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Abstract— This paper proposes a control strategy for input
constrained second order systems with one unstable mode. For
this class of systems, the largest region of attraction under
bounded control is bounded in one direction whilst infinite in
the other. Standard MPC type control with guaranteed stability
either requires large control horizons or typically yields a much
smaller region of attraction. We show that by extending MPC
concepts a control strategy with a horizon of one is developed
that provides asymptotic stability with the largest possible
region of attraction under bounded control.

I. INTRODUCTION

With bounded control, unstable systems by their very
nature have limits on the set of states that can be taken to the
origin. This set of states forms what is often referred to as the
controllable region of the system. Knowledge of these limits
has been used in other research [1][2][3] to design controllers
that expand the region of attraction to the controllable region
itself. None of this research is directly connected with Model
Predictive Control (MPC).

MPC is a popular control strategy due to its inherent
ability to handle constraints. However, stability of MPC can
not be guaranteed in the presence of constraints and with
a finite horizon, without additional conditions being placed
on the formulation. These additional conditions in general
result in conservative regions of attraction that are highly
dependent on the horizon length [4][5]. As a consequence
there is a trade-off between a low computational burden
associated with short horizon MPC, and the size of the region
of attraction. Extending the region of attraction to match
that of the controllable region using MPC would require an
infinite horizon. For second order systems having one real
unstable pole, this paper presents a novel saturation strategy,
motivated by horizon-one MPC, where the saturation de-
pends both on the input constraints and the system’s unstable
state. This strategy is shown to achieve a region of attraction
equal to the controllable region.

II. SYSTEM

We consider a class of open loop unstable, linear, time
invariant, second order systems with the following state space
representation,

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) = [ x1(t) x2(t) ]T is the state vector in R
2,

u(t) is the input in R and (A,B) is controllable.

We assume that the matrices in (1) have the following
form,

A =

[
a11 0
0 a22

]
, B =

[
b1

b2

]
(2)

where a11 > 0 and a22 < 0, indicating that x1 is the unstable
state and x2 is the stable state.

Further we will assume that the input magnitude is con-
strained, that is umin ≤ u ≤ umax with umax > 0, umin < 0
and without loss of generality that b1 > 0 and b2 > 0.

III. CONTROL

In this section observations on the limitations of any
possible controller and a discussion on the use of MPC are
presented.

A. Controllable Region for Unstable Constrained Systems

The controllable region for an input constrained system is
the set of states that are controllable by an input that satisfies
the required bounds [1]. For a system with a single unstable
state the controllable region is determined by the values of
the unstable state that can be cancelled in finite time by the
maximum and minimum available control magnitudes.

Thus, for our system, the controllable region denoted by
Rmax is given by [6] as,

Rmax �

{
x ∈ R

2 :
−b1umax

a11

< x1 <
−b1umin

a11

}
. (3)

B. Model Predictive Control

MPC is a strategy that computes the control action at each
time via the minimisation of a function of the system’s future
inputs and states over a “prediction horizon”. Input (and
state) constraints can be directly included in the optimisation
[7]. Without additional precautions, MPC does not inherently
guarantee stability for every feasible solution of the opti-
misation unless the prediction horizon is of infinite length.
However, optimisation over an infinite horizon is intractable
in the presence of constraints. With a finite horizon, asymp-
totic stability can be guaranteed under certain conditions if
the predicted state at the end of the horizon lies in a “terminal
set” satisfying certain properties [4]. Under these conditions,
MPC is guaranteed to be asymptotically stabilising for any
feasible state, that is, for any state for which there exists a
control sequence that satisfies the required bounds and can
steer the state to the terminal set at the end of the horizon.
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From the previous discussion we can see that the region
of attraction for MPC with guaranteed stability is directly
dependent on the length of the horizon. In order to obtain a
large region of attraction the horizon may need to be large,
hence affecting the complexity of implementation.

Our aim is to achieve a region of attraction equal to the
controllable region. Thus, new conditions for stability as
discussed below have to be considered.

C. Limitation Aware MPC

For the class of systems described in Section II, MPC
with a finite horizon and only input constraints does not
guarantee stability from all initial states in the controllable
region. Given the discussion in Section III-A, it would seem
natural to add a constraint on the unstable state that will keep
the system in the controllable region. This idea motivates the
control strategy proposed in Section IV.

IV. OPTIMAL CONTROL FROM MPC CONCEPTS

In this section we present a controller that can be shown to
be the limit, under infinitely fast sampling, of a discrete-time
MPC controller with horizon one.

