 
→ R

m. For the plant P, the trivia mapping of
(x0,u0) for y0 = 0 is x0 = 0 and u0 = 0.

Remark 2.1: The storage function H(x,y0) in Assumption
A1 can be used to show the passivity of P in (2) with supply
rate 〈y,u〉. Indeed, by having x0 = 0 and u0 = 0, H(x,0)
satisfies

Ḣ(x,0) =
∂H(x,0)

∂x
f (x,u) ≤ 〈y,u〉. (5)

Remark 2.2: For affine systems described by

ẋ = f (x)+ g(x)u, y = h(x), (6)

the condition (4) is equivalent to the following conditions

∂H(x,y0)
∂x

[ f (x)+ g(x)u0] ≤ 0,

∂H(x,y0)
∂x

g(x) = hT (x)−hT (x0).

Note that by taking x0 = 0 and u0 = 0, the above condition
satisfies the Hill-Moylan condition (see also [18]).

Consider closed-loop system as in Fig. 1, with the plant
P be as in (2), the controller C be given later, y0 ∈ Y be
constant reference signal and disturbance d be generated by
exosystem E

ẇ = Sw
d(t) = Cww(t) (7)

�+
��

+
� P

�
−

+
���C

d u y

yc e y0

Fig. 1. The tracking and disturbance rejection problem for the plant P and
a certain class of signals d and y0 is to find a controller C such that the
state trajectories of the closed-loop system L are bounded and e(t) → 0 as
t → ∞.

where Cw ∈ R
m×p, w(t) ∈ R

p is the exosystem state, S ∈
R

p×p has its eigenvalues on the imaginary axis and eSt

is uniformly bounded for t ≥ 0. An equivalent way of
expressing our assumptions on S is the following: σ(S)⊂ iR
and all its Jordan blocks are of dimension 1 (i.e., there are
no generalised eigenvectors for S).

Remark 2.3: Assumption A1 implies that for any constant
reference signal y0 ∈Y , there exists solution to the regulator
equation for the plant P, to track reference signal y 0 and
to reject disturbance signal d. More precisely, by choos-
ing x(t) = x0 and yc(t) = u0 − d(t) where h(x0) = y0 and
f (x0,u0) = 0, it follows that

ẋ = 0 = f (x0,yc + d) = f (x0,u0),
0 = y0 −h(x0).

Remark 2.4: The storage function H(x,y0) which satisfies
Assumption A1 is natural in LTI systems. Suppose that an
LTI system P with state x, input u and output y, is passive
with respect to the quadratic storage function H. Let state x0

and input u0 give equilibrium for P, generating the output
y0. Then, the same LTI system P is also passive with respect
to the quadratic storage function x 
→ H(x− x0) and supply
rate 〈y− y0,u−u0〉, i.e., Ḣ(x− x0) ≤ 〈y− y0,u−u0〉.

For any y0 ∈Y , H(x,y0) is called proper, if H(x,y0)→ ∞
whenever ‖x‖→ ∞.

P is said to be zero-state observable if u(t) = 0,y(t) = 0
for all t ≥ 0 implies that x(t) = 0 for all t ≥ 0, and P is zero-
state detectable if u(t) = 0,y(t) = 0 for all t ≥ 0 implies that
lim
t→∞

x(t) = 0.

Let us recall some definitions and results from [11] for
the control system as in Figure 1, with the plant P be as in
(2), r = 0 and disturbance d be as in (7).

Let χ(s) = sq + aq−1sq−1 . . . + a1s + a0 be the minimal
polynomial of S ∈ R

p×p, so that

Sq + aq−1Sq−1 + . . .+ a2S2 + a1S+ a0 = 0, (8)

where aq−1, . . . ,a0 ≥ 0, q ≤ p and χ has only simple zeros,
all on iR.

