
Robust Linear Optimization: On the benefits of distributional information
and applications in inventory control ∗

Ioannis Ch. Paschalidis†, Member, IEEE, Seong-Cheol Kang‡,

Abstract— Linear programming formulations cannot handle
the presence of uncertainty in the problem data and even
small variations in the data can render an optimal solution
infeasible. A number of robust linear optimization techniques
produce formulations (not necessarily linear) that guarantee
the feasibility of the optimal solutions for all realizations of
the uncertain data. A recent robust approach in [1] maintains
the linearity of the formulation and is able to strike a balance
between the conservatism and quality of a solution by allowing
less robust solutions. In this work we demonstrate how to use
distributional information on problem data in robust linear
optimization. We adopt the robust model of [1] and present an
approach that exploits distributional information on problem
data to decide the level of robustness of the formulation, thus,
leading to much more cost-effective solutions (by 50% or more
in some instances). We apply our methodology to a stochastic
inventory control problem with quality of service constraints.

Index Terms— Robust optimization, Linear programming,
Data uncertainty, Inventory Control, Quality-of-Service.

I. INTRODUCTION

A linear programming (LP) problem is, perhaps, among
the most fortunate outcomes when we formulate an

optimization problem. Theory and methods are very mature,
there are many excellent solvers to choose from, and the
problem can be solved in polynomial time with interior-
point methods. Alas, the world is neither (always) linear nor
certain. In this paper we focus on the latter shortcoming of
LP-based modeling, that is, the presence of uncertainty in
the problem data.

A certainty equivalence approach offers a way to deal with
uncertainty. For every uncertain data element, use a nominal
value – usually its mean – and form a nominal problem which
remains an LP. A solution obtained in this manner, however,
is non-robust as small changes in the problem data can render
the solution infeasible. In many realistic settings this implies
that the solution becomes useless.

To prevent possible infeasibility of a solution and therefore
to ensure its usability, one may construct a robust problem
whose solution is guaranteed to be feasible. Soyster [2]
appears to be the first who addressed this issue for LPs. He
considers an LP problem with “column-wise” uncertainty:

max c′x
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s.t.
n∑

j=1

Ajxj ≤ b, ∀Aj ∈ Kj , j = 1, . . . , n

x ≥ 0,

where each column Aj of the constraint matrix A belongs
to a given convex set Kj . Soyster [2] shows that the problem
can be recast as a finite dimensional LP problem.

Ben-Tal and Nemirovski [3] point out that the case of
“column-wise” uncertainty considered in [2] is extremely
conservative. They instead consider “row-wise” uncertainty
where the rows of the constraint matrix are known to belong
to given convex sets. In this case, they show that the robust
problem is typically not an LP problem; for example, when
the uncertain sets for the rows of A are ellipsoids, the robust
problem turns out to be a conic quadratic problem.

The robust models of Soyster [2] and Ben-Tal and Ne-
mirovski [3] adopt a “worst-case” approach. Although the
guaranteed feasibility is an attractive feature of those robust
formulations, it comes with a price: a degradation of the
objective value. In several applications, however, this price
may be unacceptable, especially if the “worst-case” happens
very rarely. Hence for these applications, it could be more
desirable to obtain a less robust solution with a better
objective value, which also admits a very low probability
of being infeasible. This is the rationale for the robust
optimization approach of Bertsimas and Sim [1].

Bertsimas and Sim [1] consider “element-wise” uncer-
tainty: each uncertain element is modeled as an independent,
symmetric, and bounded random variable whose range is
known but the distribution is unknown. Their approach is
flexible enough to encompass the nominal problem as well
as the Soyster model as special cases. Like the Soyster
model, the robust formulation in [1] remains an LP. The
robustness of the formulation in [1] is controlled by a set
of parameters which regulates the “degree of uncertainty”
in the problem data. Bertsimas and Sim [1] provide bounds
on the probability that an optimal solution of their robust
formulation becomes infeasible due to data uncertainty and
these bounds hold for all probability distributions of the
problem data as long as they satisfy a symmetry assumption.