For a given state weighting Q = QT > 0 let P be the
positive definite solution to the continuous time algebraic
Riccati equation, AT P + PA − PBBT P + Q = 0. Define
the differential cost function 1,

J(u) = uT u + xT Qx +
d

dt
(xT Px) (4)

with optimal unconstrained control, u∗ = −BT Px. Then
with (1) and u∗ we have,

J(u) = (u − u∗)T (u − u∗). (5)

Therefore, the ’MPC’ type control with unit horizon is,

um = arg min
umin≤u≤umax

J(u) (6)

which is satisfied by the control law,

um = sat(−Kx) (7)

where K = BT P is a linear gain matrix and sat() is
the standard saturation function. We observe, for future
reference, that the gain matrix K = [ k1 k2 ] is stabilising
for (1) and hence it satisfies,

a11a22 − a11k2b2 − a22k1b1 > 0 (8)

b1k1 + b2k2 − a11 − a22 > 0. (9)

It can be checked that (8), (9) imply, k1 > 0.
A constraint on the unstable state can be handled by

introducing additional components to the cost function (4),

Jδ(u) = J(u) + Jmax(u) + Jmin(u) (10)

where

Jmax(u) =
1

2δ

d

dt
[max{x1 − x1max, 0}]

2

=

{
0 if x1 ≤ x1max

1

δ ẋ1(x1 − x1max) if x1 > x1max

1In the sequel, the dependence on time of all variables is omitted.

Jmin(u) =
1

2δ

d

dt
[min{x1 − x1min, 0}]

2

=

{
0 if x1 ≥ x1min

1

δ ẋ1(x1 − x1min) if x1 < x1min

x1min = −b1umax/a11 + ε (11)

x1max = −b1umin/a11 − ε (12)

and
ε < min {−b1umin/a11, b1umax/a11} . (13)

Minimising Jδ(u) under input constraints and taking the
limit as δ approaches zero produces the following control
law.

u′
m = lim

δ→0
arg min

umin≤u≤umax

Jδ(u)

=

⎧⎨
⎩

umax if x1 < x1min

sat(−Kx) if x1min ≤ x1 ≤ x1max

umin if x1 > x1max

(14)

This new control law implies that for x1min ≤ x1 ≤ x1max

the state space is partitioned into three control regions. A
linear control region umin ≤ −Kx ≤ umax, where the linear
control u = −Kx is applied; and two input constrained
regions −Kx < umin and −Kx > umax, corresponding
to u = umin and u = umax, respectively.

In addition for x1 > x1max or x1 < x1min the resulting
input is such that x1 moves back toward the boundary at the
maximum rate given the available input range.

On the lines x1 = x1max and x1 = x1min the right hand
side of the differential equations describing the closed loop
system (1),(14) are discontinuous over a range of x2. For this
kind of differential equations, existence and uniqueness of
solutions on the discontinuous portions of these lines may be
considered using differential inclusions theory as proposed
by Filippov [8].

In general discontinuities occur on a switching surface
s(x) = 0 and existence and uniqueness of solutions on this
surface in the sense of Filippov can be guaranteed if all points
satisfy the following conditions [9].

λ+(x∗) < 0 or λ−(x∗) > 0 (15)

where

λ+(x∗) = lim
x→x∗

λ+(x); λ−(x∗) = lim
x→x∗

λ−(x);

x∗ ∈ {x : s(x) = 0}

and

λ+(x) =
ds

dt
=

∂s

∂x
ẋ for s > 0 (16)

λ−(x) =
ds

dt
=

∂s

∂x
ẋ for s < 0. (17)

We consider the case x1 = x1max, the switching surface is
given by s(x) = x1 − x1max = 0. By using the control law
(14), λ+(x) and λ−(x) become,

λ+(x) = ẋ1 = a11x1 + b1umin for s > 0 (18)

λ−(x) = ẋ1 = a11x1 + b1 sat(−Kx) for s < 0. (19)
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First we consider λ+(x∗),

λ+(x∗) = a11x1max + b1umin = −εa11 [using (12)].

Since a11 > 0, ε > 0, we have,

λ+(x∗) = −εa11 < 0. (20)

Hence the first condition in (15) is always true, guaranteeing
existence and uniqueness of the solution of (1), (14) in the
sense of Filippov, along the switching surface.