Suppose that Smin ∈ R
q×q is such that Smin + ST

min = 0
and its characteristic polynomial is χ . If 0 ∈ σ(S), then the
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simplest choice would be

Smin =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 Ω1 0 · · · 0
0 0 Ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ων

⎤
⎥⎥⎥⎥⎥⎦ , (9)

where for each k = 1 . . . ,ν , Ωk =
[

0 −ωk

ωk 0

]
for some

ωk ∈ R\{0} and ωk �= ω j for k �= j. The set σ(Smin) = σ(S)
contains 0 and ±iωk (k = 1, . . . ,ν) (0 and ωk are the known
frequencies of the disturbance signal). If 0 /∈ σ(S), then we
omit the first line and the first column in (9), so that σ(Smin)
contains only ±iωk.

For i = 1 . . . ,m, let Γi ∈ R
q×1 be such that (ΓT

i ,Smin) is
observable (the m vectors Γi may be taken equal). Consider
the controller C described in state space as follows:

ẋc = Axc + Be,

yc = BT xc + De, (10)

where xc ∈R
qm (q is as in (8)), e∈R

m, yc ∈R
m, the matrices

A ∈ R
qm×qm and B ∈ R

qm×m are given by

A =

⎡
⎢⎢⎢⎣

Smin 0 · · · 0
0 Smin · · · 0
...

...
. . .

...
0 0 · · · Smin

⎤
⎥⎥⎥⎦ ,B =

⎡
⎢⎢⎢⎣

Γ1 0 · · · 0
0 Γ2 · · · 0
...

...
. . .

...
0 0 · · · Γm

⎤
⎥⎥⎥⎦ ,

(11)
and D = kIm×m where k > 0.

In the closed-loop system L shown in Fig. 1, the controller
C solves the output regulation problem locally for the plant
P, the exosystem E and the constant reference signal set
Y , if for any constant reference signal y0 ∈ Y , any initial
conditions (x(0),w(0)) in the neighborhood of (x 0,0) and
xc(0) ∈ Xc (which depends on u0), all state trajectories of
the closed-loop system are bounded and e(t) → 0 as t → ∞.
C solves output regulation problem globally for P, E and
Y , if for any constant reference signal y0 ∈ Y , for any
initial conditions (x(0),w(0),xc(0)) ∈ R

n × R
p × R

qm, all
state trajectories of the closed-loop system are bounded and
e(t) → 0 as t → ∞.

Lemma 2.5: [11] Suppose that the plant P defined by (2)
is zero-state detectable. Let the controller C be given by (10)
and consider the control system L as in Figure 1, with y0 = 0.
Then, the following two conditions are equivalent.

(1) L is zero-state detectable (with output y).
(2) For any xco ∈ R

qm, xco �= 0 and for any x(0) = x0 ∈
R

n, the plant P satisfies u(t) = BT eAtxco ⇒∃ t ≥ 0
such that y(t) �= 0.

Proof: See also [11].
(1) ⇒ (2). By using contradiction, suppose there exist x co

and x0 such that u(t) = BT eAtxco ⇒ y(t) = 0 for all t ≥ 0. By
taking xc(0) = xco, x(0) = x0 and d = 0, we have y = 0 and
hence xc(t) = eAt xco � 0 as t → ∞. Then L is not zero-state
detectable (with output y), a contradiction.

(2) ⇒ (1). From Figure 1, if y = 0 and d = 0, then we
have

u(t) = yc(t) = BT eAtxc(0) where xc(0) ∈ R
l.

This together with the condition (2) implies that xc(0) = 0,
hence xc(t) = 0 for all t ≥ 0 and u = 0. By the zero-state
detectability of P, u = 0 and y = 0 implies that x(t) → 0 as

t → ∞. Hence,
[

x(t)
xc(t)

]
→ 0 as t → ∞.

Theorem 2.6: [11] Suppose that the plant P defined by (2)
satisfies (5) (passivity) with a storage function H(x,0) such
that H(x,0)> 0 for x �= 0, H(0,0)= 0. Assume that P is zero-
state detectable. Let the set of reference signal Y = {0}. Let
E be the exosystem from (7) and denote by χ the minimal
polynomial of S. Let the controller C be given by (10) – (11)
where Smin has the characteristic polynomial χ and satisfies
Smin +ST

min = 0. Consider the control system L as in Figure 1,
with y0 = 0. We assume that P has property (2) from Lemma
2.5.