Another research direction in the literature to deal with
uncertainty in the problem data is to use chance constraints:

P [a′
ix > bi] ≤ εi, ∀i,

where a′
i is the ith row of A. By adjusting the values of εi’s,

this approach also allows less robust solutions with better
objective values. Two interesting approximation methods
for more general forms of chance constraints are given in
Nemirovski and Shapiro [4] and in Calafiore and Campi [5].

The starting point for our work is the robust formulation
of [1]. We will quantify the benefit of having access to
probability distributions of problem data. We will show
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that if probability distributions are known one can obtain
solutions that are much less conservative than the ones
obtained in [1] (by 50% or more in several examples we
present). The crux of the matter is that by exploiting dis-
tributional information we can obtain much tighter bounds
on the probability that an optimal solution of the robust
formulation becomes infeasible; this leads us to “injecting”
less robustness into the formulation and to much more cost-
effective solutions.

Our motivation comes from the (emerging) abundance of
data for many real-world applications. Mining these data sets,
one can obtain distributional information and, as we show,
put it into good use. When data is not available, our work can
help quantify the benefits that can result from data collection
and from implementing estimation techniques for obtaining
distributional information. We expect that in many settings,
these benefits can exceed the associated costs.

The rest of the paper is organized as follows. In Section II,
we outline the robust formulation for general LP problems
proposed in [1] and present our new bounds on the constraint
violation probability. In Section III, we consider as an appli-
cation a discrete-time stochastic inventory control problem
with Quality of Service (QoS) constraints. A related work
can be found in Bertsimas and Thiele [6]. Our approach
differs from [6] in two aspects: First we include the QoS
constraints in an attempt to replace shortage costs that are
hard to quantify. Second our robust formulation seems to be
more natural and tighter than that of [6]. We will elaborate
on this in Subsection III-A. Finally, concluding remarks are
given in Section IV.

II. ROBUST LINEAR OPTIMIZATION

In this section we consider general LPs and start by
reviewing the robust formulation of [1]. Our new bounds
on the constraint violation probability are presented in Sub-
section II-B. Subsection II-C reports some numerical results.

A. Data Uncertainty and Robust Problem

Consider the following LP problem

max c′x (1)
s.t. Ax ≤ b

l ≤ x ≤ u,

where c, l,u ∈ R
n, b ∈ R

m, A is an m × n matrix, and
x ∈ R

n is the decision vector. We assume, without loss
of generality, that only the elements of A are subject to
uncertainty.1 The elements of A are of two types: random
and deterministic. In particular, consider the ith row of A
and let Ji be the set of indices j such that the corresponding
aij are subject to uncertainty. We assume that for all i each
element aij , j ∈ Ji, is modeled as an independent and
bounded random variable taking values in [aij − âij , aij +
âij ], where aij = E[aij ] and âij > 0. Elements aij , j /∈ Ji,
on the other hand, are deterministic and have fixed values aij .
For the probability distribution of aij , for all i and j ∈ Ji,
the following symmetry assumption will be in effect for most
of the results we will present.

1If c and b are also subject to uncertainty, we can reformulate the problem
so that all uncertain elements are contained in A of the new formulation.

Assumption A The probability distribution of aij is symmet-
ric over [aij − âij , aij + âij ] for all i and j ∈ Ji.

In [1], it is assumed that the probability distribution of aij ,
for all i and j ∈ Ji, is unknown other than its symmetry. In
this paper we assume that these probability distributions are
known.

Given this data uncertainty structure for A, one may elect
to solve the following nominal problem where each random
element is replaced by its mean value

zN = max c′x (2)

s.t.
∑

j

aijxj ≤ bi, ∀i

l ≤ x ≤ u.