Let us now consider λ−(x∗) for the case k2 > 0. Using
(19) we have,

λ−(x∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a11x1max+
b1 sat(−Kx∗) > 0 if x∗

2 < x2s

a11x1max+
b1 sat(−Kx∗) ≤ 0 if x2s ≤ x∗

2 < x2c

−εa11 < 0 if x∗
2 ≥ x2c

(21)
where

x2c = umin(b1k1 − a11)/a11k2 + εk1/k2

x2s = umin(b1k1 − a11)/a11k2 + ε(b1k1 − a11)/(b1k2).

Conditions (20) and (21) imply that for the portion x∗
2 <

x2s the trajectories on both sides of the switching surface
x1 = x1max, point toward it. For the portion x∗

2 ≥ x2s

the trajectories on the right of the switching surface point
toward it with those on the left pointing away. In addition,
for x2s ≤ x∗

2 < x2c, the right hand side of (1), (14) is
discontinuous on the switching surface whereas for x∗

2 ≥ x2c

it is continuous. The trajectories for all cases are illustrated
in Fig. 1.

x1max

x2

x1

u = umin

u = umax

u = −Kx

x2s

x2c

ε

λ
−

λ+

Fig. 1. Depiction of control action on the switching surface

Hence, for x∗
2 < x2s, the trajectories slide along the

switching surface x1 = x1max [9]. For x2s ≤ x∗
2 < x2c,

it may be shown that the trajectory defined in the sense of
Filippov has only x∗ in common with the switching surface
and goes from right to left through x∗ [9]. For x∗ ≥ x2c

the differential equations (1), (14) have a unique solution
in the standard sense and the resulting trajectories cross the
switching surface from right to left.

Further it can be shown that if k2 < 0 the analysis of
the switching surface trajectories remains the same, only the
definition of the portions are changed.

Similar arguments can be made for the case x1 = x1min.
Using this approach the resulting continuous time closed

loop system is a piecewise affine system similar to a one
step horizon MPC formulation of the problem.

Note that (14) coincides with the linear controller u =
−Kx near the origin and hence asymptotic (exponential)
stability is automatically ensured in a region around the
origin. The following sections demonstrate that (14) actually
achieves asymptotic stability with a region of attraction equal
to the controllable region.

V. DEFINITIONS

In this section we give the definition of various critical
elements for the analysis presented in subsequent sections.

A. Critical Points

One of the features that dominates the behaviour of the
system are the equilibrium points that are active within
each region of the piecewise affine closed loop system. The
linear control region umin ≤ −Kx ≤ umax has a stable
equilibrium point at the origin, and the input constrained
regions corresponding to u = umax and u = umin have the
equilibrium points defined below.

Definition 1 (Saturated Equilibrium Points): The equilib-
rium points for the minimum and maximum inputs denoted
as xe+ and xe− respectively, are given by,

Axe+ + Bumin = 0 (22)

Axe− + Bumax = 0. (23)

Using (2), we obtain,

xe+ =

[
x1e+

x2e+

]
=

[
−b1umin/a11

−b2umin/a22

]
(24)

xe− =

[
x1e−

x2e−

]
=

[
−b1umax/a11

−b2umax/a22

]
. (25)

�

To further aid the stability analysis it is important to deter-
mine at which points along the boundary lines umax/min =
−Kx do the state trajectories have derivatives parallel to
these lines or back into the linear control region umin ≤
−Kx ≤ umax. These points help define the boundary of
an invariant sub-region of the linear control region, making
them significant for our analysis.

Definition 2 (Boundary Tangential Trajectory Points):
The boundary tangential trajectory point corresponding to
umax = −Kx is denoted by xTmax and is determined by
the following equations,[

KA
−K

]
xTmax =

[
−KBumax

umax

]
(26)

where K = [ k1 k2 ] is the linear control gain ma-
trix in (14). After some manipulation using (2) this re-
sults in the following explicit expression for xTmax =
[ x1Tmax x2Tmax ]T ,

x1Tmax = −umax(a22 − KB)/(k1(a22 − a11)) (27)

x2Tmax = umax(a11 − KB)/(k2(a22 − a11)) (28)
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By symmetry a similar expression is obtained for the bound-
ary tangential trajectory point on the line umin = −Kx and
is given by xTmin = [ x1Tmin x2Tmin ]T ,

x1Tmin = −umin(a22 − KB)/(k1(a22 − a11)) (29)

x2Tmin = umin(a11 − KB)/(k2(a22 − a11)). (30)

To simplify the equations in the sequel we will define
two new variables xT+ and xT−, that always represent
the tangential points with positive and negative x2 com-
ponents. That is, xT+ = [x1Tmax x2T+]T and xT− =
[x1Tmin x2T−]T , where

x2T+ =

{
x2Tmax if k2 > 0
x2Tmin if k2 < 0

(31)

x2T− =

{
x2Tmin if k2 > 0
x2Tmax if k2 < 0

. (32)

�

Hence, if x2T− ≤ x2 ≤ x2T+, the state trajectories on the
lines −Kx = umin/max have derivatives directed toward the
unconstrained region umin ≤ −Kx ≤ umax.

