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Abstract—In this paper, a partially recurrent fuzzy system
is developed to function as an adaptive noise canceller. In
order to cancel noise distorting the information signal, the
temporal information (dynamics) underlying the noise source
and the distorting noise, which is generated by the noise
source passing through some unknown channels, should be
captured accurately. For this purpose, short-term memory is
embedded into the input layer of the fuzzy system for handling
local time information and internal feedback is introduced
into the consequent part for processing global time informa-
tion by virtue of a partially recurrent mechanism. A novel
adaptive algorithm is proposed to tune the parameters of the
premise and consequent part online. Simulation studies show
that the proposed fuzzy system can cancel noise cancellation
successfully for nonlinear dynamic channels.

I. Introduction

An adaptive noise canceller should be capable of
capturing the dynamics of the channel which the noise
source passes through. In other words, it should handle
temporal information underlying the noise source and
the additive noise that distorts information signal.

Normally, there are two kinds of distinguished tem-
poral information, normally local and global according
to the reference time interval. Local time information
refers to a part of the time series with fixed length (time
window), whereas global information is related to the
entire time series up to a certain (usually the current)
point in time.

It is possible to use a feedback structure to form a
recurrent structure so as to handle global time informa-
tion [1]. In [2], a fuzzy identification algorithm, under the
fully recurrent mechanism, is proposed for a single-input-
single-output continuous-time nonlinear dynamic sys-
tem. Moreover, convergence analysis using the GD-based
method is investigated. In [3], a class of architectures
called Nonlinear AutoRegressive models with eXogenous
inputs (NARX) recurrent neural networks is adopted to
lessen long-term dependencies between input and output
data. Moreover, most of the fuzzy inference systems need
to assign fuzzy rules in advance according to some a
priori knowledge or by using clustering-based methods
[4]–[6] and they employ offline training algorithms. These
methods are not applicable for the case of adaptive noise
cancellation because the actual desired signal (original
information) is not available due to distortion from the
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additive noise. Therefore, it is desired to develop a new
training strategy so that fuzzy rules can be generated
and optimized during the online training process.

In this paper, a partially recurrent fuzzy system is
proposed to function as an adaptive noise canceller.
A short-term memory structure is embedded into the
input layer to form a focused Time-Lagged Feedforward
Network (TLFN) in order to handle local time infor-
mation from the input sequence. The internal feedback
forms partially recurrency in the consequent part in
order to deal with the long-term dynamics (global time
information) underlying input/output sequences. Based
on the linear structure in consequent part, an appropriate
training algorithm is proposed.

The rest of the paper is organized as follows. Section
II discusses the structure of the proposed partially
recurrent fuzzy system. An adaptive strategy, which
adopts a potential measurement of temporal-spatial
proximity for tuning the premise part and an improved
recursive method for determining free parameters of the
consequent part, is developed in Section III. Simulation
studies in Section IV show that the partially recurrent
fuzzy system can function as an adaptive noise canceller
effectively and remove additive noise by capturing the
channel’s dynamics. Section V concludes the paper.

II. Architecture of Partially Recurrent Fuzzy Systems

The proposed partially recurrent fuzzy system, whose
consequent part consists of linear dynamics submodels, is
implemented by an Ellipsoidal-Basis-Function Network
(EBFN). Its block diagram is shown in Fig. 1. The input
layer is in the form of TLFN which embeds a short-term
memory structure in the form of a tapped delay line (see
[7] for more details).

The functions of each layer and its nodes are described
below:

Layer 1: Each node in layer 1 is an input node. These
nodes simply transmit input signals (input signal and
their lagged versions) to the next layer directly. In this
layer, we have

X(k) = [x(k), x(k − 1), ..., x(k − M + 1)]T (1)

where M is the order of the lagged inputs.
Layer 2: Nodes in this layer stand for input terms

associated with the input variables. In this layer, each
input variable is characterized by

Ai = [ai1, ai2, ..., air] i = 1, 2, ...M (2)
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Fig. 1. EBFN-based TSK fuzzy system

where Ai is the input term set associated with the ith
input variable x(k − i + 1), r is the number of fuzzy
rules and aij is a fuzzy number with a one-dimensional
membership function (MF) which is a Gaussian function
of the following form:

µij(x(k − i + 1)) = exp[− (x(k − i + 1) − cij)2

σ2
ij

] (3)

where j = 1, 2, ...r, cij and σij are the center and width of
the jth Gaussian membership function of the ith lagged
input x(k − i + 1) respectively.