Then C solves the output regulation problem locally for
P, E and Y . Moreover, if H(x,0) is proper, then C solves
the output regulation problem globally.

Proof: See also [11]. Let

Σ = −(φc)−1φw, (12)

where

φc =

⎡
⎢⎢⎢⎣

BT

BT A
...

BT Aq−1

⎤
⎥⎥⎥⎦ , φw =

⎡
⎢⎢⎢⎣

Cw

CwS
...

CwSq−1

⎤
⎥⎥⎥⎦ . (13)

For conciseness, it can be shown that Σ satisfies

ΣS = AΣ and BT Σ+Cw = 0. (14)

The proof follows from the fact that φc ∈ R
qm×qm has full

rank and invertible by the observability of (Γ T
i ,Smin). It can

be checked that 0 = φcΣ + φw satisfies the second equation
in (14). Moreover, by some simple algebraic manipulations
and by using (8), it can be checked that the first equation in
(14) holds.

Let us denote ρ = xc −Σw. Then using (14), the closed-
loop system, with [ x

ρ ] as the state variables, can be written
as follows

ẋ = f (x,BT [ρ + Σw]− kh(x)+Cww)
= f (x,BT ρ − kh(x)), (15)

ρ̇ = A [ρ + Σw]−Bh(x)−ΣSw

= Aρ −Bh(x), (16)

y = h(x). (17)

Note that this corresponds to the closed-loop equations of
(2), (10) with y0 = 0,d = 0 and with ρ in place of xc.
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Consider the storage function Hcl(x,ρ) = H(x,0)+ 1
2‖ρ‖2.

Then, using (5) and (15) – (17), Ḣcl is given by

Ḣcl =

〈(
∂H(x,0)

∂x

)T

, f (x,BT ρ − kh(x))

〉

+〈ρ ,Aρ −Bh(x)〉
≤ 〈h(x),BT ρ − kh(x)〉− 〈ρ ,Bh(x)〉= −k‖y‖2.

By the assumptions of the theorem and using Lemma 2.5,
the system described by (15), (16) and (17) is zero-state
detectable.

Since Ḣcl ≤ −k‖y‖2 ≤ 0 for all t ≥ 0, this implies (using
Hcl as a Lyapunov function) that (x,ρ) = (0,0) is a stable
equilibrium point. It follows that for any ε > 0, there exists
δ > 0 such that

[
x(0)
ρ(0)

]
∈ Bδ ⇒

[
x(t)
ρ(t)

]
∈ Bε for all t ≥ 0.

According to the La-Salle invariance principle [18], such a
state trajectory [ x

ρ ] converges to the largest invariant set Ω
contained in {z ∈ Bε | Ḣcl(z) = 0}. On the invariant set Ω,
Hcl is constant along state trajectories, and y = 0 along such
trajectories. By the zero-state detectability of (15) – (17), all
these trajectories converge to 0, hence Hcl(z) = Hcl(0)= 0 for
all z ∈ Ω. Since Hcl(z) > 0 for all z �= 0, we obtain Ω = {0}.

Thus, there exists δ > 0 such that
[

x(0)
ρ(0)

]
∈ Bδ ⇒

[
x(t)
ρ(t)

]
→ 0

as t → ∞.
If H(x,0) is proper, then Hcl is proper. It implies that every

state trajectory of L remains bounded, as it is easy to see.
Thus, for any state trajectory [ x

ρ ], we can apply the preceding
argument with Bε that contains this state trajectory. Then, we
conclude that limt→∞

[
x(t)
ρ(t)

]
= 0.

III. MAIN RESULT

Let us consider the following motivating example for the
plant P, which is an integrator with a saturated output.