One disadvantage of the nominal problem is that its optimal
solution is highly likely to violate the original constraints
Ax ≤ b. This leads us to consider a solution that is
guaranteed to satisfy Ax ≤ b for all realizations of aij ,
for all i and j ∈ Ji, and at the same time attains as maximal
an objective value as possible. To obtain such a solution, we
need to solve the following problem which, henceforth, will
be referred to as the Soyster model or fat problem2

zF = max c′x (3)

s.t.
∑

j

aijxj +
∑
j∈Ji

âijyj ≤ bi, ∀i

− y ≤ x ≤ y
l ≤ x ≤ u
y ≥ 0.

The following lemma is almost immediate.

Lemma II.1 Let (x∗,y∗) be an optimal solution of (3). Then
x∗ is a feasible solution of (1) for every possible realization
of A. Moreover zF ≤ zN .

What Lemma II.1 states is that by solving the fat problem
one may obtain a worse solution in exchange for robustness
to data uncertainty.

Noting this trade-off between the conservatism of a solu-
tion and its objective value, Bertsimas and Sim [1] introduce
a parameter Γi for each row i. Γi takes values in [0, |Ji|] and
is not necessarily an integer. Γi is interpreted as the number
of aij , j ∈ Ji that are allowed to be random. For instance if
Γi = 0, then all aij , j ∈ Ji, are forced to be deterministic
and take values aij ; i.e., there is no randomness in row i.
If Γi = |Ji|, then all aij , j ∈ Ji, are random and take
values from their respective ranges [aij − âij , aij + âij ].
In general, only �Γi� elements among aij , j ∈ Ji, are
allowed to take values from their respective ranges, and
one other element, say aiti

, takes values from its truncated
range [aiti

− (Γi − �Γi�)âiti
, aiti

+ (Γi − �Γi�)âiti
], while

the remaining |Ji| − �Γi� random elements are forced to be
deterministic, taking their respective mean values.

Given Γi for all i, we seek to obtain a robust solution with
maximal objective value, which is guaranteed to be feasible

2In Section I this problem was called the robust problem. We reserve the
term, robust problem, for a new robust formulation to be introduced later.
This should not cause any confusion.
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to (1) as long as up to Γi elements of the ith row of A are
random. Let Γ = (Γ1, . . . ,Γm). Let Si be a subset of Ji

such that |Si| = �Γi�, and let ti ∈ Ji \ Si. Such a robust
solution is obtained from the following robust problem

zR(Γ) = max c′x (4)

s.t.
∑

j

aijxj +

max
Si∪{ti}

{∑
j∈Si

âijyj + (Γi − �Γi�)âiti
yti

}
≤ bi, ∀i

− y ≤ x ≤ y
l ≤ x ≤ u
y ≥ 0.

We have the following lemma; the proof is omitted.

Lemma II.2 zR(Γ) is a non-increasing function of Γ, and
zF ≤ zR(Γ) ≤ zN .

By varying Γi between 0 and |Ji| for all i, one is able
to strike a balance between the conservatism of a solution
and its objective value. Bertsimas and Sim [1] show that
the nonlinear formulation (4) can be reformulated as an
equivalent LP problem.

Theorem II.3 ([1]) The following LP problem is equivalent
to the robust problem (4):

max c′x (5)

s.t.
∑

j

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi, ∀i

zi + pij ≥ âijyj , ∀j ∈ Ji, ∀i

pij ≥ 0, ∀j ∈ Ji, ∀i

− y ≤ x ≤ y
l ≤ x ≤ u
y, z ≥ 0.

B. Bounds on the Constraint Violation Probability

Assume Γi > 0 for all i. Let x∗ be an optimal solution
of (4), which can be obtained by solving (5). To avoid
degenerate cases and without loss of generality, we will
assume |x∗| > 0.3 Unless Γi = |Ji| for all i, x∗ may
violate constraints Ax ≤ b. Bertsimas and Sim [1] derive
the following distribution-free upper bound on the probability
that the ith constraint is violated at x∗.

