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Abstract— We study the interaction between buyers and
sellers of several indivisible goods (or items). A buyer wants
a combination of items while each seller offers only one type of
item. The setting is motivated by communication networks in
which buyers want to construct routes using several links and
sellers offer transmission capacity on individual links. Agents
are strategic and may not be truthful, so a competitive equi-
librium may not be realized. To ensure a good outcome among
strategic agents, we propose a combinatorial double auction.
We show that a Nash equilibrium exists for the associated game
with complete information, and more surprisingly, the resulting
allocation is efficient. We then consider competitive analysis in
the continuum model of the auction setting and show that the
auction outcome is a competitive equilibrium.

I. INTRODUCTION

We study the interaction among buyers and sellers of
several indivisible goods (or items). The motivation is to
investigate the strategic interaction between internet service
providers who lease transmission capacity (or bandwidth)
from owners of individual links to form desired routes.
Bandwidth is traded in indivisible amounts, say multiples of
100 Mbps. Thus, the buyers want bandwidth on combinations
of several links available in multiples of some indivisible
unit. This makes the problem combinatorial. We consider
the interaction in several settings.

The setting of a conventional market economy, in which
there is perfect competition, was considered in [8]. It was
shown that the interaction among agents results in a com-
petitive equilibrium if their utilities are linear in bandwidth
(and money) and they truthfully reveal them, and the desired
routes form a tree. The latter requirement is needed for the
existence of an equilibrium in the presence of indivisibility.

Strategic agents, however, have an incentive not to be
truthful. We propose a ‘combinatorial sellers’ bid double
auction’ (c-SeBiDA) mechanism that achieves a socially
desirable interaction among strategic agents. The mechanism
requires both buyers and sellers to make bids. It is combina-
torial because buyers make bids on combinations of items,
such as several links that form a route. Each seller, however,
offers to sell only a single type of item, e.g., bandwidth on a
single link. The mechanism takes all buy and sell bids, solves
a mixed-integer program that matches bids to maximize the
social surplus, and announces prices at which the matched
(i.e., accepted) bids are settled. The settlement price for a
link is the highest price asked by a matched seller (hence
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‘sellers’ bid’ auction). As a result there is a uniform price
for each item.

The outcome of strategic behavior in the auction is mod-
elled as a Nash equilibrium. It is shown that under complete
information a Nash equilibrium exists; it is not generally a
competitive equilibrium. Nevertheless, the Nash equilibrium
is efficient. Moreover, it is a dominant strategy for all buyers
and for all sellers except the matched seller with the highest-
ask price to be truthful.

Following Aumann [2], we then consider the continuum
model. It was shown in [8] that a competitive equilibrium
exists in a continuum exchange economy with indivisible
goods and money (a divisible good). Here we show that
the c-SeBiDA auction outcome is a competitive equilib-
rium [18] in the continuum model even without money.
This is accomplished by casting the mechanism in an
optimal control framework and appealing to Pontryagin’s
maximum principle to conclude existence of competitive
prices. This suggests that the auction outcome in a finite
setting approximates a competitive equilibrium in the con-
tinuum model (see [1] for approximate competitive equi-
librium). The proposed mechanism has been implemented
in a web-based software testbed and available for use (see
http://auctions.eecs.berkeley.edu).

Previous Work and Our Contribution

When items are indivisible, a competitive equilibrium may
not exist. However, when the utility functions are linear and
the demand-supply constraint matrix has a special structure
(such as the totally unimodular property [8]), a competitive
equilibrium does exist [29]. However, the realization of the
competitive equilibrium still requires agents to truthfully
report their utilities. But strategic agents (aware of their
‘market power’) may not be truthful. Thus, many auction
mechanisms are designed to elicit truthful reporting follow-
ing Vickrey’s fundamental result [28].