ẋ = u, y = tanh(x), (18)

where x, u and y is a function of t. Consider the control block
in Fig. 1 with y0 ∈ (−1,1) be a constant reference signal. It
can be evaluated that by using a proportional gain feedback
yc = Ke, where K > 0 and e = y0 − y, the tracking objective
can be achieved whenever d = 0. However, if d is generated
by the exosystem (7), where 0∈σ(S), the closed loop system
is only locally Input-to-State Stable (ISS, for definition see
also [14],[19]), e(t) � 0 as t →∞ and the closed loop system
can become unstable for large constant disturbance.

The system (18) satisfies the Assumption A1. Indeed,
for any y0 ∈ (−1,1), x0 = tanh−1(y0), u0 = 0 and the
storage function H(x,y0) =

∫ x
tanh−1(y0) tanh(σ)dσ − y0(x −

tanh−1(y0)) satisfy Assumption A1. It is easy to see that
for any y0 ∈ (−1,1), H(x,y0) > 0 for x �= x0, H(x0,y0) = 0
and H(x,y0) is proper. It can be evaluated that the controller,
which will be described in Proposition 3.1, can be used for
(18), to globally track constant reference signal y 0 ∈ (−1,1)
and to globally reject disturbance d generated by (7).

Proposition 3.1: Suppose that for the plant P defined by
(2) and for the set of constant reference signal Y , the

�+
��

+ �
−

� P̃

�
−

+
���C

d v ỹ

yc e 0

u0

Fig. 2. The disturbance rejection problem for the plant P̃.

Assumption A1 is satisfied. We assume that for any y0 ∈Y ,
H(x,y0) > 0 for x �= x0 and H(x0,y0) = 0.

Consider the control system L as in Figure 1. Suppose that
y0 ∈ Y is a constant reference signal, the exosystem E is as
in (7) with 0∈σ(S) and denote by χ the minimal polynomial
of S. Let the controller C be given by (10) – (11) where S min

has characteristic polynomial χ and satisfies Smin +ST
min = 0.

Let the system P̃ be defined by

η̇ = f (η + x0,v+ u0),
ỹ = h(η + x0)− y0,

(19)

where the state η(t) ∈ R
n, the input signal v(t) ∈ R

m, the
output ỹ(t)∈R

m, the mappings f and h are as in (2). Suppose
that for any pair of (x0,u0,y0) satisfying Assumption A1, P̃
is zero-state detectable with input v and output ỹ, and P̃ has
property (2) from Lemma 2.5.

Then C solves the output regulation problem locally for
P, E and Y .

Moreover, if for any y0 ∈ Y , H(x,y0) is proper, then C
solves the output regulation problem globally for P, E and
Y .

Proof: The original plant P in (2) with output ỹ = h(x)−
y0, can be seen as the input of plant P̃ being disturbed by
constant disturbance −u0 (see Fig. 2). Indeed, if we substitute
v = u−u0 into (19) and let x = η + x0, we get the original
plant P in (2) with output ỹ = y− y0.

By denoting η = x−x0, it can be evaluated that the storage
function HP̃(η) = H(η + x0,y0) defines the passivity of P̃,
i.e., ḢP̃ ≤ 〈ỹ,v〉 (by Assumption A1). HP̃(η) satisfies the
condition in Theorem 2.6, i.e., HP̃(η) > 0 for η �= 0 and
HP̃(0) = 0.

Let d̃(t) = d(t)−u0 be the input disturbance signal to the
passive plant P̃ and d̃(t) is generated by exosystem Ẽ

˙̃w = S̃w̃,

d̃(t) =
[
Cw Im×m

]
w̃,

where w̃(t) =
[

w(t)
wyo(t)

]
, w(t) ∈ R

p, wyo(t) ∈ R
m,

S̃ =
[

S 0
0 0

]
, (20)

Cw ∈ R
m×p, S ∈ R

p×p are as in (7) and wyo(0) = −u0. Note
that since we assume 0 ∈ σ(S), the minimal polynomial of
S̃ is also given by χ .
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Then, using the assumptions of the proposition, the storage
function HP̃(η) and Theorem 2.6, the controller C solves
the output regulation problem locally for P̃, Ẽ and {0}. This

implies that there exists δ > 0 such that
[

η(0)
xc(0)−Σw̃(0)

]
∈Bδ ⇒[

η(t)
xc(t)−Σw̃(t)

]
→ 0 as t → ∞ and ỹ(t) → 0 as t → ∞, where

Σ = −φ−1
c φw, φc is as in (13) and

φw =

⎡
⎢⎢⎢⎣

[Cw I]
[Cw I]S̃

...
[Cw I]S̃q−1

⎤
⎥⎥⎥⎦ .