Theorem II.4 ([1]) Under Assumption A,

P

[∑
j

aijx
∗
j > bi

]
≤ exp

[
− Γ2

i

2|Ji|
]
. (6)

Henceforth, we will use the terminology bound (6) to refer
to the right hand side of (6) and a similar terminology for
such bounds. Bound (6) is an a priori bound (i.e., solution-
independent bound) in the sense that its computation requires
only problem parameters and not an optimal solution to
the robust problem. However, as we will see, bound (6)

3If not, we can always fi x to zero all zero coordinates of x∗ and recast
the LP in a lower-dimensional space.

is typically weak because it utilizes neither the probability
distributions of aij’s nor the optimal solution x∗.

When the probability distributions of aij’s are available,
we can derive a tighter a priori bound as the following
theorem shows (due to space limitations we omit the proof).
Let ηij = (aij − aij)/âij , ∀j ∈ Ji. Define the logarithmic
moment generating function of ηij as Ληij

(θ) � log E[eθηij ].

Theorem II.5 Let Assumption A be in effect.
(a) The ith constraint violation probability at x∗ satisfies

P

[∑
j

aijx
∗
j > bi

]
≤ exp

[
− sup

θ≥0

[
θΓi −

∑
j∈Ji

Ληij
(θ)

]]
.

(7)

(b) bound (7) ≤ bound (6).

Observe that both bounds (6) and (7) are decreasing in Γi.
This monotonicity and Theorem II.5(b) have the following
important implication: to ensure the same constraint violation
probability, bound (7) requires smaller Γi than bound (6)
does. Since zR(Γ) is a non-increasing function of Γ, we can
achieve a higher zR(Γ) by using Γi required by bound (7),
while maintaining the same constraint violation probability.
In other words, bound (7) enables us to obtain an equally
robust solution with a better objective value.

Once an optimal solution x∗ of (4) is available, we
can also compute the following a posteriori bound (i.e.,
solution-dependent bound). As the following theorem shows,
this bound is tighter than bound (7). A host of numerical
examples we present later establish that the difference can
be dramatic. Due to space limitations, we omit the proof of
the theorem.

Theorem II.6 Let Assumption A be in effect. Let Ci(x∗) =
bi −

∑
j aijx

∗
j and βij = âij |x∗

j | for j ∈ Ji.
(a) The ith constraint violation probability at x∗ satisfies

P

[∑
j

aijx
∗
j > bi

]
≤ exp

[
− sup

θ≥0

[
θCi(x∗) −

∑
j∈Ji

Ληij
(θβij)

]]
. (8)

(b) bound (8) ≤ bound (7).

If Assumption A is not in effect, a slightly different bound
(Corollary II.7) can be obtained. This can be quite useful as
in many instances the symmetry assumption can be quite
restrictive.

Corollary II.7 Let Ci(x∗) = bi−
∑

j aijx
∗
j and κij = âijx

∗
j

for j ∈ Ji. The ith constraint violation probability at x∗
satisfies

P

[∑
j

aijx
∗
j > bi

]
≤ exp

[
− sup

θ≥0

[
θCi(x∗) −

∑
j∈Ji

Ληij
(θκij)

]]
. (9)

4418



TABLE I

ROBUST PROBLEM OBJECTIVE VALUES AND SOLUTION-DEPENDENT

BOUND

No. zR(Γ1) zR(Γ2) zR(Γ2)
zR(Γ1)

Bound (8)

1 25.71 34.58 1.345 0.001609
2 31.36 45.58 1.454 0.000600
3 387.36 464.09 1.198 0.000081
4 48.71 59.85 1.229 0.001783
5 96.72 148.01 1.530 0.000223

Average 89.64 110.06 1.228 -

C. Numerical Tests

To assess how much the objective value improves when
smaller Γi are used and to see how tight bound (8) is, we
generate problem instances as follows: A is a 10×10 matrix;
all elements of the matrix A are random, i.e., |Ji| = 10
for i = 1, . . . , 10; aij is randomly drawn from the range
[−100, 100], ∀i, j; âij is randomly drawn from [1, 50], ∀i, j;
cj is randomly selected from [−50, 50], ∀j; bi is randomly
selected from [0, 100], ∀i; the lower bound lj is randomly
chosen from [−20, 0], ∀j; the upper bound uj is randomly
chosen from [0, 20], ∀j. We further assume that all aij are
uniformly distributed and that P [