Attention in the auction theory literature has focused on
one-sided, single-item auctions [14] but combinatorial bids
arise in many contexts, and a growing body of research
is devoted to combinatorial auctions [29]. The interplay
between economic, game-theoretic and computational is-
sues has sparked interest in algorithmic mechanism design
[22]. Some iterative, ascending price combinatorial auctions
achieve efficiencies close to the Vickrey auction [3], [19],
[24]. It is however well-known that generalized Vickrey
auction mechanisms for multiple heterogeneous items may
not be computationally tractable [22], [20]. Thus, mecha-
nisms which rely on approximation of the integer program
(though with restricted strategy spaces such as “bounded”
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or “myopic rationality”) [20] or linear programming (when
there is a particular structure such as “gross” or “agent
substitutability”) [4] have been proposed.

In [5] one of the first multi-item auction mechanisms is
introduced. However, it is not combinatorial and considera-
tion is only given to computation of equilibria among truth-
telling agents. An auction for single items is presented in
[25]. It is similar in spirit to what we present but cannot
be generalized to multiple items. In [31] a modified Vickrey
double auction with participation fees is presented, while [6]
considers truthful double auction mechanisms and obtains
upper bounds on the profit of any such auction. But the
setting in both [6], [25] is non-combinatorial since each bid
is for an individual item only.

Ours is one of few proposals for a combinatorial double
auction mechanism. It appears to be the only combinatorial
market mechanism for strategic agents with unrestricted
strategy spaces. We are able to achieve efficient allocations.
Furthermore, the mechanism’s linear integer program struc-
ture makes the computation manageable for many practical
applications [11].

The results here also relate to recent efforts in the network
pricing [12], [16], [26] and congestion games literature [15],
[23]. There is an ongoing effort to propose mechanisms for
network resource allocation through auctions [13] and to
understand the worst case Nash equilibrium efficiency loss
of such mechanisms when users act strategically [10], [17].
Optimal mechanisms that minimizes this efficiency loss has
also been proposed [30] though not extended to the case of
multiple items. Most of this literature regards the good (in
this case, bandwidth) as divisible, with complete information
for all players. The case of indivisible goods or incomplete
information case is harder. This paper considers indivisible
goods and combinatorial buy-bids. The case of incomplete
information is presented in [9].

The results in this paper are significant from several
perspectives. It is well known that the only known positive
result in the mechanism design theory is the VCG class of
mechanisms [18]. The generalized Vickrey auction (GVA)
(with complete information) is ex post individual rational,
dominant strategy incentive compatible and efficient. It is
however not budget-balanced. The incomplete information
version of GVA (dAGVA) is Bayesian incentive compatible,
efficient and budget-balanced. It is, however, not ex post
individual rational. Indeed, there exists no mechanism which
is efficient, budget-balanced, ex post individual rational and
dominant strategy incentive compatible (Hurwicz impossi-
bility theorem). Moreover, there exists no mechanism which
is efficient, budget-balanced, ex post individual rational and
Bayesian incentive compatible (Myerson-Satterthwaite im-
possibility theorem).

In this paper, we provide a non-VCG combinatorial (mar-
ket) mechanism which in the complete information case is
always efficient, budget-balanced, ex post individual rational
and “almost” dominant strategy incentive compatible. In the
incomplete information case, it is budget-balanced, ex post
individual rational and asymptotically efficient and Bayesian

incentive compatible.
Moreover, we have shown that any Nash equilibrium

allocation (say of a network resource allocation game) is
always efficient (zero efficiency loss) and any Bayesian-
Nash equilibrium allocation is asymptotically efficient. This
seems to be the only known combinatorial double-auction
mechanism with these properties.

It is worth noting that a one-sided auction is a special case
of a double auction when there is only one seller with zero
costs. The network and congestion games [12], [15] are all
one-sided auctions.

