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Integral control in the presence of hysteresis: an input-output approach

Hartmut Logemann, Eugene P Ryan and Ilya Shvartsman

Abstract— Using an input-output approach, it is shown that
under certain mild and natural assumptions, application of
integral control to the series interconnection of a hysteretic in-
put nonlinearity, an L?-stable, time-invariant linear system and
a non-decreasing globally Lipschitz static output nonlinearity
guarantees tracking of constant reference signals, provided the
positive time-dependent integrator gain is ultimately smaller
than a certain constant determined by a positivity condition
in the frequency domain. The input-output result is applied
in a general state-space setting wherein the linear component
of the interconnection is given by a strongly stable well-posed
infinite-dimensional system.

I. INTRODUCTION

Consider the system shown in Fig.1, where u is the
input, ® is a hysteresis nonlinearity, G' is an L?-stable time-
invariant linear system, the signal g € L?(R,) models the
effect of non-zero initial conditions of the system with input-
output operator (G, 1 is a non-decreasing globally Lipschitz
static nonlinearity and y is the output. The operator ®
belongs to a class of hysteresis operators with certain natural
monotonicity and Lipschitz continuity properties and which
contains, in particular, backlash, elastic-plastic and, more
generally, operators of Prandtl and Preisach type.

It is shown that applying integral control to the system in
Fig. 1 guarantees tracking of constant reference signals, in the
presence of output disturbances, provided that a number of
natural assumptions are satisfied. In particular, it is assumed
that (a) the steady-state gain of the linear part of the plant
is positive, (b) the positive time-dependent integrator gain
is ultimately smaller than some constant determined by a
positivity condition in the frequency domain, (c) the output
disturbance is of a particular class which encompasses sums
of constant signals and weighted L2-signals and (d) the
reference value is feasible in a natural sense to be made
precise in due course. This input-output result is applied in
a general state-space setting wherein the linear component of
the interconnection is given by a strongly stable well-posed
infinite-dimensional system. Our results complement and
substantially extend earlier work in [4], where a state-space
approach to low-gain integral control of exponentially stable
regular infinite-dimensional systems with input hysteresis
was developed.
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Fig. 1.

II. A CLASS OF HYSTERESIS OPERATORS

A function f: R, — R, is called a time transformation
if it is continuous and non-decreasing with f(0) = 0 and
lim; o f(t) = 005 in other words, f is a time transforma-
tion if it is continuous, non-decreasing and surjective. An
operator @ : C(Ry) — C(Ry.) is called rate independent if,
for every time transformation f,

(@(uo f))(t) = (2(u)(f(t), Vuec CRy), VEcRy.

We say that & : C(Ry) — C(Ry) is a hysteresis operator
if @ is causal and rate independent. The numerical value set
NVS @ of a hysteresis operator ® is defined by

NVS® := {(®(u))(t) :u € C(Ry), t € R, }.

A function u € C(Ry) is called ultimately non-decreasing
(non-increasing) if there exists 7 € R, such that u is
non-decreasing (non-increasing) on [7,00); u is said to be
approximately ultimately non-decreasing (non-increasing), if
for all € > 0, there exists an ultimately non-decreasing (non-
increasing) function v € C'(R.) such that

lu(t) —v(t)| <e, VteR,.

For w € C([0,«]) (with & > 0) and ~, 4 > 0, we define

C(’LU,(S, 7) = {’U € O([0,0t +’Y]) : U|[O,a] =w

sup |v(t) —w(a)| < 6}.

tElo,a+7]
We impose the following six conditions on hysteresis oper-
ators @ : C(Ry) — C(R4).
(ND) (W (Ry)) C Wipe (Ry);
(N2) @ is monotone in the sense that, for all u € Wli)’cl(RJF),
(®(w) () (t) > 0,

(N3) There exists A > 0 such that for all « > 0 and w €
C([0, ), there exist numbers 7,0 > 0 such that, for
all u,v € C(w;4,7),

ae teR,.

e [(@(u)(t) = (2(v)) ()] <
A sup  u(t) —wu(t)].
tefoa+n]

392



(N4) For all @ > 0 and all v € C([0, a)), there exist y1,v2 >
0 such that, for all 7 € [0,a),

sup [(®(w))(t)] <71+ 72 sup [u(t)].
te[0,7] te[0,7]

(N5) If w € C(Ry) is approximately ultimately non-
decreasing and lim; . u(t) = oo, then ®(u)(t) and
®(—u)(t) converge to sup NVS @ and inf NVS @, re-
spectively, as t — o0;

(N6) If, for u € C(Ry), lims,oo(P(u))(t) € intNVS P,
then u is bounded.