To define the analysis regions in the next section we also
require that the following properties hold,

x1Tmin ≤ x1e+ − ε (33)

x1Tmax ≥ x1e− + ε. (34)

If the gain K is stabilising, there always exists an ε such that
(33), (34), hold, as we show next. We begin by considering
(33). From (29) and (25) we have,

x1Tmin − x1e+ =
−umin(a11a22 − a11k2b2 − a22k1b1)

a11k1(a22 − a11)
.

By the system description we have umin < 0, a11 > 0,
a22 − a11 < 0 and by the stabilising property of K we have
a11a22 − a11k2b2 − a22k1b1 > 0 and k1 > 0 (see (8) and
(9)). Thus x1Tmin − x1e+ < 0 and we can always choose ε
sufficiently small to satisfy (33). A similar analysis can be
performed for (34).

We note that if ε satisfies (33), (34) then (13) holds.

B. Analysis Regions

Definition 3 (Region Rmax−ε): The region Rmax−ε is
defined as

Rmax−ε � {x ∈ R
2 : x1min ≤ x1 ≤ x1max} (35)

where x1min and x1max are as in (11), (12), with ε satisfying
(33), (34), (Fig. 2). �

Note that the boundaries of Rmax−ε are within ε of those
of the controllable region (3).

Definition 4 (Region R2T ): The region R2T is defined as,

R2T � {x ∈ Rmax−ε : x2T− ≤ x2 ≤ x2T+}

where x2T− and x2T+ are the boundary tangential trajectory
points defined in (31), (32), (Fig. 2). �

Definition 5 (Rlin2T ): The region Rlin2T is defined as,

Rlin2T � {x ∈ R
2 :umin ≤ −Kx ≤ umax

and x2T− ≤ x2 ≤ x2T+}

x1

x2

x1min x1max

x2T+

x2T−

xe+

xe−

Rmax−ε R2T Rlin2T

xT+

xT−

u = umin

u = umax

u = −Kx

Fig. 2. Depiction of analysis regions

where x2T− and x2T+ are defined in (31), (32), (Fig. 2). �

In the sequel we require the following assumption,
Assumption 1:
a) x2T+ > x2e−

b) x2T− < x2e+

For the case where k2 > 0, it can be shown that condi-
tions a) and b) are equivalent to (8), hence the assumption
automatically holds if K is stabilising.

However, if k2 < 0 the assumption holds if and only if,

umina22(a11 − KB) + umaxk2b2(a22 − a11) < 0. (36)

VI. BEST POSSIBLE REGION OF ATTRACTION

In this section we show that the controller (14) asymptot-
ically stabilises system (1) achieving a region of attraction
equal to the controllable region.

The results are presented in a series of lemmas that provide
the construction elements for the proof of the final theorem.

Lemma 1: The regions Rlin2T , R2T , Rmax−ε and Rmax

are nested.
Proof: By (3) and Definition 3 it follows that

Rmax−ε ⊂ Rmax. Similarly, by Definitions 4 we have that
R2T ⊂ Rmax−ε.

By Definitions 4 and 5, region Rlin2T shares the upper
and lower boundaries with R2T and the lateral boundaries
of Rlin2T defined by −Kx = umax/min intersect the upper
and lower boundaries at xT+ and xT−, respectively (See
Fig. 2). These points are within the lines x1 = x1max and
x1 = x1min since ε was chosen to satisfy (33) and (34).
Hence, Rlin2T is a subset of R2T . The result then follows.