The second result we present in this paper concerns the
competitive analysis of the c-SeBIDA auction mechanism.
We considered the continuum model and showed that within
that model c-SeBiDA outcome is a competitive equilibrium.
This suggests that in the finite setting, the auction outcome
is close to efficient. showed that a competitive equilibrium
exists in a continuum model We have tested the proposed
mechanism c-SeBiDA through human-subject experiments.
Those results can be found elsewhere [11].

II. THE COMBINATORIAL SELLERS’ BID DOUBLE

AUCTION

In this section, we present the combinatorial seller’s bid
double auction (c-SeBiDA) mechanism.

A buyer places buy bids for a bundle of items such as a
set of links that form a route. A buyer’s bid is combinatorial:
he must receive all items in his bundle or nothing. A buy-
bid consists of a buy-price per unit of the bundle and
maximum demand, the maximum units of the bundle that
the buyer needs. On the other hand, each seller makes non-
combinatorial bids. A sell-bid consists of an ask-price and
maximum supply, the maximum units the seller offers for
sale.

The mechanism collects all announced bids, matches a
subset of these to maximize the ‘surplus’ (equation (1),
below) and declares a settlement price for each item at which
the matched buy and ask bids—which we call the winning
bids—are transacted. This constitutes the payment rule. As
will be seen, each matched buyer’s buy bid is larger, and
each matched seller’s ask bid is smaller than the settlement
price, so the outcome respects individual rationality.

There is an asymmetry: buyers make multi-item combi-
natorial bids, but sellers only offer one type of item. This
yields uniform settlement prices for each item.

Players’ bids may not be truthful. They know how the
mechanism works and formulate their bids to maximize their
individual returns.

A player can make multiple bids. The mechanism treats
these as XOR bids, so at most one bid per player is a winning
bid. Therefore the outcome is the same as if a matched
player only makes (one) winning bid. Thus, in the formal
description of the combinatorial sellers’ bid double auction
(c-SeBiDA), each player places only one bid. c-SeBiDA is
a ‘double’ auction because both buyers and sellers bid; it is
a ‘sellers’ bid’ auction because the settlement price depends
only on the matched sellers’ bids, as we will see.
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Formal mechanism.

There are L items l1, · · · , lL, m buyers and n sellers.
Buyer i has (true) reservation value vi per unit for a bundle
of items Ri ⊆ {l1, · · · , lL}, and submits a buy bid of bi per
unit and demands up to δi units of the bundle Ri. Thus,
the buyers have quasi-linear utility functions of the form
ub

i (x;ω, Ri) = v̄i(x) + ω where ω is money and

v̄i(x) =

{
x · vi, for x ≤ δi,

δi · vi, for x > δi.

Seller j has (true) per unit cost cj and offers to sell up to
σj units of lj at a unit price of aj . Denote Lj = {lj}.
Again, the sellers have quasi-linear utility functions of the
form us

j(x;ω, Lj) = −c̄j(x) + ω where ω is money and

c̄j(x) =

{
x · cj , for x ≤ σj ,

∞, for x > σj .

The mechanism receives all these bids, and matches some
buy and sell bids. The possible matches are described by
integers xi, yj : 0 ≤ xi ≤ δi is the number of units of bundle
Ri allocated to buyer i and 0 ≤ yj ≤ σj is the number of
units of item lj sold by seller j.

The mechanism determines the allocation (x∗, y∗) as the
solution of the surplus maximization problem MIP:

max
x,y

∑
i bixi −

∑
j ajyj (1)

s.t.
∑

j yj11(l ∈ Lj) −
∑

i xi11(l ∈ Ri) ≥ 0,

∀l ∈ [1 : L], xi ∈ [0 : δi],∀i, yj ∈ [0, σj ],∀j,

where 11(·) is the indicator function. MIP is a mixed integer
program: Buyer i’s bid is matched up to his maximum
demand δi; Seller j’s bid will also be matched up to his
maximum supply σj . x∗

i is constrained to be integral; y∗
j

will be integral due to the demand less than equal to supply
constraint.