It is not difficult to see that (N5) implies that NVS & is an in-
terval. The set of all hysteresis operators satisfying (N1)-(N6)
is denoted by N'(X), where A > 0 is the constant associated
with (N3). It is well-known that many standard hysteresis
nonlinearities which are important in control engineering are
contained in A (\) for some suitable A > 0: this applies in
particular to backlash (or play), plastic-elastic (or stop) and
large classes of Prandtl and Preisach operators (see [4], [5]).
We remark that our treatment of hysteresis operators has been
strongly influenced by Chapter 2 in [1].

III. LOW-GAIN INTEGRAL CONTROL IN THE PRESENCE
OF HYSTERESIS

Consider the feedback system shown in Fig.2, where p €
R is a constant, x: R, — R is a time-varying gain, the
operator G : L?*(R;) — L?(R.) is linear, bounded and
shift-invariant, ® is a hysteresis operator, ¥ : R — R is a
non-decreasing globally Lipschitz continuous function, the
function ¢ € L?(R,) models the effect of non-zero initial
conditions of the system with input-output operator G and
U+ h is a disturbance consisting of a constant ¢} and a locally
integrable function h.

Denoting the transfer function of G by G, we have that
G € H*(C,), that is, G is holomorphic and bounded in
the open right-half plane. We assume that

(L) The limit G(0) := lim  G(s) exists, G(0) > 0
d s—0,Res>0
an

limsup [(G(s) — G(0))/s| < o0.
s—0,Re s>0
Since shift-invariance implies causality, G' can be extended to
a shift-invariant operator mapping L (R} ) into itself. We
will not distinguish notationally between G and its extension.
The feedback system shown in Fig.2 is described by the
following Volterra integro-differential equation

u' = k(p—9—h—1p(g+Go®(u))), u(0)=u’ecR. (1)

Our objective is to determine gain functions x such that the
tracking error

e(t) = p—yt) =p—0—h—v(g+(Go®)(u)(t)) (2)

becomes small in a certain sense as ¢ — oo. For example,
we might want to achieve “tracking in measure”, i.e., for
every ¢ > 0, the Lebesgue measure of the set {7 > ¢ :
e(r)] > €} tends to 0 as ¢ — oo, or the aim might be
“asymptotic tracking”, that is lim;_ . e(t) = 0. Trivially,

Fig. 2.

tracking in measure is guaranteed if e is of the form e =
e1 + ez, where lim; o, e1(t) = 0 and ex € LP(R,) for
some p € [1,00).
Set

f(@) = ei}s&lglf Re(G(iw)/iw) . 3)

We claim that
-0 < f(G) <0.

Indeed, since G is bounded, we obtain f(G) < 0 by taking
|w] — oo in (3). The inequality f(G) > —oo follows from
Re(G(iw)/iw) = Re([G(iw) — G(0)]/iw), assumption (L)
and the boundedness of G. Hence, the positivity condition

1 + ess inf Re(G(iw) /iw) > 0, 4)

a weR
holds, provided that

1
JE—— 5
I ©)

Equivalently, if (5) holds, then the operator
1 .
LIQOC(RJF) - L?OC(R+) ) Vi —v +/ Gv
a 0

is strictly passive.
In the following, let § denote the unit-step function, that
is,

The generality of the input and output nonlinearities ¢ and
1) allows specific cases wherein tracking of all constant ref-
erence signals p and rejection of all constant disturbances ¢
may not be feasible. For this reason, we impose a restriction
on the difference p — 1J; namely, it should belong to the
following set:

R(G, ®,¢) := {(G(0)v)

The intuition underlying R(G, ®,v) is as follows. If as-
ymptotic tracking occurs, we would expect that &> :=
limy o0 (P(u))(t) exists. Assuming that ®>° is finite and
that the final-value theorem holds for the linear system with
input-output operator G, we may conclude that lim;_, ., (G o
®(u))(t) = G(0)P™. If, additionally, lim, .. g(t) =
lim; o h(t) = 0, it follows from (2) that p — 9 €
R(G,®,%). In fact, it has been shown in [3] that in the
case of static input nonlinearities, if ¢ is continuous and
monotone, then p — ¥ € R(G,P,) is close to being a
necessary condition for asymptotic tracking.