Lemma 2: For the system defined in Section II the fol-
lowing properties hold,

a) ẋ2 ≤ a22(x2T+−x2e−) for all x such that x2 ≥ x2T+

b) ẋ2 ≥ a22(x2e+−x2T−) for all x such that x2 ≤ x2T−

Proof:
a) The stable state satisfies, ẋ2 = a22x2 + b2u where

umin ≤ u ≤ umax. From (23), the equilibrium point
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for u = umax satisfies, a22x2e− + b2umax = 0. Then,
for x2 ≥ x2T+ and since b2 > 0, a22 < 0, we have,

ẋ2 = a22(x2 − x2e−) + a22x2e− + b2u

≤ a22(x2 − x2e−) + a22x2e− + b2umax︸ ︷︷ ︸
0

≤ a22(x2 − x2T+)︸ ︷︷ ︸
≤0

+a22(x2T+ − x2e−)

ẋ2 ≤ a22(x2T+ − x2e−).

b) Similarly, using the equation for the equilibrium point
u = umin and the facts that b2 > 0, a22 < 0, we have
that ẋ2 ≥ a22(x2e+ − x2T−) when x2 ≤ x2T−.

Lemma 3: For the system defined in Section II, the fol-
lowing properties hold.

a) For all x such that x1 ≤ x1max and with saturated
input u = umin then ẋ1 ≤ −a11ε,

b) For all x such that x1 ≥ x1min and with saturated
input u = umax then ẋ1 ≥ a11ε.

Proof:

a) For u = umin, the unstable state satisfies, ẋ1 =
a11x1 + b1umin. From (22), the equilibrium point for
u = umin satisfies, a11x1e+ + b1umin = 0. Then,
for x1 ≤ x1max and since b1 > 0, a11 > 0 and
x1max = x1e+ − ε we have,

ẋ1 = a11(x1 − x1max) + a11x1max + b1umin

= a11(x1 − x1max)︸ ︷︷ ︸
≤0

+ a11x1e+ + b1umin︸ ︷︷ ︸
0

−a11ε

ẋ1 ≤ −a11ε.

b) Similarly for x1 ≥ x1min and u = umax we have,
ẋ1 ≥ a11ε.

Lemma 4: For the closed loop system (1), (14), in the
region outside of Rmax−ε but inside Rmax, the following
properties hold.

a) All trajectories with initial state x such that x1max <
x1 < x1e+ reach x1 = x1max in finite time.

b) All trajectories with initial state x such that x1e− <
x1 < x1min reach x1 = x1min in finite time.

Proof:

a) From (14), u = umin everywhere in this region, hence
the following applies.

ẋ1 = a11x1 + b1umin

= a11(x1 − x1e+) + a11x1e+ + b1umin︸ ︷︷ ︸
=0

Let χ+ = x1 − x1e+, then χ̇+ = a11χ
+ and χ+(t) =

ea11tχ+(0). By definition χ+(0) < 0, implying that,

χ+(t) = −ε for some finite t.

and hence x1(t) reaches x1max in finite time.

b) Similarly for x1e− < x1 < x1min, u = umax and
letting χ− = (x1 − x1e−) we have,

χ−(t) = ε for some finite t

and hence x1(t) reaches x1min in finite time.

Lemmas 5 to 7 below show (forward) invariance of the
analysis regions.

Lemma 5: For the closed loop system (1), (14), the region
Rmax−ε is invariant.
Proof: From the analysis in Section IV, the control law (14)
ensures that, x1(t) ≤ x1min and x1(t) ≥ x1max, provided
the initial state is in Rmax−ε. Hence, all trajectories starting
in Rmax−ε remain in Rmax−ε, proving its invariance.

Lemma 6: For the closed loop system (1), (14), and under
Assumption 1 the region R2T is invariant.
Proof: Considering the boundary of this region the following
statements can be proved. Using Assumption 1 then from
Lemma 2 all trajectories starting on x2 = x2T+ have
the property ẋ2 ≤ a22(x2T+ − x2e−) < 0. Similarly, all
trajectories starting on x2 = x2T− have the property ẋ2 ≥
a22(x2e+ − x2T−) > 0. From (14) it can be checked that
u = umax on the left boundary of R2T and u = umin on its
right boundary. Then, from Lemma 3 all trajectories starting
on x1 = x1max have the property ẋ1 ≤ −a11ε < 0 and all
trajectories starting on x1 = x1min have the property ẋ1 ≥
a11ε > 0. These four properties show that all trajectories on
the boundary of R2T are directed into R2T and hence the
region is invariant.

Lemma 7: For the closed loop system (1), (14), and under
Assumption 1 the region Rlin2T is invariant and the origin is
asymptotically stable with a region of attraction that includes
Rlin2T .
Proof: From Lemma 2 and Assumption 1 the upper and
lower bounds of Rlin2T have trajectories directed into the
region and by Definition 2 all trajectories on the boundaries
given by −Kx = umax/min and x2T− ≤ x2 ≤ x2T+

are also directed into the region. Hence the region Rlin2T

is invariant. Within the region Rlin2T the control law is
unconstrained and given by the linear feedback u = −Kx.
Hence the origin is asymptotically stable and its region of
attraction includes Rlin2T .
The following theorem presents the main result of this paper.

