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Abstract—In this paper, we present an analysis of competi-
tion in congested networks. We consider the problem of routing
flows across multiple paths controlled by serial and parallel
service providers that charge prices for transmission. We study
the efficiency properties of oligopoly equilibria. Our measure
of efficiency is the difference between users’ willingness to pay
and delay costs. Under the assumption that delay costs without
transmission (latencies at zero) are equal to zero, we show that,
irrespective of the number of serial and parallel providers, the
efficiency of oligopoly equilibria in pure strategies is no worse
than 1/2 times the efficiency of the social optimum. When
latencies at zero can be positive, the efficiency of oligopoly
equilibria can be arbitrarily low.

I. INTRODUCTION

There has been growing interest in pricing as a method of
allocating scarce network resources (see, for example, [13],
[15]). Although prices may be set to satisfy some network
objectives, in practice many prices are controlled by for-
profit service providers that charge prices, at least in part,
to increase their revenues and profits.
Research to date suggests that profit-maximizing pricing

may improve the allocation of resources in communication
networks. Let the metric of efficiency be the difference
between users’ willingness to pay and delay costs in the
equilibrium relative to that in the social optimum (which
would be chosen by a a network planner with full information
and full control over users). Acemoglu and Ozdaglar [2]
show that with inelastic and homogeneous users, pricing by
a monopolist controlling all links in a parallel-link network
always achieves efficiency (i.e., the efficiency metric is equal
to one). Huang, Ozdaglar and Acemoglu [11] extend this
result to a general network topology. Acemoglu and Ozdaglar
[1] show that in a parallel-link network with inelastic and
homogeneous users, the efficiency metric with an arbitrary
number of competing network providers is lower-bounded by
5/6 when there is zero latency at zero flow and by 2

√
2− 2

with positive latency at zero flow.
This paper shows that the efficiency of equilibrium with

competing network providers is considerably lower when
we depart from the parallel-link topology. To illustrate this,
we consider a parallel-serial topology where an origin-
destination pair is linked by multiple parallel paths, each
potentially consisting of an arbitrary number of serial
links. Congestion costs are captured by a link-specific non-
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decreasing convex latency functions, denoted by li (·). Each
link is owned by a different service provider. All users are
inelastic and homogeneous.
This environment induces the following two-stage game:

each service provider simultaneously sets the price for trans-
mission of bandwidth on its link, denoted by pi. Observing
all the prices, in the second stage users route their informa-
tion through the path with the lowest effective cost, where
effective cost consists of the sum of prices and latencies of
the links along a path [i.e., sum of pi + li (·)’s over the links
comprising a path].
We characterize the pure strategy subgame perfect equi-

libria of this game and show that when latency without any
traffic is equal to zero [i.e., li (0) = 0], there is a tight
bound of 1/2 on the efficiency metric irrespective of the
number of paths and service providers in the network. This
bound is reached by simple examples. This establishes that
the performance of general network under competition can
be significantly worse than the 5/6 bound established for the
parallel topology in Acemoglu and Ozdaglar [1].
The reason for this degradation of performance is interest-

ing. As Example 1 below illustrates, the bound 1/2 is reached
when there are multiple serial providers along a path with
zero (total) latency. Serial providers do not take into account
that when they charge higher prices, they reduce the profits
of other serial providers on their path. This increases prices
along paths with multiple serial providers, and when it is
socially optimal to transmit most of the data through such
paths, it raises the scope for inefficiency.
More strikingly, when the assumption that li (0) = 0 is

relaxed, we find that the efficiency is arbitrarily small relative
to the social optimum. This result sheds doubt on the con-
jecture that unregulated competition among service providers
might achieve good network performance in general.
Related work include studies quantifying efficiency losses

of selfish routing without prices (e.g., Koutsoupias and
Papadimitriou [14], Roughgarden and Tardos [18], Correa,
Schulz, and Stier-Moses [7], Perakis [17], and Friedman
[9]); of resource allocation by different market mechanisms
(e.g., Johari and Tsitsiklis [12], Sanghavi and Hajek [19]);
and of network design (e.g., Anshelevich et. al. [4]). More
closely related are the works of Basar and Srikant [5], who
analyze monopoly pricing in a network context under specific
assumptions on the utility and latency functions; He and
Walrand, [10], who study competition cooperation among
Internet service providers under specific demand models; as
well as Acemoglu, Ozdaglar, and Srikant [3], who study
resource allocation in a wireless network under fixed pricing.
None of these papers, except our previous work, Acemoglu
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and Ozdaglar [1], consider the performance of a network
with competing providers.