∑
j aijx

∗
j > bi] ≤ 0.05 is

required for all i.
Bounds (6) and (7) require Γi = 7.76 and Γi = 4.34

respectively for all i to guarantee at most 5% constraint vio-
lation probability. (We can use a binary search to determine
such Γi’s because bounds (6) and (7) are monotone in Γi.)
Let Γ1 = 7.76e and Γ2 = 4.34e, where e is the vector of
all ones. We generated 20 problem instances and in Table
I report zR(Γ1) and zR(Γ2) for some of these instances
as well as the averages over the 20 instances. Using the
optimal solution x∗ associated with Γ2, we compute bound
(8) for all i. Among these bound values, the maximum one
is reported in Table I. This experiment demonstrates that by
using the distribution-dependent bound (7), we can improve
the objective value by more than 50% in some instances
and 22% on average. It also shows that bound (8) yields
significantly smaller values than 5%.

III. AN INVENTORY CONTROL PROBLEM WITH QOS
CONSTRAINTS

In this section we apply the robust optimization approach
of Section II to a single-station single-item stochastic in-
ventory control problem over N discrete time periods. Let
xk denote the inventory at the beginning of the kth period;
wk the demand during the kth period; uk the stock ordered
at the beginning of the kth period (decision variables); c
the ordering cost per unit stock; and h the holding cost
per unit stock per period. We assume that each demand
wk is an independent and bounded random variable with
range [wk − ŵk, wk + ŵk], where wk and ŵk are positive
constants with wk > ŵk and wk = E[wk]. The following
symmetry assumption on the probability distribution of wk

will be required for some results later on.

Assumption B The probability distribution of wk is symmet-
ric over [wk − ŵk, wk + ŵk] for all k.

We also assume that the stock ordered at the beginning of the
kth period is delivered instantly, i.e., zero lead time. If we
further assume that excess demand is backlogged and filled
as soon as additional stock becomes available, inventory
evolves according to xk+1 = xk + uk − wk, ∀k.

We consider the Quality of Service (QoS) constraints

xk + uk ≥ wk, k = 1, . . . , N. (10)

We then formulate the following inventory control problem
that minimizes total ordering and holding costs, while en-
forcing the QoS constraints:

min
N∑

k=1

(cuk + hxk+1) (11)

s.t. xk+1 = xk + uk − wk, k = 1, . . . , N
xk + uk ≥ wk, k = 1, . . . , N
uk ≥ 0, k = 1, . . . , N,

where x1 is given. Using the inventory evolution equations,
we get xk+1 = x1 +

∑k
j=1(uj − wj) and we can eliminate

xk, k = 2, . . . , N from (11). By defining ak � N − k + 1,
k = 1, . . . , N and introducing an auxiliary variable z for the
objective function, (11) can be written as

min z (12)

s.t.
k∑

j=1

uj ≥ −x1 +
k∑

j=1

wj , k = 1, . . . , N

z −
N∑

k=1

(c + hak)uk ≥ Nhx1 − h

N∑
k=1

akwk

uk ≥ 0, k = 1, . . . , N.

Notice that in (12) the elements wk in the right hand side
of the constraints are random variables, i.e., the vector b of
the generic LP problem (1) corresponding to (12) is subject
to uncertainty. The coefficients of the decision variables u =
(u1, . . . , uN ) and z are not subject to uncertainty, i.e., the
matrix A is deterministic. As mentioned in Subsection II-A,
we may transform (12) in such a way that only the elements
of matrix A are random. In this particular problem, however,
it will be more convenient not to do so.

A. Robust Inventory Control Problem

When we introduced the robust formulation for general
LPs in Section II, Γi was defined for each row i of matrix A,
i.e., for each constraint of an LP. It was appropriate because
each constraint had a distinct set of random elements. This is
not the case for the inventory control problem under consid-
eration. The problem has N random elements, i.e., N random
demands wk, and all of them appear in multiple constraints.
For instance w1 is involved in all of the constraints. Therefore
it only makes sense to define a single (global) Γ for the
problem. (We point out that Bertsimas and Thiele [6] define
different Γk for each k.)