We are now in the position to state the main result of this

paper.

v € NVS®}.
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Theorem 3.1: Assume that the following hold:

(@ G : L?*(Ry) — L?*(Ry) is a linear bounded shift-
invariant operator with transfer function G, satisfying
assumption (L);

(b) g € L*(Ry);

©) ®eN();

(d) ¥ : R — R is non-decreasing and globally Lipschitz
continuous with Lipschitz constant \s;

) p—19eR(G,D,v);

(f) h is such that h € L'(R;) N L?(Ry) and the function
t— [ |h(r)|dr is in L*(Ry);

(g) ~:R4 — R is measurable, non-negative and bounded

ith
wi 1

hmsup :‘i(ﬁ) < m,

t—o0
where 1/0 := oo.

Then there exists a unique solution u € VVIZLC1 (Ry) of (1)
and the following statements hold:

() (®(u)) € L*(R,) and the limit
O™ = tlim (P(u))(t)
exists and is finite.

(ii) The signals w = g+ (Go®)(u) and y = Y (w)+ I+ h
(see Fig.2) can be decomposed as

w = Wi + Wy
Y =y1+Y2,
where w1, y; are continuous, wi(t), y1(t) have finite
limits
w® = tllgowl(t) = G(0)®*,
yioo= lim g () = p(G0)2™) + 0

and wsy,y2 € L?(Ry). Under the additional assump-

tions that
Jim (g(t) + (@(u))(0)(GO) (1) — G(0))) =0 (6)
and
tlg(r)lo h(t) =0, @)
we have
Jim wa(t) =0, i a(t) =0.

(iii) If x & LY(R,), then y° = lim; .., y1(t) = p and the
error signal e = p — y can be decomposed as

€:€1+62,

where ey is continuous with lim; ., e1(¢) = 0 and
es € L2(Ry). If, additionally, (6) and (7) hold, then

tlim e(t)=0.
(iv) If p— 4 is an interior point of the set R(G, ®,1)), then
u is bounded.

Remarks. 1) Statement (iii) of Theorem 3.1 implies tracking
in measure and, moreover, guarantees asymptotic tracking,

provided that (6) and (7) hold. Trivially, if lim; . g(t) =0
and

lim (GO)(t) = G(0), ®)

then (6) is satisfied. If the impulse response of G is a finite
Borel measure p, for example, if

u(ds) = fu(s)ds + 3 fidy, (ds)
i=0
where f, € L'(Ry), {fi} € I*(Z4), &, is the unit point
mass at t = t; and t; > 0, then (8) holds. Finally, since it
follows from assumption (L) via the Paley-Wiener theorem
that GO — G(0)§ € L?(R.), we conclude that if the limit
on the LHS of (8) exists, then it must be equal to G(0).

2) In general, ¥ is unknown, but it is reasonable to assume
that ¥ € [}1, ¥2], where 91 and )5 are known constants. The
condition

p_ﬁla P_192 € R(Gaq)aw)

does not involve ¢ and is sufficient for assumption (e) to
hold.

3) Note that it is not necessary to know f(G) or the
constants A1, Ao from (c) and (d), respectively, in order to
apply Theorem 3.1. If k is chosen such that x(¢) — 0 and
k& L' (Ry) (e.g., £(t) = (141t) P with p € (0, 1]), then the
conclusions of statement (iii) hold. However, from a practical
point of view, gain functions x with lim;_. £(¢) = 0 might
not be appropriate, since the system essentially operates in
open loop as ¢ — oo. In [7] it has been shown how | f(G)| (or
upper bounds for |f(G)|) can be obtained from frequency-
response experiments performed on the linear part of the
plant.