II. MODEL

We consider a network with I parallel paths that connect
two nodes. Each path i consists of ni links. Let I =
{1, . . . , I} denote the set of paths and Ni denote the set
of links on path i. Let xi denote the flow on path i, and
x = [x1, . . . , xI ] denote the vector of path flows. Each link
in the network has a flow-dependent latency function li(xi),
which measures the delay as a function of the total flow on
link i. We denote the price per unit flow (bandwidth) of link
j by pj . Let p = [pj ]j∈Ni, i∈I denote the vector of prices.
We are interested in the problem of routing d units of

flow across the I paths. We assume that this is the aggregate
flow of many “small” users and thus adopt the Wardrop’s
principle (see [20]) in characterizing the flow distribution
in the network; i.e., the flows are routed along paths with
minimum effective cost, defined as the sum of the latencies
and prices of the links along that path (see the definition
below). Wardrop’s principle is used extensively in modelling
traffic behavior in transportation networks ([6], [8], [16]) and
communication networks ([18], [7]). We also assume that
users have a reservation utility R and decide not to send
their flow if the effective cost exceeds the reservation utility.

Definition 1: For a given price vector p ≥ 0, a vector
xWE ∈ R

I
+ is a Wardrop equilibrium (WE) if∑

j∈Ni

lj(xWE
i ) + pj = min

k∈I

{ ∑
j∈Nk

lj(xWE
k ) + pj

}
∀ i with xWE

i > 0, (1)∑
j∈Ni

lj(xWE
i ) + pj ≤ R, ∀ i with xWE

i > 0,

and
∑

i∈I xWE
i ≤ d, with

∑
i∈I xWE

i = d if
mink∈I

{ ∑
j∈Nk

lj(xWE
k ) + pj

}
< R. We denote the set

of WE at a given p by W (p).

We adopt the following assumption on the latency func-
tions throughout the paper except in Section IV-C.

Assumption 1: For each i ∈ I, the latency function
li : [0,∞) �→ [0,∞) is convex, continuously differentiable,
nondecreasing, and satisfies li(0) = 0.

The following proposition establishes the existence and
continuity properties of the WE as a function of the prices.
The proof idea is standard, but is included briefly here for
use in subsequent analysis.

Proposition 1: (Existence and Continuity) Let Assump-
tion 1 hold. For any price vector p ≥ 0, the set of WE,W (p),
is nonempty. Moreover, the correspondence W : R

I
+ ⇒ R

I
+

is upper semicontinuous.

Proof sketch: Given any p ≥ 0, the proof is based on using
Assumption 1 (in particular the convexity assumption) to

show that the set of WE is given by the set of optimal
solutions of the following optimization problem

maximizex≥0

∑
i∈I

((
R −

∑
j∈Ni

pi

)
xi −

∫ xi

0

∑
j∈Ni

li(z)dz
)

(2)

subject to
I∑

i=1

xi ≤ d.

The results follow by the fact that the optimal solution set
of the preceding problem is nonempty and by using the
Theorem of the Maximum. Q.E.D.

For a given price vector p, the WE need not be unique in
general. Under further restrictions on the li, we obtain the
following result.

Proposition 2: (Uniqueness) Let Assumption 1 hold. As-
sume further that the li are strictly increasing. For any price
vector p ≥ 0, the set of WE, W (p), is a singleton. Moreover,
the function W : R

I
+ �→ R

I
+ is continuous.

We next define the social problem and the social optimum,
which is the routing (flow allocation) that would be chosen
by a central network planner that has full control and
information about the network.