The settlement price is the highest ask-price among
matched sellers,

p̂l = max{aj : y∗
j > 0, l ∈ Lj}. (2)

The payments are determined by these prices. Matched
buyers pay the sum of the prices of items in their bundle;
matched sellers receive a payment equal to the number of
units sold times the price for the item. Unmatched buyers
and sellers do not participate. This completes the mechanism
description.

If i is a matched buyer (x∗
i > 0), it must be that his

bid bi ≥ ∑
l∈Ri

p̂l; for otherwise, the surplus (1) can be
increased by eliminating the corresponding matched bid.
Similarly, if j is a matched seller (y∗

j > 0), and l ∈ Lj , his
bid aj ≤ p̂l, for otherwise the surplus can be increased by
eliminating his bid. Thus the outcome of the auction respects
individual rationality.

It is easy to understand how the mechanism picks matched
sellers. For each item j, a seller with lower ask bid will
be matched before one with a higher bid. So sellers with
bid aj < p̂l sell all their supply (y∗

j = σj). At most one

seller with ask bid aj = p̂l sells only a part of his total
supply (y∗

j < σj). On the other hand, because their bids are
combinatorial, the matched buyers are selected only after
solving the MIP.

The proposed mechanism resembles the k-double auction
mechanism [25]. We designed c-SeBiDA so that its outcome
mimics a competitive equilibrium with a particular interest
in the combinatorial case. It was later discovered that the
single item version SeBiDA resembles the k-double auction
(a special case being called the buyer’s bid double auction
[25], [27]). But the two mechanisms differ in how the prices
are determined. It is not clear what a generalization of
the k-double auction would be to the combinatorial case.
Moreover, as we will see SeBiDA has certain incentive-
compatibility properties lacking in the k-double auction.

III. NASH EQUILIBRIUM ANALYSIS: C-SEBIDA IS

EFFICIENT

We first focus on how strategic behavior of players affects
price when they have complete information. We will assume
that players don’t strategize over the quantities (namely,
δi, σj), which will be considered fixed in the players’ bids.
A strategy for buyer i is a buy bid bi, a strategy for seller j is
an ask bid aj . Let θ denote a collective strategy. Given θ, the
mechanism determines the allocation (x∗, y∗) and the prices
{p̂l}. So the payoff to buyer i and seller j is, respectively,

ub
i (θ) = v̄i(x∗

i ) − x∗
i ·

∑
l∈Ri

p̂l, (3)

us
j(θ) = y∗

j ·
∑
l∈Lj

p̂l − c̄j(y∗
j ). (4)

The bids bi, aj may be different from the true valuations
vi, cj , which however figure in the payoffs.

A collective strategy θ∗ is a Nash equilibrium if no player
can increase his payoff by unilaterally changing his strategy.

We now construct a Nash equilibrium for the game de-
scribed by (1)-(4) for multiple items with single unit bids.

Theorem 1: (i) A Nash equilibrium (b∗, a∗) exists in the
c-SeBiDA game. (ii) Except for the matched seller with the
highest bid on each item, it is a dominant strategy for each
player to bid truthfully. (iii) Any Nash equilibrium allocation
is efficient.

Proof: For the sake of clarity, we change some of the
notation. As before, buyer i demands the bundle Ri with
reservation value vi. Let seller (l, j) be the j-th seller offering
item l (l ∈ Lj in the previous notation) with reservation cost
cl,j , and assume cl,1 ≤ · · · ≤ cl,nl

, in which nl is the number
of sellers offering item l.

We will iteratively construct a set of strategies to consider
as Nash equilibrium.