The parameter Γ takes values in [0, N ] and need not be an
integer. We give the same interpretation to Γ as before: �Γ�
out of N demands take values from their respective ranges,
and one other demand, say wt, takes values from its truncated
range [wt− (Γ−�Γ�)ŵt, wt +(Γ−�Γ�)ŵt]. The remaining
N − �Γ� demands are forced to be deterministic and are
set equal to their respective mean values. Given Γ, there are
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many different ways to choose the demands that are subject
to uncertainty. Let Ω(Γ) denote the set of all demand vectors
w = (w1, . . . , wN ) satisfying the (randomness) model we
put forth, that is, all demand vectors with up to Γ random
elements. Our goal is to construct an optimization problem
such that its optimal solution is guaranteed to be feasible
to (12) for all w ∈ Ω(Γ). Such an optimization problem is
formulated as

min z (13)

s.t.
k∑

j=1

uj ≥ max
w∈Ω(Γ)

{
−x1 +

k∑
j=1

wj

}
, k = 1, . . . , N

z −
N∑

k=1

(c + hak)uk ≥ max
w∈Ω(Γ)

{
Nhx1 − h

N∑
k=1

akwk

}
uk ≥ 0, k = 1, . . . , N.

For k = �Γ�+ 1, . . . , N , let Sk be a subset of the index set
{1, . . . , k} such that |Sk| = �Γ�. Furthermore let tk be an
index such that tk ∈ {1, . . . , k}\Sk. It can be seen that (13)
is equivalent to

zR(Γ) = min z (14)

s.t.
k∑

j=1

uj ≥ −x1 +
k∑

j=1

(wj + ŵj), k = 1, . . . , �Γ�
k∑

j=1

uj ≥ −x1 +
k∑

j=1

wj + max
Sk∪{tk}

{ ∑
j∈Sk

ŵj

+ (Γ − �Γ�)ŵtk

}
, k = �Γ� + 1, . . . , N

z −
N∑

k=1

(c + hak)uk ≥ Nhx1 − h

N∑
k=1

akwk

+ h max
SN∪{tN}

{ ∑
j∈SN

ajŵj + (Γ − �Γ�)atN
ŵtN

}
uk ≥ 0, k = 1, . . . , N.

We will be referring to (14) as the robust inventory control
problem.

Let M(k) � maxSk∪{tk}{
∑

j∈Sk
ŵj+(Γ−�Γ�)ŵtk

}, k =
�Γ� + 1, . . . , N and A(N) � maxSN∪{tN}{

∑
j∈SN

ajŵj +
(Γ − �Γ�)atN

ŵtN
}. Define constant demands w̃k as

w̃k =

⎧⎪⎨⎪⎩
wk + ŵk, k = 1, . . . , �Γ�,
w�Γ�+1 + M(�Γ� + 1) − ∑�Γ�

j=1 ŵj , k = �Γ� + 1,
wk + M(k) − M(k − 1), k = �Γ� + 2, . . . , N.

The following proposition shows that the robust inventory
control problem (14) admits an optimal base-stock policy;
the proof is left out due to space limitations.

Proposition III.1 Assume x1 <
∑N

k=1 w̃k. The following
base-stock policy is optimal to (14):

u∗
k =

{
w̃k − xk, if xk < w̃k,

0, otherwise.
(15)

The cost of the optimal policy is c(
∑N

k=1 w̃k − x1) +
h

∑L
k=1(x1 − ∑k

j=1 w̃j) + h
∑�Γ�

k=1(�Γ� − k + 1)ŵk +
h

∑N−1
k=�Γ�+1 M(k) + aNhM(N) + hA(N), where L =

max{k | x1 −
∑k

j=1 w̃j ≥ 0}.