Definition 2: A flow vector xS is a social optimum if it
is an optimal solution of the social problem

maximizex≥0

∑
i∈I

(
R −

∑
j∈Ni

lj(xi)
)
xi (3)

subject to
∑
i∈I

xi ≤ d.

In view of Assumption 1, the social problem has a
continuous objective function and a compact constraint set,
guaranteeing the existence of a social optimum, xS . More-
over, using the optimality conditions for a convex program,
we see that a vector xS ∈ R

I
+ is a social optimum if and

only if
∑

i∈I xS
i ≤ d and there exists a λS ≥ 0 such that

λS
( ∑I

i=1 xS
i − d

)
= 0 and for each i ∈ I,

R −
∑
j∈Ni

lj(xS
i ) − xS

i

∑
j∈Ni

l′j(x
S
i ) ≤ λS if xS

i = 0,

= λS if xS
i > 0.

For future reference, for a given vector x ∈ R
I
+, we define

the value of the objective function in the social problem,

S(x) =
∑
i∈I

(
R −

∑
j∈Ni

lj(xi)
)
xi, (4)

as the social surplus, i.e., the difference between the users’
willingness to pay and the total latency.
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III. OLIGOPOLY PRICING AND EQUILIBRIUM

We assume that there are multiple service providers, each of
which owns one of the links on the paths in the network.
Service provider j charges a price pj per unit bandwidth on
link j ∈ Ni. Given the vector of prices of links owned by
other service providers, p−j = [pk]k �=j , the profit of service
provider j with j ∈ Ni is

Πj(pj , p−j , x) = pjxi,

where x ∈ W (pj , p−j).
The objective of each service provider is to maximize

profits. Because their profits depend on the prices set by other
service providers, each service provider forms conjectures
about the actions of other service providers, as well as the
behavior of users, which they do according to the notion
of subgame perfect Nash equilibrium. We refer to the game
among service providers as the price competition game.

Definition 3: A vector (pOE , xOE) ≥ 0 is a (pure strat-
egy) Oligopoly Equilibrium (OE) if xOE ∈ W

(
pOE

j , pOE
−j

)
and for all i ∈ I, j ∈ Ni,

Πj(pOE
j , pOE

−j , xOE) ≥ Πj(pj , p
OE
−j , x),

∀ pj ≥ 0, ∀ x ∈ W (pj , p
OE
−j ). (5)

We refer to pOE as the OE price.

The next proposition shows that for linear latency func-
tions, there exists a pure strategy OE.

Proposition 3: Let Assumption 1 hold, and assume further
that the latency functions are linear. Then the price compe-
tition game has a pure strategy OE.

Proof: Let lj(x) = ajx for some aj ≥ 0. Define the set

I0 = {i ∈ I |
∑
j∈Ni

aj = 0},

(or equivalently, I0 is the set of i ∈ I such that aj = 0 for
all j ∈ Ni). Let I0 denote the cardinality of set I0. There
are two cases to consider:

• I0 ≥ 2: Then it can be seen that a vector (pOE , xOE)
with pOE

j = 0 for all i ∈ I0, j ∈ Ni and xOE ∈
W (pOE) is an OE.

• I0 ≤ 1: For some j ∈ Ni, let Bj(pOE
−j ) be the set of

pOE
j such that

(pOE
j , xOE) ∈ arg max

pj≥0

x∈W (pj,pOE−j
)

pjxi. (6)

Let B(pOE) = [Bj(pOE
−j )]. In view of the linearity of

the latency functions, it follows that B(pOE) is an up-
per semicontinuous and convex-valued correspondence.
Hence, we can use Kakutani’s fixed point theorem to
assert the existence of a pOE such that B(pOE) = pOE .
To complete the proof, it remains to show that there
exists xOE ∈ W (pOE) such that (5) holds.