4) Assumption (f) is satisfied if there exists o > 1 such
that the function ¢ ~— (1 + ¢)®h(t) is in L2(R,).

IV. THE MAIN IDEA IN THE PROOF OF THEOREM 3.1

We do not provide a full proof of Theorem 3.1 here,
but give a brief description of the main idea in the proof;
for more details see [6]. Consider the feedback system
shown in Fig. 3, where N is a static, possibly time-varying,
nonlinearity, G satisfies assumption (a) of Therem 3.1 and r
is an input signal.

The equation describing the system in Fig.3 is

o(t) = r(t) - / G(N (- v())(r)dr ©)

Lemma 4.1: Assume that the following hold:

(a) G satisfies hypothesis (a) of Theorem 3.1;
(b) N :R; xR — R is a static nonlinearity, satisfying

0<S N(tOE<ag®, t>ty, E€R

for some 0 < @ < 1/|f(G)| and some t; > 0;
(c) re LQ(RJr) +R.
If v is a global solution of (9), then
() v—re L=(Ry),
(i) N(-,v) € L*(Ry),
(iii) fot N(7,v(7))dr converges to a finite limit as ¢ — co.
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Fig. 3.

Lemma 4.1 is a special case of Theorem 3.3 in [2], the
proof of which relies crucially on the positivity property (4)
(satisfied for all sufficiently small a, see (5)).

To describe the main idea in the proof of Theorem 3.1, let
u be the unique solution of (1) on R,.. (It can be shown that a
local solution exists and is unique by means of a contraction
mapping argument. The extension of the solution to R can
be proved using hypothesis (N4) and the global Lipschitz
property of 1).) The key idea is to apply Lemma 4.1 to the
signal

w:=g+ (Go®)(u),

modified by an offset which depends on p and . Since,
by assumption (e), p — ¥ € R(G, ®,1)), there exists ®F €
NVS @ satisfying

BG(O)BH) = p— .

We define
W= w— G(0)®* = g + (G o ®)(u) — G(0)®,
V(&) =Y+ G(0)F) —p+9, VEER.
It can be derived from (N1)-(N3) that
(®(w))'(t) = du(t)u/(t),
where d,, : Ry — R is measurable and
0<d,(t) <X\, VteR,,
see [4]. It is then easy to show that u satisfies
(®(u)) = —N(-, @) — rdyh, (10)
where V : Ry X R — R is given by
N(t,€) = r(t)du ()3 (€)-

From (10) we infer

(®(w))(#) = (2(u))(0) —/0 N(r,w(7))dr + k(1)

k(t) = —/Otn(T)du(T)h(T)dT, ViER, .
By shift-invariance, G commutes with integration, and thus
(GoB)w)(H) = (B)O)EH)()
- [ e tan) @ + @

By adding g — G(0)®* to both sides of the above identity,
we see that w solves an equation of the form (9)

(1)

where
ri=g—G(0)®*0 + ®(u)(0)GO + Gk .

We observe that, by assumption (a) and the Paley-Wiener
theorem, GO € L?(R )+ R, and assumption (f) implies that
k € L*(Ry) + R; therefore,

re L*(Ry) +R.
Note that

0< N(tv§)€ < >\1A2’i(t)€2> V(tvg) € R+ x R.

By assumption (g) on x, there exist 0 < a < 1/|f(G)| and
to > 0 such that

0 < Nt EE <a?  (1,€) € [to,0) X R.

Applying Lemma 4.1 to (11) we obtain
(®(w) = ~N () — rdyh € L*(Ry),

and thus

lim (@ (u))(t) =(2(u))(0) + /Ooo R(7)du(T)h(T)dT

t—oo
t
— tlim N(r,@(7))dr
—00 0
exists and is finite, which proves statement (i) of Theorem
3.1. For more details and the proof of statements (ii)—(iv),
see [6].