Set al,0 = cl,0 = 0, b0 = v0 = 1. Consider the surplus
maximization problem (1) with true valuations and costs.
Let I be the set of matched buyers and kl the number of
matched sellers offering item l determined by the MIP. Set
b∗i = vi for all i; a0

l,j = cl,j ; γt
i = b∗i − ∑

l∈Ri
at

l,kl
, the
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surplus of a matched buyer i at stage t ≥ 0, and

l̂ ∈ arg min
l
{ min

i∈I:l∈Ri

γt
i : γt

i > 0}, (5)

the item with the smallest surplus among the matched buyers
at stage t. Denote the corresponding surplus by γt

l̂
. Now,

define
at+1

l̂,kl̂

:= min{at
l̂,kl̂+1

, at
l̂,kl̂

+ γt
l̂
}, (6)

which is the strategy of seller (l̂, kl̂) at the t-th stage: His ask
bid is increased to decrease the surplus of the matched buyer
with the smallest surplus up to the ask bid of the unmatched
seller with the lowest bid. For all other (l, j) �= (l̂, kl̂), the ask
bid remains the same, at+1

l,j = at
l,j . This procedure is repeated

until the strategies converge with each l̂ being picked only
once. In fact, it is repeated at most L times. Observe that
at each stage, the matches and the allocations from the MIP
using the current bids (b∗, at) do not change. Let a∗ denote
the seller ask bids when the procedure converges.

We prove that (b∗, a∗) is a Nash equilibrium, by showing
that no player has an incentive to deviate.

First, an unmatched seller offering item l has no incentive
to bid lower than a∗

l,kl
: Because his reservation cost is higher

than that, by bidding lower than his reservation cost, it may
get matched but his payoff will be negative. Next, consider
a matched seller (l, j) �= (l, kl) offering item l. By bidding
higher or lower he cannot change the price of the item but
may end up getting unmatched. Thus, it is the dominant
strategy of all sellers except the ‘marginal’ seller (l, kl) to
bid truthfully.

Now, consider this marginal matched seller (l, kl). If he
bids lower then a∗

l,kl
, his payoff will decrease. He could bid

higher but because of (6), either there is an unmatched seller
of the item with the same ask bid, or there is a marginal buyer
whose surplus has been made zero by (6). So if he bids higher
than a∗

l,kl
, either he will become unmatched and the first

unmatched seller of the item will become matched, or the
‘marginal’ buyer with zero surplus will become unmatched
causing this marginal seller to be unmatched as well. Thus,
a∗

l,kl
is a Nash strategy of the marginal seller given that all

other players (except the marginal sellers of the other items)
bid truthfully.

Now, consider the buyers. First, an unmatched buyer i has
no incentive to bid lower than b∗i since he wouldn’t match
anyway. And if he bids higher, he may become matched
but his payoff will become negative. Next, a matched buyer
with a positive payoff has no incentive to bid lower since
by bidding lower he can lower the prices but only when he
becomes unmatched. Also, he certainly has no incentive to
bid higher since by so doing he will not be able to lower the
price. Lastly, consider the ‘marginal’ matched buyers with
zero payoff: Clearly, if they bid higher, their payoff will
become negative; and if they bid lower, they will become
unmatched. Thus, it is the dominant strategy of all buyers to
bid truthfully.

The Nash equilibrium allocation (x∗, y∗) as determined
above is efficient since it maximizes (1).

We now show that any Nash equilibrium allocation is
efficient.

Suppose (x̃, ỹ) is another Nash equilibrium allocation
which is not efficient. Either there is a buyer or a seller which
goes from being matched in (x∗, y∗) to being unmatched in
(x̃, ỹ), or vice-versa. If there is a seller that goes from being
matched to unmatched then either there is a matched seller in
(x∗, y∗) replaced by another seller in (x̃, ỹ) selling the same
item (case (i)), or some unmatched sellers in (x∗, y∗) are
matched in (x̃, ỹ) with the set of matched sellers in (x∗, y∗)
remaining matched. In this case, some unmatched buyer must
also become matched (case (ii)). The rest of the cases can be
argued similarly. Thus, the two Nash equilibrium allocations
would differ in one of the five cases as we go from (x∗, y∗)
to (x̃, ỹ).