If I0 = ∅, we have by Proposition 2 that W (pOE) is a
singleton, and therefore (5) holds and (pOE , W (pOE))
is an OE.
Assume finally that I0 = 1, and that without loss
of generality 1 ∈ I0. We show that for all x̄, x̃ ∈
W (pOE), we have x̄i = x̃i, for all i 
= 1. Let

EC(x, pOE) = min
k∈I

{ ∑
j∈Nk

lj(xk) + pOE
j

}
.

If at least one of

EC(x̃, pOE) < R, or EC(x̄, pOE) < R

holds, then one can show that
∑I

i=1 x̃i =
∑I

i=1 x̄i = d.
Substituting x1 = d−∑

i∈I, i �=1 xi in problem (2), we
see that the objective function of problem (2) is strictly
convex in x−1 = [xi]i �=1, thus showing that x̃ = x̄.
If both EC(x̃, pOE) = R and EC(x̄, pOE) = R, then
x̄i = x̃i = l−1

i (R−pOE
i ) for all i 
= 1, establishing our

claim.
For some x ∈ W (pOE), consider the vector xOE =(
d − ∑

i �=1 xi, x−1

)
. Since x−1 is uniquely defined

and x1 is chosen such that the providers on link 1 have
no incentive to deviate, it follows that (pOE , xOE) is
an OE.

Q.E.D.

Although the proof of the existence of a pure strategy OE
cannot be extended to arbitrary convex latency functions,
existence of a mixed strategy OE can be established along
the lines of the analysis in Acemoglu and Ozdaglar [1].
We next provide an explicit characterization of the OE

prices, which will be essential for the efficiency analysis
of Section IV. The proof relies on showing that all path
flows are positive at the OE (which allows us to write the
optimization problems for each provider in terms of equality
and inequality constraints) and using the first order optimality
conditions to characterize the OE prices. Details of the proof
for the parallel-link topology are provided in [1].

Proposition 4: Let Assumption 1 hold. Let (pOE , xOE)
be an OE such that pOE

j xOE
i > 0 for some i ∈ I, j ∈ Ni.

Then, for all i ∈ I, j ∈ Ni, we have

pOE
j =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xOE
i

∑
k∈Ni

l′k(xOE
i ), if l′k(xOE

s ) = 0
for k 
= j, s 
= i,

min

{
1
ni

[
R − ∑

k∈Ni
lk(xOE

i )
]
,

xOE
i

[ ∑
k∈Ni

l′k(xOE
i )

+ 1P
s �=i

1
P

k∈Ns
l′
k
(xOE

s )

]}
, otherwise.

(7)

In particular, for two links, when the minimum effective
cost is less than R, for i = 1, 2, j ∈ Ni, the OE prices are
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given by

pOE
j = xOE

i

[ ∑
k∈N1

l′k(xOE
1 ) +

∑
k∈N2

l′k(xOE
2 )

]
.

IV. EFFICIENCY ANALYSIS

In this section, we study the efficiency properties of oligopoly
pricing. We take as our measure of efficiency the ratio of
the social surplus at the equilibrium flow allocation to the
social surplus at the social optimum, S(xOE)/S(xS) [cf. (4)].
We consider price competition games that have pure strategy
equilibria (this set includes, but is larger than, games with
linear latency functions, see Section III). Given a parallel-
link network with I paths, ni links on path i, and latency
functions {lj}(j∈Ni, i∈I), let

−−→
OE({lj}) denote the set of

flow allocations xOE = [xOE
i ]i∈I at an OE. We define the

efficiency metric at some xOE ∈ −−→
OE({lj}) as

rI({lj}, xOE) =

R
∑

i∈I xOE
i − ∑

i∈I
( ∑

j∈Ni
lj(xOE

i )
)
xOE

i

R
∑

i∈I xS
i − ∑

i∈I
( ∑

j∈Ni
lj(xS

i )
)
xS

i

, (8)

where xS is a social optimum given the latency functions
{lj} and R is the reservation utility. Following the literature
on the “price of anarchy,” (see [14]), we are interested in the
worst performance of an oligopoly equilibrium, so we look
for a lower bound on

inf
{lj}

inf
xOE∈−−→OE({lj})

rI({lj}, xOE).

A. Two Paths

We consider a two path network, with ni links on path
i = 1, 2, where each link is owned by a different provider.
We first study the following example, which illustrates that
the efficiency loss can be worse than that in parallel link
networks without serial links (which was shown to be
bounded below by 5/6 in [1]).

Example 1: Consider a two path network, which has n
links on path 1 with identically 0 latency functions and one
link on path 2 with latency function l(x2) = x2/2. Let the
total flow be d = 1 and the reservation utility be R = 1.
The unique social optimum for this example is xS =

(1, 0). Using Proposition 4 and the definition of a WE, it
follows that the flow allocation at the OE, xOE , satisfies∑

j∈N1

lj(xOE
1 ) + xOE

1

[ ∑
j∈N1

l′j(x
OE
1 ) +

∑
j∈N2

l′j(x
OE
2 )

]

=
∑

j∈N2

lj(xOE
2 ) + xOE

2

[ ∑
j∈N1

l′j(x
OE
1 ) +

∑
j∈N2

l′j(x
OE
2 )

]
.

Substituting for the latency functions and solving the above
together with xOE

1 +xOE
2 = 1 shows that the flow allocation

at the unique oligopoly equilibrium is

xOE =
( 2

n + 2
,

n

n + 2

)
,

which goes to (0, 1) as n → ∞. The social surplus at the
social optimum is 1, while the social surplus at the oligopoly
equilibrium tends to 1/2 as n → ∞.
The next theorem provides a tight lower bound on

r2({lj}, xOE) [cf. (8)]. In the following, we assume without
loss of generality that d = 1.

Theorem 1: Consider a two path network, with ni links
on path i, where link j has a latency function lj . Assume
that each link is owned by a different provider and the price
competition game has a pure strategy OE. Then

r2({lj}, xOE) ≥ 1
2
, ∀ xOE ∈ −−→

OE({lj}). (9)

Moreover, the bound above is tight, i.e., there exists {lj} and
xOE ∈ −−→

OE({lj}) that attains the lower bound in (9).
Proof: The proof is an extension of the proof of effi-

ciency for parallel-link topology in [1].
Step 1: We are interested in finding a lower bound for the

problem
inf
{lj}

inf
xOE∈−−→OE({lj})

r2({lj}, xOE). (10)

Given {lj}, let xOE ∈ −−→
OE({lj}) and let xS be a social

optimum. We can assume without loss of generality that∑2
i=1 xOE

i =
∑2

i=1 xS
i = 1 (see [1]). This implies that

there exists some i such that xOE
i ≤ xS

i . Since the problem
is symmetric, we can restrict ourselves to {lj} for which
xOE

1 ≤ xS
1 . We claim

inf
{li}∈L2

inf
xOE∈−−→OE({li})

r2({li}, xOE) ≥ rOE
2 , (11)

where

rOE
2 = minimize lS

i,j
,(lS

i,j
)′≥0

li,j ,l′
i,j

≥0

yS
i

,yOE
i

≥0

R − yOE
1

( ∑
j∈N1

l1,j

)
− yOE

2

( ∑
j∈N2

l2,j

)
R − yS

1

( ∑
j∈N1

lS1,j

)
− yS

2

( ∑
j∈N2

lS2,j

) (E)

subject to

lSi,j ≤ yS
i (lSi,j)

′, i = 1, 2, j ∈ Ni, (12)

( ∑
j∈N2

lS2,j

)
+ yS

2

( ∑
j∈N2

(lS2,j)
′
)

=
( ∑

j∈N1

lS1,j

)
+ yS

1

( ∑
j∈N1

(lS1,j)
′
)
, (13)

( ∑
j∈N1

lS1,j

)
+ yS

1

( ∑
j∈N1

(lS1,j)
′) ≤ R, (14)

2∑
i=1

yS
i = 1, (15)

l1,j ≤ lS1,j , ∀ j ∈ N1, (16)
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li,j ≤ yOE
i l′i,j , i = 1, 2, j ∈ Ni, (17)

2∑
i=1

yOE
i = 1, (18)

+ Oligopoly Equilibrium Constraints. (19)

Problem (E) can be viewed as a finite dimensional problem
that captures the equilibrium and social optimum character-
istics of the infinite dimensional problem given in (10). This
implies that instead of optimizing over the entire function
lj for some j ∈ Ni, i ∈ I , we optimize over the
possible values of lj(·) and l′j(·) at the equilibrium and the
social optimum, which we denote by li,j , l

′
i,j , l

S
i,j , (l

S
i,j)

′. The
constraints of the problem guarantee that these values satisfy
the necessary optimality conditions for a social optimum and
an OE. In particular, conditions (12) and (17) capture the
convexity assumption on lj(·) by relating the values li,j , l

′
i,j

and lSi,j , (l
S
i,j)

′ (note that the assumption lj(0) = 0 is essential
here). Condition (13) is the optimality condition for the social
optimum. Condition (16) captures the nondecreasing assump-
tion on the latency functions; since we are considering lj(·)
such that xOE

1 ≤ xS
1 , we must have l1,j ≤ lS1,j for all j.

Finally, the last set of constraints are the necessary conditions
for a pure strategy OE. In particular, for a two path network,
using Proposition 4, the Oligopoly Equilibrium Constraints
are given by

n1y
OE
1

[ ∑
j∈N1

l′1,j +
∑

j∈N2

l′2,j

]
+

∑
j∈N1

l1,j

= n2y
OE
2

[ ∑
j∈N1

l′1,j +
∑

j∈N2

l′2,j

]
+

∑
j∈N2

l2,j ,

[and therefore n1 and n2 are also decision variables in prob-
lem (E)]. Note that given any feasible solution of problem
(10), we have a feasible solution for problem (E) with the
same objective function value. Therefore, the optimum value
of problem (E) is indeed a lower bound on the optimum value
of problem (10).

Step 2: Consider the following change of variables for
problem (E)

lS1 =
∑

j∈N1

lS1,j , lS2 =
∑

j∈N2

lS2,j

l1 =
∑

j∈N1

l1,j , l2 =
∑

j∈N2

l2,j ,

and rewrite problem (E) as

rOE
2 = minimize lS

i
,(lS

i
)′≥0

li,l′
i
≥0

yS
i

,yOE
i

≥0

R − l1y
OE
1 − l2y

OE
2

R − lS1 yS
1 − lS2 yS

2

(E′)

subject to
lSi ≤ yS

i (lSi )′, i = 1, 2,

lS2 + yS
2 (lS2 )′ = lS1 + yS

1 (lS1 )′,

lS1 + yS
1 (lS1 )′ ≤ R,

2∑
i=1

yS
i = 1,

l1 ≤ lS1 ,

li ≤ yOE
i l′i, i = 1, 2,

2∑
i=1

yOE
i = 1,

+ Oligopoly Equilibrium Constraints.

Let (l̄Si , (l̄Si )′, l̄i, l̄′i, ȳ
S
i , ȳOE

i ) denote the optimal solution
of problem (E’). We have shown in [1] that l̄Si = 0 for
i = 1, 2.

Step 3: Using l̄Si = 0 for i = 1, 2 and l̄1 = 0, we see that

rOE
2 =

minimize l2,l′2
yOE
1 , yOE

2 ≥0
n1, n2≥1

1 − l2y
OE
2

R

subject to l2 ≤ yOE
2 l′2,

l2 + n2y
OE
2 l′2 = n1y

OE
1 l′2,

n1y
OE
1 l′2 ≤ R.

2∑
i=1

yOE
i = 1.

It is straightforward to show that the optimal solution of this
problem is (l̄2, l̄′2, ȳ

OE
1 , ȳOE

2 ) = (R
2 , R

2 , 0, 1), and therefore
the optimum value is rOE

2 = 1/2. By (11), this implies that

inf
{lj}

inf
xOE∈−−→OE({lj})

r2({lj}, xOE) ≥ 1
2
.

Finally, Example 1 shows that this bound is tight, i.e.,

min
{lj}

min
xOE∈−−→OE({lj})

r2({lj}, xOE) =
1
2
.