Layer 3: Each node in layer 3 is an EBF neuron which
represents the premise part of a fuzzy IF-THEN rule. For
the jth EBF neuron, i.e., the jth fuzzy rule, its firing
strength is

φj =
∏

i=1,2,...M

µij

= exp[−
M∑
i=1

(x(k − i + 1) − cij)2

σ2
ij

] (4)

Equivalently, the firing strength can be measured in the
sense of Mahalanobis distance as follows:

dj =
√

[(X(k) − Cj)Σ−1
j ][(X(k) − Cj)Σ−1

j ]T (5)

where Cj = [c1j , c2j , ..., cMj ]T and Σj =
diag[σ1j , σ2j , ..., σMj ]. Therefore, the firing strength of
the jth fuzzy rule is given by

φj = exp[−d2
j ] (6)

Layer 4: Nodes in this layer are employed for the
purpose of normalization. The output of the normalized
nodes is given by

ψj =
φj∑r

j=1 φj
(7)

Layer 5: Each node in this layer represents an output
variable which is the interpolation of multiple dynamic

models. For a Multi-Input-Single-Output (MISO) sys-
tem, its output is given by

y(k) =
r∑

j=1

yj(k)ψj(k) (8)

where y is the value of the output variable and yj is the
fuzzy inferred output of the jth fuzzy rule.

The internal feedback is introduced in the consequent
part of the proposed fuzzy system in order to have
dynamic processing capability. The feedback only ex-
ists in the consequent part, different from other fully
recurrent fuzzy systems which introduce the feedback
from the output layer to the input layer. Therefore,
the jth fuzzy rule Rj is described as follows: Rj :
IF (x(k) is a1j and x(k − 1) is a2j ... x(k − M +
1) is aMj), THEN (y is yj(k))
where yj(k) =

∑N
n=1 wj(M+n)yj(k−n)+

∑M
m=1 wjmx(k−

m + 1) + wj0 and wj0 is the DC value of the jth fuzzy
rule. As a matter of fact, the proposed partially recurrent
fuzzy system is a nonlinear time-varying IIR filter from
the point of view of filter design.

III. Adaptive Algorithm

A. Partition of the Input Space

In the proposed EBFN-based partially recurrent fuzzy
system, partitioning the input space is essentially the
generation of EBF units. Therefore, it is assumed that
the proposed fuzzy system starts with no fuzzy rules. The
EBF units will be generated in the sequential training
process hierarchically. Therefore, when a new incoming
sample X(k) is applied, compute (5) and find

dmin = min{dj(X(k))} j = 1, 2, ..., r (9)

If dmin > ddef , an EBF unit will be generated standing
for the IF part in the premise part and the corresponding
THEN is also added into the consequent part. In (9), ddef

is a predefined parameter.
Geometrically, the cluster is characterized by Cj and

Σj which represents the centers and variances (widths)
respectively. Therefore, when a new EBF neuron is
generated, the center and variance are initialized as
follows:

Cj = X(k) (10)

Σj =
1

α × ddef
[fc(x(k)), fc(x(k − 1)),

..., fc(x(k − M + 1))] (11)

where α is a constant slightly smaller than 1 and the
function fc(.) is described as follows:

fc(x(k − i + 1)) = max(‖x(k − i + 1) − c1
i ‖,

‖x(k − i + 1) − c2
i ‖) (12)

where c1
i and c2

i are the centers of neighboring x(k − i +
1) in the set {ci1, ci2, ..., cir} in the sense of Euclidean
distance.
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After the initialization procedure which is described
by (10) and (11), the centers and widths of the subspace
will be adjusted based on a redefined temporal and
spatial potential measurement of the newly incoming
data points.