V. APPLICATION TO WELL-POSED
INFINITE-DIMENSIONAL STATE-SPACE SYSTEMS

There are a number of equivalent definitions of well-
posed systems, see [8]-[11]. We will be brief in the fol-
lowing and refer the reader to the above references for
more details. We will consider a well-posed system ¥ with
state-space X (a real Hilbert space with norm denoted by
|| - 1), input space U = R and output space ¥ = R,
generating operators (A, B, C), input-output operator G and
transfer function G. Here A is the generator of a strongly
continuous semigroup T = (T;);>0 on X, B € B(R, X_;)
and C € B(X1,R), where X; denotes the domain of A

endowed with the norm |z||; := ||z| + ||Az| (the graph
norm of A), whilst X_; denotes the completion of X
with respect to the norm ||z||_; = ||(CI — A)~1z||, where

¢ € res(A), the resolvent set of A (different choices of
lead to equivalent norms). Clearly, X; C X C X_; and the
canonical injections are bounded and dense. The semigroup
T restricts to a strongly continuous semigroup on X; and
extends to a strongly continuous semigroup on X_; with
the exponential growth constant w(T) := lim;_, o || T¢||/t
being the same on all three spaces; the generator of the
restriction (extension) of T is a restriction (extension) of
A; we shall use the same symbol T (respectively, A)
for the original semigroup (respectively, generator) and the
associated restrictions and extensions: with this convention,
we may write A € B(X,X_1) (considered as a generator
on X_1, the domain of A is X). Moreover, the operators B
and C' are admissible control and observation operators for
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T, respectively. The transfer function G of X is related to
the state-space operators A, B and C' as follows:

1
s—¢
where s, ( € C are such that s # ¢ and Re s, Re( > w(T).
For z° € X and v € L2 (R,), let z and w denote the

state and output functions g)fc ., respectively, corresponding
to the initial condition 2(0) = 2 € X and the input function
v. Then (t) = Ty + [ Ty, Bu(s)ds for all t € Ry,
x(t) + A~ Bu(t) € dom(C,) for ae. t € R, and

¢’ = Az + Bv, z(0)=2a", (13a)

Ca (z— (I — A)7'Bv) + G({)v, (13b)

where Re( > w(T) and C, denotes the so-called A-
extension of C' defined by

(G(s)=G(¢)) = =C(sI=A) T (¢I-A)7'B, (12)

w =

Crz:= lim

§—00, SE

oAl
RCS(SI A"z

Of course, (13) holds almost everywhere on Ry and the
differential equation (13a) has to be interpreted in X_;. In
the following, we identify > and (13).
The well-posed system (13) is called strongly stable if the
following four conditions are satisfied:
(i) G is L%-stable, i.e., G € B(L?(R.)), or, equivalently,
(i) T is strongly stable, i.e., lim;_,,, T¢z = 0 for all z €
X;
(iii) B is an infinite-time admissible control operator, i.e.,
there exists o« > 0 such that

’ / T, Bo(r)dr
0

(iv) C is an infinite-time admissible observation operator,
i.e., there exists 0 > 0 such that

0o 1/2
(/ |CT.,-Z||2dT) < Bzl Vze X
0

Obviously, exponential stability (i.e., w(T) < 0) implies
strong stability, but the converse is not true.

If the well-posed system (13) is regular, i.e., the following
limit

<alvllew,), Yo e L (Ry);

lim G(s)=D

s—o00, sER

exists and is finite, then z(¢) € D(C)y) for almost every

t € R, the output equation (13b) simplifies to
y(t) = Cax(t) + Du(t), ae.t>0

and

(Gu)(t) = Ca /O T,_.Bu(r)dr + Du(t),
YueL?

loc

(Ry), ae teRy.

Moreover, in the regular case, we have that (s] —A)"!BR C
D(C,) for all s € res(A) and

G(s)=Ch(sI —A)'B+ D, Res>w(T).

The number D is called the feedthrough of (13).

Assume that (13) is connected in series with a hysteretic
input nonlinearity and a static output nonlinearity, the latter
of which is subject to output disturbances. Application of
integral control to the series interconnection (see Fig. 2)
leads to the following feedback law

v = ®(u), (14a)
y = ¢Yw)+J9+h, (14b)
o = klp—1vy), u(0)=u’, (14¢)

where @ is a hysteresis operator, 1 is a static nonlinearity, «
is a time-varying gain, p, ¥ € R and h is a nonconstant part
of the output disturbance. A solution of the feedback system,
given by (13) and (14), on an interval [0, «) is a continuous
function (x,u) : [0,a) — X x R such that (z(0),u(0)) =
(2°,u°) and (x,u) is absolutely continuous as an X 1 X R-
valued function and satisfies the feedback system equations
(13) and (14) almost everywhere on [0, ).