Q.E.D.

To see why efficiency is worse in this case than in the
parallel-link topology considered in [2], suppose that in
Example 1 all n links along path 1 are owned by the same
service provider. This makes the example equivalent to a
parallel-link topology. It is straightforward to see that in
this case the unique OE flows are given by xOE

1 = 2/3
and xOE

2 = 1/3, and this example reaches the 5/6 bound
of [2]. The reason for the substantially worse performance
with multiple serial links is that each provider along path
1 has a greater incentive to increase its price (relative to
the benchmark where all these links are owned by the same
provider), because it does not internalize the reduction in
the profits of the other link owners along the same path.
Consequently, for a network with serial and parallel links,
there are higher prices along path 1, and this induces greater
fraction of users to choose path 2 and increases inefficiency.
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B. Multiple Paths

We next consider the general case where we have an I path
network, with ni links on path i, where each link is owned
by a different provider. The following example illustrates the
efficiency properties of an I path network which has positive
flows on all links at the OE.

Example 2: Consider an I path network, which has n links
on path 1 with identically 0 latency functions and one link
on each of the paths 2, . . . , I with the same latency function
l(x) = x(I − 1)/2. Let the total flow be d = 1 and the
reservation utility be R = 1.
Clearly, the unique social optimum for this example is

xS = [1, 0, . . . , 0]. Using Proposition 4 and the definition of
a WE, it can be seen that the flow allocation at the unique
OE is

xOE =
[ 2/n

1 + 2/n
,

1
(I − 1)(1 + 2/n)

, . . . ,

1
(I − 1)(1 + 2/n)

]
.

Hence the efficiency metric for this example is

rI({lj}, xOE) = 1 − 1
2

(
1

1 + 2/n

)2

,

which goes to 1/2 as n → ∞.

The next theorem generalizes Theorem 1. The proof uses
similar ideas to the proof of Theorem 1 and is omitted for
brevity.

Theorem 2: Consider a general I path parallel link net-
work, with ni links on path i, where link j, j ∈ Ni, has
a latency function lj . Assume that each link is owned by a
different provider and the price competition game has a pure
strategy OE. Then

rI({lj}, xOE) ≥ 1
2
, ∀ xOE ∈ −−→

OE({lj}). (20)

Moreover, the bound above is tight, i.e., there exists {lj} and
xOE ∈ −−→

OE({lj}) that attains the lower bound in Eq. (20).

C. Positive Latency at 0 Congestion

We finally study the implications of the assumption li(0) = 0
on efficiency. Consider the following example:

Example 3: Consider a two path network, which has n
links on path 1 with identically 0 latency functions and one
link on path 2 with latency function l(x2) = εx2+b for some
scalars ε > 0 and b > 0. Again the unique social optimum
is x̄S = (1, 0). The flows at the unique OE are given by

x̄OE =
(

2ε + b

ε(n + 2)
,

εn − b

ε(n + 2)

)
.

Let ε = b/
√

n. Then, as b → 1 and n → ∞, we have that
x̄OE → (0, 1), and the efficiency metric r2({lj}, xOE) → 0.

This example shows that the efficiency loss could be
arbitrarily high for a network that involves parallel and serial
links if the assumption li(0) = 0 is relaxed.
Interestingly, it is straightforward to see that in the same

example with the parallel-link topology (i.e., all n links
along path 1 owned by the same provider), we would have
xOE =

(
b+2ε
3ε , ε−b

3ε

)
if ε ≥ b and xOE = (1, 0) otherwise.

Consequently, b → 1 and ε → 0, we have that xOE → (1, 0),
and r2({lj}, xOE) → 1. Therefore, the highly inefficient
equilibrium is a result of the parallel-serial topology, not of
the assumption that there is positive latency at 0 congestion.
This fact was established in [1], i.e., with parallel topology
but positive latency at zero congestion, there is a tight bound
of 2

√
2−2 on efficiency, which is quite close to, but slightly

lower than 5/6.
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