The potential of a cluster center at time k is defined
as follows:

Pij(k) = α1P
s
ij(k) + α2P

t
ij(k) (13)

where α1, α2 are the predefined constants and α1 +α2 =
1.

The term P s
ij(k) is a potential measurement from the

spatial proximity between the cluster center cij and other
existing centers on the dimension of x(k − i + 1), and it
is defined as follows:

P s
ij(k) =

1
r − 1

r∑
j′=1,j′ �=j

exp[− (cij − cij′ )2

σ2
ij′

] r > 1

(14)

where P s
ij(k) = 1 when there is only one fuzzy rule in

the rule base.
The term P t

ij(k) is a potential measurement from
the temporal proximity between the cluster center cij

and those data points which fall in the fuzzy set aij

characterized by the center cij and σij . The potential of
temporal proximity is defined as follows:

P t
ij(k) =

1
k

k∑
k′=1

exp[− (cij − x(k′ − i + 1))2

σ2
ij

] (15)

It is noted that the P t
ij(k) can be rewritten as follows:

P t
ij(k) =

1
k

exp[− (cij − x(k − i + 1))2

σ2
ij

] +

1
k

k−1∑
k′=1

exp[− (cij − x(k′ − i + 1))2

σ2
ij

]

≈ 1
k

exp[− (cij − x(k − i + 1))2

σ2
ij

]

+P t
ij(k − 1) (16)

where x(k′ − i + 1) = 0 if k′ − i + 1 ≤ 0.
Equation (16) implies that the potential of temporal

proximity P t
ij(k) can be calculated recursively which

means there is no need to memorize the past incom-
ing data points. Therefore, potential measurement of
the spatial and temporal proximity between the newly
applied input data point and the existing cluster centers
will be calculated online in order to judge whether the
existing centers should be adjusted according to the new
information brought by the current input data point.

When a new incoming data point is applied to the
fuzzy system at time k + 1, for the ith input variable,
we have

L = arg max(exp[− (x((k + 1) − i + 1) − cij)2

σ2
ij

]) (17)

where j = 1, 2, ..., r. Equation (17) determines which
cluster the newly input data point will fall in. The cluster
will be named as the leading cluster which means it
provides the biggest representation degree for the input
data point.

The potential measurement of the spatial proximity
between the newly incoming data point and the leading
cluster center is given by

P s
x(k + 1) =

1
r − 1

r∑
j′=1,j′ �=L

exp[− (x((k + 1) − i + 1) − cij′ )2

σ2
ij′

]

The potential measurement of the temporal proximity
between the newly incoming data point and the past data
points which are lie in the leading cluster is updated as
follows:

P t
x(k + 1) =

1
k + 1

exp[− (x((k + 1) − i + 1) − ciL)2

σ2
iL

]

+P t
ij(k)| j=L (18)

The total potential measurement of the new incoming
data point of the ith input variable is given by:

Px(k + 1) = α1P
s
x(k + 1) + α2P

t
x(k + 1) (19)

Therefore, we have a similarity measurement which is
given by

S =
‖Px(k + 1) − Pij(k)‖

Pij(k)
| j=L (20)

The index S stands for the similarity between the newly
data point which brings new information into the fuzzy
system and the leading cluster center which remains the
past information of the data partition. The smaller S
indicates the higher similarity that the new incoming
data point has with respect to the leading cluster center.

In order to exploit the information brought by the
newly incoming data point, if

S < S∗ (21)

the leading cluster center should be adjusted where S∗

is a predefined parameter.
The leading cluster center will be adjusted as follows:

c′iL = ciL + αc(1 − S)[x((k + 1) − i + 1) − ciL] (22)

where αc is a learning rate.
After the leading cluster center is adjusted, the poten-

tial measurement of other existing cluster centers will
be updated due to the change of the leading cluster’s
position. In other words, the potential of other existing
cluster centers being updated is as follows:

P s
ij(k + 1) =

1
r − 1

r∑
j′=1,j′ �=j

exp[− (cij − cij′ )2

σ2
ij′

] (23)

where j = 1, 2, ..., r and j �= L.
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B. Weighted Backward Adaption of Cluster Shape
In order to tune the entire fuzzy system optimally and

comply with the purpose of adaptive noise cancellation,
the cost function of the proposed fuzzy system is defined
as follows:

E =
1
2

n∑
k=1

[d(k) − y(k)]2 =
1
2

n∑
k=1

[e(k)]2 (24)

where n is the number of input data points and e(k) is
denoted as the global error at time k of the proposed
fuzzy system which is given by

e(k) = d(k) − y(k) (25)

As a matter of fact, each EBF unit contributes
differently in each time step due to the diversity of
firing strength. Intuitively, the adjustments of centers
and widths are related to the contribution of EBF
units. That is, the update terms are weighted by the
instantaneous contribution of each EBF unit (i.e. firing
strength). Therefore, the synaptic weights of EBF units
(i.e. the centers and widths of the subspace), which
determine the IF part of fuzzy rules, will be updated
as follows:[

Cj(k + 1)
Σj(k + 1)

]
=

[
Cj(k)
Σj(k)

]
+

1
2
�µψ

[
µC

µΣ

] [ �Cj(k)
�Σj(k)

]

(26)

where �µψ = diag[µ1j

ψj
,

µ2j

ψj
, ...,

µMj

ψj
].

The update term �Cj is given by

�Cj = − ∂E

∂Cj
= −∂E

∂y

∂y

∂φj

∂φj

∂Cj
(27)

= 2ψj�j (28)

where �j is defined as follows

�j =
1
Σj

eejdj (29)

Therefore, the centers of the clusters associated with
the jth fuzzy rule could be rewritten as follows:

Cj(k + 1) = Cj(k) + µC�j�µ (30)

where �µ = diag[µ1j , µ2j , ..., µMj ].
The updates for the widths of clusters associated with

the jth fuzzy rule, �Σj , are given by

�Σj = − ∂E

∂Σj
= −∂E

∂y

∂y

∂φj

∂φj

∂Σj
(31)

It should be noted that only the term ∂φj

∂Σj
will be

re-computed compared with the update term of �Cj .
Therefore, we have

∂φj

∂Σj
=

∂φj

∂dj

∂dj

∂Σj
=

2
Σj

d2
jφj (32)

Similarly, the update term of the widths can be written
as follows:

�Σj = 2ψj�jdj (33)

Therefore, the widths will be updated as follows:

Σj(k + 1) = Σj(k) + µΣ�jdj�µ (34)

The update pair of centers and widths of (26), can be
rewritten as follows:[

Cj(k + 1)
Σj(k + 1)

]
=

[
Cj(k)
Σj(k)

]
+ �j

[
µC

µΣ

] [
1 0
0 dj

]
�µ

(35)

Equation (35) implies the centers and widths of the
subspaces are “weighted” adjusted according to the
current membership functions’ value µij respectively.
The cluster which has bigger membership function value
will learn more from the backward process.

C. Parameter Determination of the Consequent Part
Free parameters in the THEN part of the jth fuzzy

rule are given by

Wj = [wj0, wj1, ..., wjM , wj(M+1), ..., wj(M+N)]T (36)

The individual (local) output of the jth fuzzy rule can
be written as follows:

yj(k) = WT
j Bj (37)

where Bj = [1, x(k), ..., x(k−M +1), yj(k−1), ..., yj(k−
N)]T . Substituting (37) into (8), we have the following
global inferred output

y(k) =
r∑

j=1

WT
j Bjψj (38)

It should be highlighted that ψj is a scalar so that we
have qj = Bjψj . The inferred output can be expressed
as

y(k) = WT Q (39)

where W = [WT
1 , WT

2 , ..., WT
r ]T and Q =

[qT
1 , qT

2 , ..., qT
r ]T .

From (8) and (25), we have

e(k) = d(k) −
r∑

j=1

yj(k)ψj(k) (40)

It should be noted that ψj(k) is a normalized scaler and
has the following property

∑r
j=1 ψj(k) = 1. Therefore,

(40) can be rewritten as follows:

e(k) =
r∑

j=1

[d(k) − yj(k)]ψj(k) (41)

=
r∑

j=1

ej(k)ψj(k) (42)

During the online training, new parameters will be
optimized in order to capture the dynamics brought by
the newly generated fuzzy rule. An improved recursive al-
gorithm is proposed for adapting the parameters quickly.
Suppose there are j fuzzy rules in the rule base at time
k − 1, the free parameters of the consequent part are
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denoted as W (k−1) = [W1(k−1) W2(k−1) ... Wj(k−
1)]. When a new fuzzy rule (the (j + 1)th fuzzy rule) is
generated at time k, the corresponding parameter in the
consequent part will be given by

W (k) = [W (k − 1) W o
j+1(k)] (43)

where W o
j+1(k) is initialized orthogonally by the Gram-

Schmidt transformation as follows:

W o
1 (k − 1) = W1(k − 1)

oi′j′ =
W oT

i′ (k − 1)Wj′(k − 1)
W oT

i′ (k − 1)W o
i′ (k − 1)

1 ≤ i′ < j′

W o
j′ (k − 1) = Wj′ (k − 1) −

j′−1∑
i′=1

oi′j′W
o
i′(k − 1)

where j′ = 2, 3, ..., j. In other words, for the newly
generated fuzzy rule, we have

W o
j+1(k) = Wj+1(k) −

j∑
i′=1

oi′(j+1)W
o
i′(k − 1) (44)

where Wj+1(k) = δW I and δW is a small positive
constant.

At the same time, we introduce a learning matrix

LW (k) = diag[1 + µW (l1)k−k1I1, ..., 1 + µW (lj)k−kj I1,

..., 1 + µW (lj+1)k−kj+1I1] (45)

where µW > 1 is the initial learning-control rate, 0 <
l1 < ... < lj < lj+1 < 1 are the various learning rates
of the individual coefficient vectors {W1, ..., Wj , Wj+1}
in the consequent part, {k1, ..., kj , kj+1} are the time
points when the corresponding fuzzy rules are generated
and I1 ∈ �(M+N+1)×(M+N+1) is a unit matrix.

At time k, the inverse correlation matrix and the gain
vector are calculated and updated as follows:

K(k) =
P (k − 1)Q(k)

1 + QT (k)P (k − 1)Q(k)
(46)

P (k) = P (k − 1) − K(k)Q(k)P (k − 1) (47)

Complying with the principle of using the individual
errors, at time k, when the (j + 1)th fuzzy rule is
generated, we have

ξ(k) = d(k) −
j+1∑
j′=1

yj′(k)ψj′ (k) =
j+1∑
j′=1

ej′(k)ψj′ (k) (48)

where ξ(k) is the a priori estimation error because it is
the estimation error between the desired response d(k)
and the old least-squares estimate of the free parameters
in the consequent part that was made at time k − 1.
It should be noted that the part of Wj+1 of W (k) is
initialized and not learned from the current training data
pair. Rewrite (48), we have

ξ(k) = �ξ(k)�ψT (k) (49)

where �ξ(k) = [e1(k), e2(k), ..., ej(k), ej+1(k)] and �ψ(k) =
[ψ1(k), ψ2(k), ..., ψj(k), ψj+1(k)].

The free parameters W (k) of the consequent part will
be updated as follows:

W ′(k) = W (k) + LW (k)K(k)�ξ(k) (50)

The a posteriori estimation error (global error) is essen-
tially given by

e(k) = d(k) − W ′T (k)�ψ(k)Q(k) (51)

IV. Simulation Studies and Results
The objective of adopting the partially recurrent fuzzy

system as an adaptive noise canceller is to minimize
the error measure E[e2(k)] by capturing the dynamics
underlying the data pairs. In the following simulation
study, the channel that the noise source goes through is
nonlinear and dynamic. The performance of using the
proposed fuzzy system as an adaptive noise canceller is
validated on the basis of the MSE criterion and a series
of tests based on the correlation between the input x(k),
and the residual e(k) [8]. In [9], it was shown that for
an efficient noise canceller, the following model validity
test should be satisfied:

Ψxe(t) = E[x(k)e(k + t)] = 0 (52)
Ψx2e(t) = E[(x2(k) − E[x2(k)])e(k + t)] = 0 (53)

Ψx2e2(t) = E[(x2(k) − E[x2(k)])e2(k + t)] = 0
(54)

In practice, the model will be regarded as adequate if
all the tests by (52), (53) and (54) fall within the 95%
confidence bands at approximately ±1.96/

√
n, where n

is the number of samples.
In the simulation example, the noise source x(k) passes

through a nonlinear dynamic channel producing the
additive noise n(k) which interferes with the information
signal. The passage’s dynamics is simulated by a second-
order nonlinear auto-regressive model with exogenous
inputs (NARX) as follows:

n(k) = 0.25n(k−1)+0.1n(k−2)+0.5x(k−1)+0.1x(k−
2) − 0.2x(k − 3) + 0.1x2(k − 2) + 0.08x(k − 2)n(k − 1)
where x(k) is a uniformly distributed white noise source
varying in the range of [−2, 2].

The information signal s(k) is a saw-tooth signal of
unit magnitude, 50 samples per period. It is distorted by
the additive noise n(k) so that the measurable part is
essentially d(k). The training data sets consist of 12,000
pairs [x(k), d(k)]. The noise source x(k) will be applied to
the partially recurrent fuzzy system as the input signal.
With the Time Delay Line (TDL) in the input layer,
the delayed counterparts of the noise source forms an
input vector [x(k − 1), x(k − 2), x(k − 3)] according to
the passage’s dynamics. Online recovered information
signal and online reproduction error (both in the last 500
samples) are shown in Fig. 2 respectively. The saw-tooth
information signal is recovered in a qualified waveform.

Another 1000 samples are generated for the purpose
of testing and the testing result will be evaluated by
the model validity test described by (52), (53) and (54).
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Fig. 3 shows that the correlation falls within the 95%
confidence bands which means the proposed fuzzy system
cancel the noise successfully by capturing the nonlinear
dynamics of the passage due to the IIR-based consequent
part.

Some numerical indexes for comparative analysis be-
tween the proposed fuzzy system with other noise can-
cellation filters, including IIR filter, Adaptive-Network-
Based Fuzzy Inference System (ANFIS) of [10], Dynamic-
Fuzzy Neural Constrained Optimization Method (D-
FUNCOM) of [11], are given in Table I.
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Fig. 2. (a). Online reproduction error. (b) Online recovered signal.
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Fig. 3. Model validity test. The dotted lines correspond to the
95% confidence bands. (a) Ψxe(t). (b)Ψx2e(t). (c)Ψx2e2 (t).

TABLE I

Comparison with other noise cancellation filters

Approaches MSEtrn MSEtst No. of parameters
ANFIS 0.0980 0.1151 135

IIR 0.0157 0.0169 87
D-FUNCOM 0.0136 0.0131 135
Our approach 0.0018 0.0055 48

V. Conclusions

In this paper, a partially recurrent fuzzy system is
proposed to work as an adaptive noise canceller. It has

the following functions: (1) Partially recurrent structure.
There is no feedback from the output layer to the input
layer; only internal feedback at the consequent part of the
fuzzy system is needed. As a consequence, the dimension
of the input layer is reduced so that the network size is
parsimonious. (2) The corresponding adaptive algorithm
is efficient. The input space is partitioned based on a
potential measurement from temporal-spatial proximity.
The number of fuzzy rules is determined during the
training process. The free parameters in the consequent
part are determined in the context of Least Square Error
(LSE) by an enhanced recursive algorithm. Therefore,
long-term dependencies of the input/output data could
be learned and latched correctly without using the
gradient descent algorithm. The entire system dynamics
are implemented by the individual dynamics regression
models in the consequent part. Simulation studies shows
that the proposed fuzzy system effectively deal with
adaptive noise cancellation for a nonlinear dynamic
channel.
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