The following theorem is a state-space version of Theorem
3.1. Before stating it, we remark that if (13) is strongly stable
and 0 € res(A), then G can be analytically extended to a
neighbourhood of 0 and so the evaluation G(0) of G(s) at
s = 0 makes sense and (12) holds for ¢ = 0. Consequently,
since w(T) < 0 (by strong stability), we have that

G(s) - G(0)

=C(sI — A)'A'B,
S

Res > 0. (15)

Theorem 5.1: Assume that the following hold:

(a) System (13) is strongly stable, 0 € res(A) and G(0) >
0;

(b) ® e N(\);

(c) ¥ : R — R is non-decreasing and globally Lipschitz
continuous with Lipschitz constant \s;

(d) p— UAS R(Ga QW;

(e) h is such that h € L'(R4) N L?(Ry) and the function
t— [ |h(7)|dr is in L*(Ry);

() x:Ry — Ry is measurable and bounded with

1

hmsup H(t) < m,

t—oo
where 1/0 := oo.
Then there exists a unique solution

T,u) € 4, X N ’ 4, A1 X
CRL, X xR NWEYR,, X R

loc

of the feedback system given by (13) and (14) such that the
following statements hold:
(i) (®(u)) € L*(Ry) and the limit
O™ = tlim (®(u))(t)
exists and is finite.
(i) limy_oo ||z(t) + A1 B®>|| = 0.
(iii) The signals w = CAT2%+ (Go®)(u) and y = ¢(w) +
¥ 4+ h can be decomposed as

w = Wy + Wy

Y=Y+ Y2,
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(iv)

v)

where w1, y; are continuous and have finite limits
w® = tli,r& wy (t) = G(0)D>,
yi® : = Jim g (1) = 9(G(0)) + 9,

and wa,y2 € L*(Ry). If lim; o h(t) = 0 and, for
some ty > 0,

Ty, (Az® + B(®(u))(0)) € X (16)
or
T;2° € X; and Jim (GO)(t) = G(0),  (17)
we have

lim wy(t) =0, tlim ya2(t) =0.

t—oo

If K ¢ L'(Ry), then lim;_ o 41(t) = p and the error
signal e = p — y can be decomposed as

e =e1 + ey,
where e; is continuous with lim; . e1(t) = 0 and

ea € L?(Ry). If lim;_ o, h(t) = 0 and, for some to >
0, (16) or (17) holds, then

lim e(t) =0.

t—oo

If p— 9 is an interior point of the set R(G, @, 1)), then
u is bounded.

The proof of Theorem 5.1 involves an application of Theo-
rem 3.1 (with g = C5'T2?) together with results from the
theory of well-posed systems (see [6]).

(1]
(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

REFERENCES

M. Brokate and J. Sprekels. Hysteresis and Phase Transitions,
Springer, New York, 1996.

R.F. Curtain, H. Logemann and O. Staffans. Stability results of
Popov-type for infinite-dimensional systems with applications
to integral control, Proc. London Math. Soc., 86 (2003), 779—
816.

T. Fliegner, H. Logemann and E.P. Ryan. Low-gain integral
control of well-posed infinite-dimensional linear systems with
input and output nonlinearities, J. Math. Anal. Appl., 261
(2001), 307-336.

H. Logemann and A.D. Mawby. Low-gain integral control
of infinite-dimensional regular linear systems subject to input
hysteresis, pp. 255-293 in Advances in Mathematical Systems
Theory (edited by F. Colonius et al.), Birkhauser, Boston, 2001.
H. Logemann and E.P. Ryan. Systems with hysteresis in the
feedback loop: existence, regularity and asymptotic behaviour
of solutions, ESAIM: Control, Optimisation and Calculus of
Variations, 9 (2003), 169-196.

H. Logemann, E.P. Ryan and I. Shvartsman. Integral control
of infinite-dimensional systems in the presence of hysteresis:
an input-output approach, submitted.

H. Logemann, E.P. Ryan and S. Townley. