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Abstract— In this paper, an actuator fault detection and
isolation scheme for a class of nonlinear systems with
uncertainty is considered. The uncertainty is allowed to have
a nonlinear bound which is a general function of the state
variables. A sliding mode observer is established first based on
a constrained Lyapunov equation. Then, the equivalent output
error injection signal is employed to reconstruct the fault
signal using the characteristics of the sliding mode observer
and the structure of the uncertainty. Finally, a simulation
study of the HIRM aircraft system is presented to show the
effectiveness of the scheme.

I. INTRODUCTION

For several decades, fault detection and isolation (FDI)
has been studied extensively (see e.g the survey paper [7]
and the references therein). Advances in control theory have
greatly sped up the development of FDI of dynamical sys-
tems, and various approaches have been proposed (see e.g
[5], [6], [1]). Among these approaches, observer-based FDI
is an effective one and has been widely studied especially
in recent decades. Some control inspired approaches, for
instance, sliding mode techniques [3], modern differential
geometric approaches [10] and adaptive control ideas [18]
have been successfully incorporated with the observer-based
FDI approach, and many fruitful results have been achieved
but most of the work has focused on ‘certain’ systems.
Recently, systems with parametric uncertainty [18] or un-
known inputs [15] have been considered where it is required
that the uncertainty has a linear structure and is bounded
by a constant or a linear function of the norm of the states.
Notably, sliding mode techniques have good robustness and
are completely insensitive to so-called matched uncertainty
[2], [14]. The reduced-order characteristic of the sliding
motion makes it possible to improve the robustness with
respect to mismatched uncertainty and it has been shown
that sliding mode techniques can be used to deal with
structural uncertainty [16]. Therefore the application of
sliding mode ideas to systems with uncertainty offers good
potential in the field of FDI.

Although a sliding mode observer was first used in
FDI more than ten years ago [11], important progress has
been made in recent years. Edwards et al [3] proposed an
approach based on the equivalent output injection where
the sliding motion is maintained even in the presence of
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faults which can be reproduced faithfully under certain
conditions. Later it was extended by Tan and Edwards in
[12] where sensor faults were considered. In these papers,
uncertainty was not considered. More recently, Tan and
Edwards [13] proposed a FDI scheme for a class of linear
systems with uncertainty which focused on minimizing the
L2 gain between the uncertainty and the fault reconstruction
signal by using LMIs. A robust fault detection method
for nonlinear systems with disturbances was considered
in [4] where strict geometric conditions are exploited and
the disturbance can effectively be considered as linear
parametric uncertainty. It should be emphasised that the
“precise” fault reconstruction approach which has been
proposed in [3], [12] was in the absence of uncertainty. This
problem is challenging when the system considered suffers
from uncertainty. In all the existing robust FDI schemes,
much effort has been devoted to fault estimation [8] or
the reduction of the error between the real fault signal
and the reconstructed signal [13]. However, the “precise”
reconstruction scheme is still not generally available in
the presence of uncertainty. Therefore, it is meaningful to
explore under what conditions the fault can be reconstructed
with arbitrary accuracy in the presence of uncertainty.

In this paper, an actuator FDI scheme for a class
of nonlinear uncertain systems is considered where the
uncertainty is allowed to have nonlinear bounds. Based on
a constrained Lyapunov equation, a robust sliding mode
observer is established in the presence of uncertainties
and the faults. An actuator fault reconstruction instead of
just detection is presented based on the equivalent output
injection approach proposed by Edwards et al. [3]. Unlike
the existing robust FDI results based on sliding mode
techniques [13], [4], [8], the bound on the uncertainty has
a more general form and the scheme generates not just an
estimation of the fault – the reconstructed signal converges
to the fault with arbitrary accuracy by exploiting the features
of the sliding motion and the limitations on the structure of
the uncertainty.

Notation: For a square matrix A, A > 0 denotes a
symmetric positive definite matrix, and λmin(A) denotes
the minimum eigenvalue of A. The symbol In represents
the nth order unit matrix and R+ represents the set of non-
negative real numbers. The Lipschitz constant of a function
f will be written as Lf . Finally, ‖ · ‖ denotes the Euclidean
norm or its induced norm.
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II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a system described by

ẋ = Ax + G(x, u) + ∆Φ(x, t) + Df(u, t) (1)

y = Cx, (2)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state variable,
the input and the output respectively, A ∈ Rn×n, D ∈
Rn×q and C ∈ Rp×n (q ≤ p < n) are constant matrices
with D and C both being of full rank, the nonlinear term
G(x, u) is assumed to be known and Lipschitz about x

uniformly for u ∈ U (an admissible control set), ∆Φ(x, t)
is the uncertainty which affects the system and the unknown
function f(u, t) ∈ Rq represents the actuator fault which
satisfies

‖f(u, t)‖ ≤ ρ(u, t) (3)

where the bounding function ρ(u, t) is known. All the
functions are assumed to be continuous in their arguments.
Assumption 1. The matrix pair (A,C) is detectable.

It follows from Assumption 1 that there exists a matrix
L such that A − LC is stable, and thus for any Q > 0 the
Lyapunov equation

(A − LC)T P + P (A − LC) = −Q (4)

has an unique solution P > 0.
Assumption 2. The uncertainty ∆Φ(x, t) has a decompo-
sition

∆Φ(x, t) = E∆Ψ(x, t) (5)

where E ∈ Rn×r and ‖∆Ψ(x, t)‖ ≤ ξ(x, t) where ξ(x, t)
is known and Lipschitz about x uniformly for t ∈ R+.
Remark 1. The matrix E in (5) is called the structural
matrix which is employed to characterize the structure of
the uncertainty ∆Φ(x, t). Here the bound on ∆Ψ(x, t) takes
a more general nonlinear form (as in [16]) compared with
the work in [13], [8].
Assumption 3. There exist matrices F1 ∈ Rr×p and F2 ∈
Rq×p such that the solution P to the Lyapunov equation
(4) satisfies the constraint:[

ET

DT

]
P =

[
F1

F2

]
C (6)

Remark 2. Equation (6) is a structural property associated
with system (A, [ E D ] , C) and is independent of the
choice of coordinate system. A similar limitation has been
imposed by many authors (see e.g, [2], [17] and references
therein). It should be pointed out that Assumption 3 implies
that rank [ E D ] ≤ p.

Without loss of generality, it is assumed that the output
matrix C of system (1)–(2) has the following form

C = [ 0 Ip ] (7)

Then system (1)–(2) can be rewritten by

ẋ1 = A1x1 + A2x2 + G1(x, u) + E1∆Ψ + D1f(u, t)(8)

ẋ2 = A3x1 + A4x2 + G2(x, u) + E2∆Ψ + D2f(u, t)(9)

y = x2 (10)

where x = col(x1, x2) with x1 ∈ Rn−p; G1(x, u) ∈ Rn−p

and G2(x, u) ∈ Rp are respectively the first n − p and the
last p components of G(x, u); and[

A1 A2

A3 A4

]
= A,

[
E1

E2

]
= E,

[
D1

D2

]
= D (11)

where A1 ∈ R(n−p)×(n−p), E1 ∈ R(n−p)×r and D1 ∈
R(n−p)×q. Introduce partitions of P and Q which are
conformable with the decomposition in (8)–(10):

P =
[

P1 P2

PT
2 P3

]
, Q =

[
Q1 Q2

QT
2 Q3

]
(12)

It follows from P > 0 and Q > 0 that P1 > 0, P3 > 0,
Q1 > 0 and Q3 > 0.

Lemma 1: If P and Q have the partition in (12), then

i) P−1
1 P2E2 + E1 = 0 and P−1

1 P2D2 + D1 = 0 if (6)
is satisfied;

ii) the matrix A1 + P−1
1 P2A3 is stable if Lyapunov

equation (4) is satisfied.
Proof: i). From the matrix partitions, it follows that

[ ET
1 ET

2 ] P

= [ET
1 P1 + ET

2 PT
2 ET

1 P2 + ET
2 P3 ]

= [
(
P1(E1 + P−1

1 P2E2)
)T

ET
1 P2 + ET

2 P3 ] (13)

Similarly

[ DT
1 DT

2 ] P =

[
(
P1(D1 + P−1

1 P2D2)
)T

DT
1 P2 + DT

2 P3 ] (14)

From (6) and (7), it follows that[
0 F1

0 F2

]
=

[
F1

F2

]
C =

[
[ET

1 ET
2 ]P

[DT
1 DT

2 ]P

]
(15)

Hence conclusion i) follows by comparing (13) and (14)
with (15).

ii). Applying block multiplication to (4):

AT
1 P1 + AT

3 PT
2 + P1A1 + P2A3 = −Q1

This implies that

(A1 +P−1
1 P2A3)T P1 +P1(A1 +P−1

1 P2A3) = −Q1 (16)

Hence the conclusion follows from the fact that Q1 > 0
and P1 > 0. #
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III. SLIDING MODE OBSERVER DESIGN

In this section, a sliding mode observer will be presented
which guarantees that the state estimation error can be
driven to a pre-designed sliding surface in finite time, and
a sliding motion takes place thereafter.

Consider system (8)–(10). Introduce a linear coordinate
transformation z = Tx where

T ≡:
[

In−p P−1
1 P2

0 Ip

]
(17)

In the new coordinate system z, system (8)–(10) has the
following form

ż1 = (A1 + P−1
1 P2A3)z1 +

(
A2 − A1P

−1
1 P2

+P−1
1 P2(A4 − A3P

−1
1 P2)

)
z2 + G1(T−1z, u)

+P−1
1 P2G2(T−1z, u) (18)

ż2 = A3z1 +
(
A4 − A3P

−1
1 P2

)
z2 + G2(T−1z, u)

+E2∆Ψ(T−1z, t) + D2f(u, t) (19)

y = z2 (20)

where z = col(z1, z2) with z1 ∈ Rn−p and conclusion i)
of Lemma 1 is used above.

For system (18)–(20), consider a dynamical system

˙̂z1 = (A1 + P−1
1 P2A3)ẑ1 +

(
A2 − A1P

−1
1 P2

+P−1
1 P2(A4 − A3P

−1
1 P2)

)
y + G1(T−1ẑ, u)

+P−1
1 P2G2(T−1ẑ, u) (21)

˙̂z2 = A3ẑ1 +
(
A4−A3P

−1
1 P2

)
ẑ2 + G2(T−1ẑ, u) + ν(22)

ŷ = ẑ2 (23)

where ẑ :≡ col(ẑ1, y), ŷ is the output of the dynamical
system, and ν is defined by

ν =
(
‖E2‖ξ(T−1ẑ, t) + ‖A4 − A3P

−1
1 P2‖ ‖y − ŷ‖

+‖D2‖ρ(u, t) + k
)

sgn(y − ŷ) (24)

where ξ is given in Assumption2, sgn denotes the usual sign
vector function and k is a positive constant to be determined
later.

Let e1 = z1 − ẑ1, and ey = y − ŷ. Then from (18)–(20)
and (21)–(23), the error dynamical equation is described by

ė1 = (A1 + P−1
1 P2A3)e1 + G1(T−1z, u) − G1(T−1ẑ, u)

+P−1
1 P2

(
G2(T−1z, u) − G2(T−1ẑ, u)

)
(25)

ėy = A3e1 +
(
A4 − A3P

−1
1 P2

)
ey + G2(T−1z, u) −

G2(T−1ẑ, u) + E2∆Ψ(T−1z, t) + D2f(u, t) − ν (26)

where ẑ = col(ẑ1, y) and ν is defined by (24).

Now, consider system (25). It follows that

e1(t) = exp
{
(A1 + P−1

1 P2A3)t)
}
e1(0) +

∫ t

0

exp
{
(A1

+P−1
1 P2A3)(t − τ)

}{
G1(T−1z(τ), u(τ)) −

G1(T−1ẑ(τ), u(τ))+P−1
1 P2

(
G2(T−1z(τ), u(τ))

−G2(T−1ẑ(τ), u(τ))
)}

dτ

where ẑ(τ) = col(ẑ1(τ), y(τ)). From conclusion ii) of
Lemma 1, there exist positive constants a0 and c0 such that
for any t > 0

‖e1(t)‖≤ c0 exp{−a0t}‖e1(0)‖ + c0 exp{−a0t}‖T−1‖
· (LG1 + ‖P−1

1 P2‖LG2

) ∫ t

0

exp{a0τ}‖e1(τ)‖dτ

where LG1 and LG2 are both well defined since G is
assumed to be Lipschitz. Multiplying by exp {a0t} on both
sides of the inequality above, it follows that

exp{a0t}‖e1(t)‖ ≤ c0‖e1(0)‖ + c0‖T−1‖
·(LG1 + ‖P−1

1 P2‖LG2

) ∫ t

0

exp{a0τ}‖e1(τ)‖dτ

Then, from the Gronwall-Bellman inequality (see, [9]),

‖e1(t)‖ ≤ c0‖e1(0)‖ exp
{(

c0‖T−1‖
+

(LG1‖P−1
1 P2‖LG2

) − a0

)
t
}

(27)

The following conclusion can be obtained directly:
Lemma 2: Consider the error system (25)–(26). Then,

under Assumption 1, e1(t) is bounded and its bound is
independent of the system input u and output y if

c0‖T−1‖ (LG1 + ‖P−1
1 P2‖LG2

) ≤ a0 (28)

where a0 and c0 are positive constants.
Proof: The proof can be obtained directly from (27). #

For convenience, assume that

‖e1(t)‖ ≤ β, t ≥ 0 (29)

Next, the stability of the error dynamic equation (25)–
(26) is shown using sliding mode theory, which implies that
the dynamical system (21)–(22) is an asymptotic observer
of system (18)–(20).

For system (25)–(26), consider a sliding surface

S = {(e1, ey) | ey = 0} (30)

The following conclusion is ready to be presented:
Proposition 1: Under Assumption 1, the sliding motion

of system (25)–(26) associated with the sliding surface (30)
is asymptotically stable if

λmin(Q1) > 2‖P1‖ ‖T−1‖ (LG1 + ‖P−1
1 P2‖LG2

)
(31)

where P1 and Q1 are from (12), and T is given in (17).
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Proof: It is only needed to prove that (25) is asymptotically
stable. Consider as a Lyapunov function V = eT

1 P1e1. It
follows that the time derivative of V along the trajectories
of system (25) is given by

V̇ = eT
1

(
P1(A1 + P−1

1 P2A3) + (A1 + P−1
1 P2A3)T P1

)
e1

+2eT
1 P1

(
G1(T−1z, u) − G1(T−1ẑ, u)

+P−1
1 P2

(
G2(T−1z, u) − G2(T−1ẑ, u)

))
Then, from (16), it is observed that

V̇ ≤ 2‖e1‖ ‖P1‖(LG1 + ‖P−1
1 P2‖LG2)

∥∥T−1(z − ẑ)
∥∥

−eT
1 Q1e1

and so

V̇ ≤
(
2‖P1‖ ‖T−1‖(LG1 + ‖P−1

1 P2‖LG2)

−λmin(Q1)
)
‖e1‖2

Hence the conclusion follows from (31). #
Proposition 1 has shown that the sliding mode associated

with the sliding surface S given in (30) is stable. The
objective now is to determine the gain k in (24) such that
the system can be driven to S in finite time and a sliding
motion can be obtained. From (26)

eT
y ėy = ey

(
A3e1 + (A4−A3P

−1
1 P2)ey + G2(T−1z, u) −

G2(T−1ẑ, u) + E2∆Ψ(T−1z, t) + D2f(·) − ν
)

(32)

By applying (3) and (24) to (32), it follows from Assump-
tion 2 that

eT
y ėy

≤ (‖A3‖ + ‖T−1‖LG2

) ‖e1‖ ‖ey‖ +
(
‖E2‖ξ(T−1z, t)

+‖D2‖ρ(u, t)
)
‖ey‖ + ‖A4 − A3P

−1
1 P2‖ ‖ey‖2

−
(
‖A4 − A3P

−1
1 P2‖ ‖ey‖ + ‖E2‖ξ(T−1ẑ, t)

+‖D2‖ρ(u, t) + k
)
eT
y sgn(ey)

≤ (‖A3‖ + ‖T−1‖(LG2 + ‖E2‖Lξ)‖e1‖ − k
) ‖ey‖ (33)

From the analysis above, the following can be obtained
directly.

Proposition 2: Under Assumptions 1 and 2, system (25)–
(26) is driven to the sliding surface (30) in finite time and
remains on it if

k ≥ ‖A3‖ + ‖T−1‖(LG2 + ‖E2‖Lξ)β + η (34)

where β is determined by (29) and η is a positive constant.
Proof: If Assumption 1 holds, then from Lemma 2 the state
error e1 is bounded, and (29) is true. Applying (34) and (29)
to (33), it follows that

eT
y ėy ≤ −η‖ey‖

This shows that the reachability condition is satisfied. Hence
the conclusion follows. #

By combining Proposition 1 with Proposition 2, it follows
from sliding mode control theory that system (25)–(26)
is asymptotically stable. Therefore, (21)–(22) is a sliding
mode observer of system (18)–(20), and ŷ defined by (23)
is called the observer output.
Remark 3. The terms G1(T−1ẑ, u) and G2(T−1ẑ, u)
in observer (21)–(22) can be replaced by G1(y, u) and
G2(y, u) if G(x, u) = G(y, u). In this case, the Lipschitz
constants LG1 and LG2 can both be chosen as zero, and thus
condition (31) is satisfied automatically. This implies that
the sliding mode will always be stable no matter whether
G(x, u) is matched or mismatched.

IV. RECONSTRUCTION OF ACTUATOR FAULTS

The objective now is to use the so-called equivalent
output injection (see [3]) to reconstruct the actuator fault. It
is assumed that the sliding mode observer given in section
3 has been designed to satisfy (31) and (34).

Comparing system (8)–(9) with (18)–(19):[
E1

E2

]
= T−1

[
0

E2

]
,

[
D1

D2

]
= T−1

[
0

D2

]

where T is defined by (17). It follows that D2 is full rank
since D is full rank.
Assumption 4. There exists a nonsingular matrix M ∈
Rp×p such that

M [ E2 D2 ] =
[

H1 H2

0 H3

]

where H1 ∈ R(p−q)×r and H3 ∈ Rq×q is nonsingular.
Remark 4: Assumption 4 guarantees that the fault can be
separated from the uncertainty, which makes “precise” fault
reconstruction possible. This condition is equivalent to the
fact that the matrix [ E2 D2 ] can be transformed to a
special block-diagonal matrix only using elementary row
operations. Thus M can be obtained easily by matrix theory.

Consider the error dynamics (25)–(26). Multiplying (26)
by M , it follows from Assumption 4 that

Mėy = MA3e1 + M
(
A4 − A3P

−1
1 P2

)
ey

+M
(
G2(T−1z, u) − G2(T−1ẑ, u)

)
+

[
H1 H2

0 H3

] [
∆Ψ(T−1z, t)

f(u, t)

]
− Mν (35)

where M is given in Assumption 4.
Whilst sliding, ey = 0 and ėy = 0, and thus from (35)

0 = MA3e1 + M
(
G2(T−1z, u) − G2(T−1ẑ, u)

)
+

[
H1 H2

0 H3

] [
∆Ψ(T−1z, t)

f(u, t)

]
− Mνeq (36)

where νeq is the equivalent output error injection signal
which represents the average behaviour of the discontinuous
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function ν defined by (24), which keeps the motion on the
sliding surface. It follows that∥∥G2(T−1z, u) − G2(T−1ẑ, u)

∥∥ ≤ LG2‖T−1‖ ‖e1‖ (37)

The analysis in section 3 has shown that limt→∞ e1 = 0.
Therefore from (36) and (37)

Mνeq →
[

H1 H2

0 H3

] [
∆Ψ(T−1z, t)

f(u, t)

]
, (t → ∞)

This implies that

f(u, t) → H−1
3 M2νeq, (t → ∞) (38)

where M2 denotes the last q rows of M .
In order to reconstruct the actuator fault, it is required to

recover the equivalent output error injection signal νeq. In
the work described in [14], νeq was obtained using a low-
pass filter. Here an approach given by Edwards et al [3]
will be employed. From (24), the equivalent output error
injection signal in (38) can be described by

νeq =
(
‖E2‖ξ(T−1ẑ, t) + ‖A4 − A3P

−1
1 P2‖ ‖ey‖

+‖D2‖ρ(u, t) + k
)
ζ(ey) (39)

where ẑ = col(ẑ1, y) and ζ(·) is defined by

ζ(ey) =
ey

‖ey‖ + δ1 exp{−δ2t} (40)

where δ1 and δ2 are positive constants: the former is
normally small and the latter large.

The analysis above shows that the fault f(u, t) can be
reconstructed by

f(u, t) ≈ H−1
3 M2νeq (41)

where νeq is defined by (39), M2 is the last q rows of M ,
and M and H3 are both given in Assumption 4.

V. SIMULATION
Consider the simplified dynamics of the HIRM aircraft

at the trim values Mach: 0.8, Height: 5000ft (see [17]):

A =

⎡
⎢⎣
−0.0318 0.0831 −0.0008 −0.0367
−0.0716 −1.4850 0.9848 0
−0.2797 −5.6725 −1.0253 0

0 0 1.0000 0

⎤
⎥⎦ (42)

B =

⎡
⎢⎣

0.0120 −0.0071
−0.3058 −0.0223
−22.4293 7.8777

0 0

⎤
⎥⎦ (43)

G(x, u) = Bu +

⎡
⎢⎣

0
Fe
M

(sin x̄2)/(1 + x̄1)
0
0

⎤
⎥⎦ (44)

C = [ I3 0 ] (45)

where the parameters Fe and M are the engine thrust
and the aircraft mass respectively. This system has four
states x̄ = col(x̄1, x̄2, x̄3, x̄4): (v − v0)/v0, with v and

v0 = 267.51 respectively the current airspeed (m/s) and
the desired airspeed (m/s); angle of attack (rad); pitch
rate (rad/s) and pitch angle (rad). The two inputs u =
col(u1, u2) represent symmetrical tailplane deflection (rad)
and symmetrical canard deflection (rad). The three outputs
y = col(y1, y2, y3) are (v − v0)/v0, angle of attack (rad)
and pitch rate (rad/s). It is assumed that the system suffers
from uncertainty of the form

∆φ(x̄, t) = [0 2.0275∆ψ(x̄, t) 10∆ψ(x̄, t) ∆ψ(x̄, t)]T

where |∆ψ(x̄, t)| ≤ 0.001‖y‖ sin2 x̄4 which is caused by
the aerodynamic drag and the modelling error from the
lift term. As in the work described in [17], the system is
considered in the domain

Ω =
{
x̄

∣∣ | x̄1 |< 0.18, | x̄2 |, | x̄3 |< 0.17, | x̄4 |< 0.52
}

In the following simulations, for demonstration purposes,
a linear state feedback controller has been used to assign
closed-loop system poles at {−4.5,−4,−3,−2.5}. In this
example any actuator fault is assumed to occur in the input
channel and thus the fault distribution matrix is assumed to
be D = B. Let

Tc =
[

0 I3

1 0

]
Under the coordinate transformation x = T−1

c x̄, the system
(42)–(45) in the form of (8)–(10) is as follows

A =

⎡
⎢⎣

0 0 0 1.0000
−0.0367 −0.0318 0.0831 −0.0008

0 −0.0716 −1.4850 0.9848
0 −0.2797 −5.6725 −1.0253

⎤
⎥⎦

G =

⎡
⎢⎣

0
0.0120u1 − 0.0071u2

−0.3058u1 − 0.0223u2 + Fe
M

(sin x3)/(1 + x2)
−22.4293u1 + 7.8777u2

⎤
⎥⎦

E =

⎡
⎢⎣

1
0

2.0275
10

⎤
⎥⎦ D =

⎡
⎢⎣

0 0
0.0120 −0.0071
−0.3058 −0.0223
−22.4293 7.8777

⎤
⎥⎦

and
C = [ 0 I3 ]

Choose

L =

⎡
⎢⎣
−27.2784 0.9086 0.9544
1.9682 0.0609 0.0000
−0.0716 0.0150 0.9848
−0.2797 −5.6725 0.9747

⎤
⎥⎦

Then for

Q =

⎡
⎢⎣

−1.0000 −27.2968 0.6058 −0.0228
−27.2968 −746.1127 16.5354 −0.6229
0.6058 16.5354 −1.3669 0.0138
−0.0228 −0.6229 0.0138 −1.0005

⎤
⎥⎦ > 0

the Lyapunov equation (4) has a unique solution

P =

⎡
⎢⎣

0.5000 13.6392 −0.3029 0.0114
13.6392 372.5563 −8.2621 0.3113
−0.3029 −8.2621 0.5168 −0.0069
0.0114 0.3113 −0.0069 0.2503

⎤
⎥⎦
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Let

F1 = [ 0 0.6758 2.5 ] , ξ = 0.001‖y‖ sin2 x1

and
F2 =

[
0.0060 −0.1019 −5.6073
−0.0035 −0.0074 1.9694

]
By direct computation, it can be shown that Assumptions
1-3 and Propositions 1-2 are all satisfied in Ω. Therefore,
the observer (25)–(26) is well-defined. Finally, let

M =

[
0 0 1
0 1 −0.2028
1 0 0

]

Then it can be shown that Assumption 4 is satisfied with

H3 =
[

4.2418 −1.6196
0.0120 −0.0071

]
From (39), νeq can be computed directly online, and thus
the actuator fault f(u, t) can be reconstructed from (41)
where δ1 = 0.001 and δ2 = 1. For the fault signals given in
Figure 1, the reconstruction signals in Figure 2 show that
the developed result is very effective and indeed visually
Figure 1 and Figure 2 are identical. The simulations show
that the fault signals can be reconstructed faithfully using
the proposed scheme.

VI. CONCLUSION

An approach for robust actuator fault detection and
isolation for a class of nonlinear uncertain systems has been
proposed based on a sliding mode observer. Unlike the
associated existing work where only an estimation of the
fault is generated, the fault can be precisely reconstructed
even in the presence of uncertainties by using sliding mode
techniques. The reconstructed signal is obtained on-line and
thus it is easy to implement in a real system. A simulation
based on a HIRM aircraft model has demonstrated its ef-
fectiveness in achieving robust fault detection and isolation.
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Fig. 1. The fault signals
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Fig. 2. The reconstructed faults
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