(i) A matched seller (l, j1) is made unmatched and a
unmatched seller (l, j2) is made matched;

(ii) An unmatched buyer i demanding Ri is made
matched and a set of unmatched sellers J such that
{l : (l, jl) ∈ J} = Ri are made matched;

(iii) A matched buyer i demanding Ri is made
unmatched and a set of matched sellers J such
that {lj : j ∈ J} = Ri are made unmatched;

(iv) An unmatched buyer i demanding Ri is made matched
and a set of matched buyers J with j ∈ J demanding
Rj such that ∪j∈JRj = Ri are made unmatched;

(v) A matched buyer i demanding Ri is made unmatched
and a set of unmatched buyers J with j ∈ J
demanding Rj such that ∪j∈JRj = Ri are made
matched;

Case (i) We must have cl,j1 < cl,j2 and the new bids
must satisfy ãl,j2 < ãl,j1 . But then either (l, j2)’s payoff is
negative or (l, j1) can also bid just above (l, j2)’s bid. In
either case (x̃, ỹ) cannot be a Nash equilibrium allocation.

Case (ii) We must have vi <
∑

(l,jl)∈Ri
cl,jl

and the new

bids must satisfy b̃i >
∑

(l,jl)∈Ri
ãl,kl

with ãl,jl
< ãl,kl

.
This means that either the buyer or at least one seller has a
negative payoff. Thus, (x̃, ỹ) cannot be a Nash equilibrium
allocation.

Case (iii) The argument for this case is similar to case (ii).
Case (iv) We must have vi <

∑
j∈J vj and the new bids

must satisfy b̃i >
∑

j∈J b̃j . But then either i’s payoff is
negative or any j ∈ J can bid high enough to outbid i. In
either case (x̃, ỹ) cannot be a Nash equilibrium allocation.

Case (v) The argument for this case is similar to case (iv).
Thus, every Nash equilibrium allocation is efficient. This

proves (iii).

It is obvious that if the minimum in step (5) is not unique,
the Nash equilibrium will not be unique. However, any Nash
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equilibrium allocation will still be efficient.

IV. COMPETITIVE ANALYSIS OF C-SEBIDA IN THE

CONTINUUM MODEL

We now present competitive analysis of the c-SeBiDA
mechanism. Since competitive equilibria may not exist for
the setting considered, we investigate the behavior of the
outcome of the c-SeBiDA auction when the number of
players is large enough such that no single player by itself
can affect the outcome. An idealization is a continuum of
agents. Such a setting was first considered by Aumann [2]
in a general equilibrium setting and others have used this
approach to analysis of games [7].

Assume the continuum of buyers is indexed by t ∈ [0, 1],
and the continuum of sellers is indexed by τ ∈ [0, 1].
There are m types of buyers and n types of sellers. Let
B1, · · · , Bm and S1, · · · , Sn partition [0, 1] so that all buyers
in Bi demand the same set of items Ri (corresponding say
to a route), and all sellers in Sj offer the same item lj ,
Lj = {lj}. We assume that the partitions Bi’s and Sj’s are
subintervals.

A buyer t ∈ Bi has true value v(t), bids p(t) per unit
for the set Ri, and demands δ(t) ∈ [0, D] units. Suppose
v(t), p(t) ∈ [0, V ]. A seller τ ∈ Sj has true cost c(τ) and
asks q(τ) for the item(s) Lj with supply σ(τ) ∈ [0, S] units,
with c(τ), q(τ) ∈ [0, C]. Let x(t) and y(τ) be the decision
variables, i.e. buyer t’s x(t) is 1, if his bid is accepted, 0
otherwise. And similarly seller τ ’s y(τ) is 1 if his offer is
accepted, 0 otherwise. We assume that within each partition
Bi, the buyers’ bid function b(t) is non-increasing, and
within each partition Sj , the sellers’ bid function q(τ) is
nondecreasing.

Note that while in section II, we assumed that buyers
specify a maximum demand and they may be allocated any
integral units up to the maximum demand, here we will
assume that their bundles are all-or-none kind: All demand
must be met or none. Similarly, for sellers, all supply must
be accepted or none.

Denote the indicator function by 11(·) and as before,
consider the surplus maximization problem cLP:

sup
x,y

∫ 1

0

∑m
i=1 x(t)δ(t)p(t)11(t ∈ Bi)dt (7)

− ∫ 1

0

∑n
j=1 y(τ)σ(τ)q(τ)11(τ ∈ Sj)dτ

s.t.
∫ 1

0

∑n
j=1 y(τ)σ(τ)11(l ∈ Lj , τ ∈ Sj)dτ

− ∫ 1

0

∑m
i=1 x(t)δ(t)11(l ∈ Ri, t ∈ Bi)dt ≥ 0,

∀l ∈ [1 : L], x(t), y(τ) ∈ {0, 1},∀t, τ ∈ [0, 1].

The mechanism determines ((x∗, y∗), p̂) where (x∗, y∗) is
the solution of the above continuous linear integer program
and for each l ∈ [1 : L],

p̂l = sup{q(τ) : y(τ) > 0, τ ∈ Sl}, (8)

and

p̌l = inf{q(τ) : y(τ) = 0, τ ∈ Sl}. (9)

The mechanism announces prices p̂ = (p̂1, · · · , p̂L); the
matched buyers (those for which x∗(t) = 1) pay the sum
of the prices of the items in their bundle while the matched
sellers (those for which y∗(τ) = 1) get a payment equal to
the number of their items sold times the price of the item.
When buyers and sellers bid truthfully, the following result
holds.

Theorem 2: If the bid function of the sellers q : [0, 1] →
[0, C] is continuous and nondecreasing in each partition Sj

of [0, 1], then (x∗, y∗) is a competitive allocation and p̂ is a
competitive price.

Proof: We first show the existence of (x∗, y∗) and
(λ∗

1, · · · , λ∗
L), the dual variables corresponding to the de-

mand less than equal to supply constraints. We do this by
casting the cLP above as an optimal control problem and
then appeal to Pontryagin’s maximum principle [21]. Define

ζ̇(t) = Σm
i=1x(t)δ(t)p(t)11(t ∈ Bi)

−Σn
j=1y(t)σ(t)q(t)11(t ∈ Sj),

ξ̇l(t) =
∑n

j=1 y(t)σ(t)11(l ∈ Lj , t ∈ Sj)

−∑m
i=1 x(t)δ(t)11(l ∈ Ri, t ∈ Bi),

θ(t) = (ξ1(t), · · · , ξL(t), ζ(t))′ ,

respectively, where θ is the state of the system, x and y are
controls, and ζ(t) and ξ(t) describe the state evolution as a
function of the controls. The objective is to find the optimal
control (x∗, y∗) which maximizes ζ(1). Let Σ(t) denote

{θ̇(t) : xl(0) = 0,∀l and x(t), y(t) ∈ {0, 1},∀t ∈ [0, 1]}.
Observe that Σ(t) has cardinality at most 2L+1 in R

L+1.∫ 1

0
Σ(τ)dτ is the set of reachable states under the set of all

allowed control functions, namely, all measurable functions
x and y such that x(τ), y(τ) ∈ {0, 1}. Note that ζ(1) defines
our total surplus; i.e., buyer surplus minus seller surplus, and
ξl(1) defines the excess supply for item l; i.e., total supply
minus total demand for item l. Define

Γ := {θ(1) ∈ R
L+1 : θ(1) ∈

∫ 1

0

Σ(τ)dτ, ξl(1) ≥ 0,∀l},

the set of final reachable states under all control functions
such that state evolution happens according to the equations
above, and excess supply is non-negative.