The robust inventory control problem (14) is not an LP
problem because of the max{·} functions. However, using
LP duality it is possible to construct an equivalent LP
problem from which we can obtain an optimal u∗ efficiently.
The following proposition states the result; the proof is
omitted due to space limitations.

Proposition III.2 The robust inventory control problem (14)
is equivalent to the following LP problem:

min z (16)

s.t.
k∑

j=1

uj ≥ −x1 +
k∑

j=1

(wj + ŵj), k = 1, . . . , �Γ�
k∑

j=1

uj ≥ −x1 +
k∑

j=1

wj + Γpk +
k∑

j=1

qkj ,

k = �Γ� + 1, . . . , N
pk + qkj ≥ ŵj , j = 1, . . . , k, k = �Γ� + 1, . . . , N

z −
N∑

k=1

(c + hak)uk ≥ Nhx1 − h

N∑
k=1

akwk

+ h

(
Γr +

N∑
k=1

sk

)
r + sk ≥ akŵk, k = 1, . . . , N
pk, qkj ≥ 0, j = 1, . . . , k, k = �Γ� + 1, . . . , N
r, sk, uk ≥ 0, k = 1, . . . , N.

B. Bounds on the QoS Constraint Violation Probability

Assume Γ > 0. Let u∗ be an optimal solution to
(14), which can be obtained by solving (16). We exam-
ine the probabilities that u∗ violates the QoS constraints∑k

j=1 uj ≥ −x1 +
∑k

j=1 wj , k = 1, . . . , N . Clearly none
of the constraints for k = 1, . . . , �Γ� are violated at u∗
because Γ provides full protection for those constraints. For
k = �Γ� + 1, . . . , N , the probability that the kth period
QoS constraint is violated at u∗ can be upper bounded as
the following theorem describes; the result is analogous to
Theorem. II.5(a), Corollary II.7, and Theorem. II.6(b), and
the proof is omitted. Let zk = (wk−wk)/ŵk, k = 1, . . . , N ,
and let Λzk

(θ) � log E[eθzk ] denote the logarithmic moment
generating function of zk.

Theorem III.3 (a) Suppose that demands wk satisfy Assump-
tion B. Then for k = �Γ� + 1, . . . , N

P

[ k∑
j=1

u∗
j < −x1 +

k∑
j=1

wj

]

≤ exp
[
− sup

θ≥0

[
θΓ −

k∑
j=1

Λzj
(θ)

]]
. (17)

(b) Let Ck(u∗) =
∑k

j=1 u∗
j + x1 −

∑k
j=1 wj . Then for k =

�Γ� + 1, . . . , N

P

[ k∑
j=1

u∗
j < −x1 +

k∑
j=1

wj

]

≤ exp
[
− sup

θ≥0

[
θCk(u∗) −

k∑
j=1

Λzj
(θŵj)

]]
. (18)
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(c) bound (18) ≤ bound (17).

Under Assumption B, bound (6) developed in [1] can be
tailored to the inventory control problem as follows.

P

[ k∑
j=1

u∗
j < −x1 +

k∑
j=1

wj

]
≤ exp

[
−Γ2

2k

]
. (19)

By applying Theorem II.5(b), we can show bound (17) ≤
bound (19). Bound (17) depends on the probability distribu-
tions of wj’s, but not on the optimal solution u∗. Bound (18),
on the other hand, relies on both the probability distributions
and u∗. Moreover, bound (18) does not require the symmetry
assumption (Assumption B). We can also show the following
monotonicity property.

Lemma III.4 Given k, bounds (17) and (18) are non-
increasing functions of Γ.

Bounds (17) and (18) can be used together in the following
scheme. Assume that the probability distributions of wk’s are
symmetric. For simplicity, further assume x1 = 0. Suppose
there is a period, say the kth period, for which we want
the QoS constraint violation probability to be kept below
p%. We need to determine u∗ that satisfies this requirement.
One option is to use any Γ ≥ k and solve (16) because the
resulting u∗ guarantees a zero violation probability for the
kth period. However, this may be unnecessarily conservative
resulting in a high cost. To obtain a better solution, we follow
the procedure outlined below.