The same arguments can be carried out for any y 0 ∈ Y .
Thus, the controller C solves the output regulation problem
locally for P, E and Y , i.e., there exists δ > 0 such that[

x(0)−x0
xc(0)−Σw̃(0)

]
∈Bδ ⇒

[
x(t)−x0

xc(t)−Σw̃(t)

]
→ 0 as t →∞ and e(t)→ 0

as t → ∞.
If for any y0 ∈Y , H(x,y0) is proper, then the correspond-

ing HP̃(η) is also proper. Thus, using a similar method as
above and by Theorem 2.6, the controller C solves the output
regulation problem globally for P, E and Y .

Remark 3.2: If 0 /∈ σ(S) in (7), we can assume a fictitious
constant disturbance signal into the exosystem dynamics, so
that 0 ∈ σ(S).

In many passive systems, such as mechanical and electrical
systems, we may already know the storage function H0(x) =
H(x,0) which defines the passivity of the plant P with supply
rate 〈y,u〉, i.e. Ḣ0 ≤〈y,u〉. Thus, the storage function H(x,y0)
which satisfies Assumption A1 may be constructed using the
storage function H0(x) as presented in [12].

IV. EXAMPLE

Consider the electrical circuit in Figure 3, where the
voltage V on the nonlinear load P should track a constant
reference voltage y0. We can only control the current source
Ic. The main current Id comes from an external power supply,
for example, from an AC/DC converter with power factor
precompensation, as discussed in [13], and we treat Id as
a disturbance. The current source Id has a DC component
which is approximately equal to the desired current through
P, but any small deviation of the DC component, as well
as the AC components of Id , should be compensated by
controlling Ic. The AC components of Id correspond to the
fundamental frequency of the power grid and its harmonics.

The nonlinear load P in Fig. 3 can be described in state
space as follows:

İ2 =
(

dφ(I2)
dI2

)−1

(−α(I2)+V) ,

V̇ =
(

dq(V )
dV

)−1

(−I2 + I) , (21)

y = V, e = y0 − y, (22)

where x(t) ≡
[

I2(t)
V (t)

]
∈ R

2 is the state of P, I ∈ R is the
input current, y ∈ R is the output voltage, y0 ∈ R is a
constant reference voltage. Here, φ ,q and α are in C 1(R,R),

I2

V

I

Id Ic

P

VR= (I2)

VL= o(I2)

I1=q(V)

Fig. 3. Electrical circuit of voltage regulation, where the load consists
of a nonlinear resistor VR = α(I2), a nonlinear inductor and a nonlinear
capacitor.

φ(0) = 0, q(0) = 0, α(0) = 0 and these functions are strictly
monotone increasing. (The fact that φ is strictly monotone
increasing means that (φ(a) − φ(b))(a − b) > 0 for any
a �= b.)

The physical meaning of φ(I2) is the magnetic flux of the
inductor, so that the voltage across the inductor is VL = φ̇(I2).
The meaning of q(V ) is the electric charge in the capacitor,
so that the current flowing through the capacitor is I1 = q̇(V ).
Note that for a linear resistor, α(I2) = RI2, where R > 0 is the
resistance, for a linear inductor, φ(I2) = LI2, where L > 0 is
the inductance, and for a linear capacitor, q(V ) = CV , where
C > 0 is the capacitance.

With the storage function

H0(x) = φ(I2)I2 −
∫ I2

0
φ(λ )dλ + q(V)V −

∫ V

0
q(λ )dλ ,

P is passive with input I and output V , i.e. Ḣ0 ≤ 〈V, I〉. Let
us denote by α−1(·) the inverse function of α(·), such that
α ◦α−1(a) = a for any a ∈ R.