Lemma 1: Γ is a compact, convex set.
Proof: By assumption, δ(t), p(t), σ(t), and q(t)

are bounded. By Lyapunov’s theorem [2],
∫ 1

0
Σ(τ)dτ is

a closed and convex set. Since x and y are bounded
functions, the integral is bounded as well. Thus, it is also
compact. Moreover, ξl(1) is a hyperplane, and ξ(1) ≥ 0
defines a closed subset of R

L. Therefore, {θ(1) : θ(1) ∈∫ 1

0
Σ(τ)dτ}⋂{θ(1) : ξl(1) ≥ 0, l = 1, · · · , L} is a compact,

convex set.

Now, our optimal control problem is: supθ(1)∈Γ ζ(1).
But observe that one component of θ(1) is ζ(1). Since
Γ is compact and convex, the supremum is achieved and
an optimal control (x∗, y∗) exists in Γ. By the maximum
principle [21], there exist adjoint functions p∗0(t) and p∗l (t),
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l = 1, · · · , L such that ṗ∗0(t) = 0, and ṗ∗l (t) = 0, (i.e.,
p∗l (t) = λ∗

l , a constant) for l = 0, · · · , L.
Defining the Lagrangian over the objective function and

the demand less than equal to supply constraint

L(x, y;λ) = ζ(1) +
L∑

l=1

λlξl(1), (10)

we get from the saddle-point theorem,

L(x, y;λ∗) ≤ L(x∗, y∗;λ∗) ≤ L(x∗, y∗;λ). (11)

We use this saddle point inequality to conclude the existence
of a competitive equilibrium.

Lemma 2: If ((x∗, y∗), λ∗) is a saddle point satisfying the
inequality (11) above, then the λ∗ are competitive equilib-
rium prices. Moreover, p̂l ≤ λ∗

l ≤ p̌l,∀l = 1, · · · , L.
Proof: Let ((x∗, y∗), λ∗) be the saddle point satisfying

the above inequality. Rewrite the Lagrangian L(x, y;λ) as

m∑
i=1

∫
Bi

δ(t)x(t)(p(t) −
∑
l∈Rt

λl)dt

+
n∑

j=1

∫
Sj

σ(τ)y(τ)(λl(τ) − q(τ))dτ

where l(τ) is the item offered by seller τ . Now,
using the first saddle-point inequality, we get that
x∗(t) = 11(p(t) > Σl∈Rt

λ∗
l ) and y∗(τ) = 11(q(τ) < λ∗

l(τ)),
which implies that the Lagrange multipliers are competitive
equilibrium prices. To prove the second part, note that by
definition, for a given τ , y(τ) > 0 implies that q(τ) ≤ λ∗

l

for τ ∈ Sl, which implies the first inequality. Again from
definition, we get that y(τ) = 0 implies that q(τ) ≥ λ∗

l for
τ ∈ Sl, which implies the second inequality.
To conclude the proof of the theorem, we observe that if
q is continuous and non-decreasing in each interval Sj of
[0, 1], then p̂l = p̌l for each l, which then equals λ∗

l by
Lemma 2.

The implication of this result is that as the number of
players becomes large, the outcome of the above auction
approximates the competitive equilibria of the associated
continuum exchange economy. We will defer discussion
of the relationship between the Nash equilibria and the
competitive equilibria to the conclusions section.

We now show that the assumption that the sellers’ bid
function is piecewise continuous and nondecreasing is nec-
essary for the c-SeBiDA’s price to be a competitive price.

Example 1: Suppose that there is only one item. Buyers
t ∈ [0, 0.5] have reservation value 3 while buyers t ∈ (0.5, 1]
have reservation value 4. Sellers t ∈ [0, 0.5] have reservation
cost 5 while sellers t ∈ (0.5, 1] have reservation cost 2. Then,
it is clear that the buyers in (0.5, 1] and sellers (0.5, 1] will
be matched with surplus 0.5 × 2 = 1. Thus, p̂ = 2 which is
not equal to p̌ = 3. As can be easily checked, the competitive
price is λ∗ = 3 different from p̂.
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