Theorem 1: For the closed loop system (1), (14), and
under Assumption 1 the origin is asymptotically stable with
a region of attraction Rmax.
Proof: First consider points x outside of the interior of
Rmax−ε but inside Rmax, that is {x : x ∈ Rmax and x /∈
intRmax−ε}. By Lemma 4, all trajectories starting in this set
reach Rmax−ε in finite time. Next consider points x outside
the interior of R2T but inside Rmax−ε, that is,

XO2T � {x : x ∈ Rmax−ε and x /∈ intR2T }.

By Lemma 2 and Assumption 1,

{x ∈ XO2T : x2 ≥ x2T+} =⇒ẋ2 ≤ a22(x2T+ − x2e−) < 0

{x ∈ XO2T : x2 ≤ x2T−} =⇒ẋ2 ≥ a22(x2e+ − x2T−) > 0.

282



All trajectories in the direction of x2 move toward the R2T

boundary and since Rmax−ε is invariant by Lemma 5, all
states x ∈ XO2T must reach region R2T in finite time.

Now consider all points within R2T but outside the interior
of Rlin2T that is,

XOlin2T � {x : x ∈ R2T and x /∈ intRlin2T }.

By Lemma 3,

{x ∈ XOlin2T : −Kx ≥ umax} =⇒ẋ1 ≥ a11ε > 0

{x ∈ XOlin2T : −Kx ≤ umin} =⇒ẋ1 ≤ −a11ε < 0.

All trajectories in the direction of x1 move toward the Rlin2T

boundary and by Lemma 6 R2T is invariant. Then all states
x ∈ XOlin2T must reach Rlin2T in finite time.

By Lemma 7 Rlin2T is invariant and the origin is asymp-
totically stable. Therefore all trajectories starting in Rmax

converge asymptotically to the origin, proving the result.

VII. EXAMPLE

To show the implications of Theorem 1 and to illustrate
the important results for this class of systems, an example is
provided.

The system chosen for the example has the following data,

A =

[
1 0
0 −1

]
; B =

[
1
1

]
;

umax = 1;
umin = −1.

(37)

The equilibrium points for this sample system are, xe+ =
[ 1 −1 ]T and xe− = [ −1 1 ]T . The controllable re-
gion of this system is Rmax = {−1 < x1 < 1}. The gain
K in (14) is selected as K = [ 2.4 0.4 ].

Fig. 3 shows the linear control region (denoted as Rlin),
the region of attraction with guaranteed stability for MPC
with horizon 15 (denoted as RMPC15) and the trajectories
for various control strategies. Also shown is O∞ [10], the
maximal invariant set for the system ẋ = (A − BK)x
inside the region umin ≤ −Kx ≤ umax. This set is used
as the terminal set in the MPC strategy with guaranteed
stability. The solid line shows the trajectory of the continuous
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Fig. 3. Plot of relevant regions and trajectories using example system

time closed loop system (1), (37), (14), resulting from our
proposed strategy formulated with input and unstable state
constraints. The solid line marked with circles, showing
the trajectory that tracks outside the controllable region is
produced by an MPC formulation without the unstable state
constraint and horizon 15. The dashed line is the trajectory
resulting from an MPC formulation with horizon 15 without
the unstable state constraint but with stability guaranteed by
using O∞ as a terminal constraint set (see Section III-B).

This example shows that to achieve guaranteed stability
using MPC concepts without the unstable state constraint
requires a relatively long horizon, and introduces infeasible
results dependent on the horizon length (i.e. initial states
outside RMPC15 are infeasible for the MPC problem).
By introducing the unstable state constraint, stabilisation
is achieved even with a horizon of one, and the entire
controllable region Rmax is both the feasible region and the
region of attraction for this control.

VIII. CONCLUSION

This paper has presented a control strategy for a class of
second order systems with one unstable and one stable mode.
By applying MPC type control with the constraint such that
the unstable mode remains within the controllable region of
the system, it has been shown that the entire controllable
region becomes the region of attraction for the origin.

Further research is being conducted to extend the pre-
sented concepts to higher order systems, and to show that
this theory is applicable to discrete time implementations.
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