First using (17), we determine the minimum Γ for which
the requirement is achieved. Since bound (17) is monotone
in Γ, we can use a binary search. Let Γ be the result. We
then solve (16) with Γ and obtain u∗. Using u∗ we compute
bound (18) for the kth period. Due to Theorem III.3(c), it will
be no greater than p%. So we choose a new Γ in the interval
[0,Γ], solve (16), and compute bound (18). If the bound is
larger than p%, we increase Γ. Otherwise we decrease Γ.
We iterate in this fashion until we find a solution u∗ (and
optimal Γ) for which bound (18) yields a value smaller but
sufficiently close to p%. Note that a binary search can also
be employed in choosing Γ during these iterations because
bound (18) is also monotone in Γ.

C. Numerical Tests

We set N = 30, c = 2, h = 1, and x1 = 0. Let
w = (w1, . . . , wN ) and ŵ = (ŵ1, . . . , ŵN ). The value of
wk is randomly drawn from the range [N, 10N ] for all k. The
value of ŵk is randomly chosen from the range [1, wk − 1]
for all k. In this manner, we generate 20 instances of (w, ŵ).
For simplicity, we assume that all wk have the same type of
probability distribution, i.e., all zk are identically distributed.
We consider three types of symmetric probability distribu-
tion: triangle (T), uniform (U), and reverse-triangle (R). For
each period k = 1, . . . , N , the QoS constraint violation
probability is required to be no more than 5%. Let ΓD, ΓS ,
ΓB be the minimum values of Γ for which bounds (17), (18),
(19) are less than 5% for all k, respectively. Since bounds
(17) and (19) are non-decreasing functions of k for given Γ,
it suffices to consider the N th period to determine ΓD and
ΓB . A simple calculation yields ΓB = 13.42. ΓD depends on

TABLE II

ROBUST INVENTORY CONTROL PROBLEM OBJECTIVE VALUES AND ΓS .

Dist. zR(ΓB) zR(ΓD) zR(ΓS) ΓS
zR(ΓD)
zR(ΓB)

zR(ΓS)
zR(ΓB)

T 75848 51868 35192 2.55 0.684 0.464
U 75848 60976 43322 3.81 0.804 0.571
R 75848 66467 49025 4.85 0.876 0.646

the probability distributions of wk’s, and it is equal to 5.45,
7.68, and 9.38 for the triangle, uniform, and reverse-triangle
distributions, respectively. We cannot determine ΓS a priori
because it depends on u∗. It should be determined on-line
as we described in the previous subsection.

For each instance of (w, ŵ), we solve (16) with ΓB

and ΓD; we also determine ΓS and solve (16) with ΓS . In
Table II, we list the objective values of (16) corresponding to
ΓB , ΓD, and ΓS , averaged over the 20 instances of (w, ŵ).
The average values of ΓS are also shown in the table. It
can be seen that the distributional information we use and
the tighter bounds we provide can lead to significant cost
savings (up to 54% in these examples) over the distribution-
free robust approach of [1].

IV. CONCLUSIONS

Using the probability distributions of uncertain data, we
showed that we can (drastically) improve the quality of
a solution to the robust problem without compromising
its robustness (quantified as the probability that the solu-
tion becomes infeasible). To that end, we derived a new
bound on the constraint violation probability. This bound
is distribution-dependent, but is independent of the solution.
We showed that the bound is tighter than a distribution-free
bound given in [1]. We also derived another bound that relies
on the solution. We showed that this solution-dependent
bound is tighter (and in our numerical tests significantly so)
than all other bounds.

As an application, we considered a discrete-time stochas-
tic inventory control problem with QoS constraints. We
constructed a robust formulation for the inventory control
problem and showed that its optimal ordering policy is a
base-stock policy. We derived two bounds on the probability
that the QoS constraints are violated. We explained how these
two bounds can be used systematically to obtain a better
solution of the inventory control problem. In some of the
examples we provided, cost savings amount to 54%.
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