It can be checked that for any y0 ∈ R,

x0 =
[

α−1(y0)
y0

]
, u0 = α−1(y0), (23)

satisfy the existence of x0 and u0 in Assumption A1.
The storage function

H(x,y0) = φ(I2)
(
I2 −α−1(y0)

)−∫ I2

α−1(y0)
φ(λ )dλ

+q(V )(V − y0)−
∫ V

y0

q(λ )dλ , (24)

satisfies Assumption A1 and for any pair of (x0,u0,y0),
H(x,y0) > 0 for x �= x0, H(x0,y0) = 0. Indeed,

∂H(x,y0)
∂x

⎡
⎢⎣

(
dφ(I2)

dI2

)−1
(−α(I2)+V)(

dq(V)
dV

)−1
(−I2 + u0 + I−u0)

⎤
⎥⎦

= −(
I2 −α−1(y0)

)
(α(I2)− y0)+ 〈V − y0, I −u0〉

≤ 〈V − y0, I −u0〉,
where the last inequality is due to the monotonicity of α .

Let us consider the control block for the voltage regulation
problem as in Fig. 4. We assume that Id is the disturbance
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Fig. 4. The voltage regulation control block where the objective of
controller C is to reject disturbance signal Id , to track constant reference
voltage y0 and to keep the closed-loop state trajectories bounded.

signal which is generated by the exosystem (7) with 0 ∈
σ(S). By denoting η = x− x0, it is easy to verify that P̃

η̇1 =
(

dφ
dη1

)−1 (−α(η1 + α−1(y0))+ η2 + y0
)
,

η̇2 =
(

dq
dη2

)−1 (−(η1 + α−1(y0))+ u0 + v
)
,

−e = ỹ = η2,

is zero state-observable with input v and output ỹ, i.e., ỹ = 0
and v = 0 ⇒ η = 0.

It can be checked that the conditions in Proposition 3.1
with the controller C as in (10) are satisfied. Thus, the
controller C can be used to control Ic, for solving output
(voltage) regulation problem locally for P, E and R where
Id is seen as the exosystem E. If the controller for Id is able
to produce desired current Id(t) = α−1(y0) for all t ≥ 0, then
Ic(t)→ 0 and e(t)→ 0 as t → ∞. One such realization of the
controller C is shown in Fig. 5.

Moreover, if φ and q is such that dφ(I2)
dI2

≥ ε > 0 and
dq(V)

dV ≥ ε > 0 for all I2 ∈ R and V ∈ R, then for any y0 ∈ R,
H(x,y0) in (24) is proper. Thus, the same controller C solves
the output regulation problem globally.

Since the controller we have discussed exploits the passiv-
ity of nonlinear plant and induces an output strictly passive
closed-loop system, it can be expected that the closed-loop
system possesses L2-stability property (see also [18]) and
has some robustness property with respect to parameter un-
certainties. Indeed, in the voltage regulation example above,
for any additive parameter uncertainties in the inductance
∆φ(I2), in the capacitance ∆q(V ) and/or in the resistance
∆α(I2) such that (φ + ∆φ), (q + ∆q) and/or (α + ∆α) are
strictly monotone increasing, the same controller still assures
tracking error e to converge to zero, while the plant state x
and the controller state xc converge to different values.

V. CONCLUSIONS

A method to track a constant reference signal and to
reject disturbance signal for passive nonlinear systems using
a simple LTI controller is discussed. The controller assures
that the tracking error converges to zero and state trajectories
of the closed-loop system are bounded. An example to the
control of voltage regulation is presented.

I2

V

I

Id

y0

P

RL1

Ic
L2

C2

Lk

Ck

C

VR= (I2)

VL= o(I2)

I1=q(V)

Fig. 5. One realization of controller C for voltage regulation as in Fig. 4,
where L1 determines the gain of the integrator and the pair of inductor Lk
and capacitor Ck , k = 2, ...,ν , determine the frequencies of the signal to be
rejected from the current Id , i.e., ωk =

√
1

LkCk
.
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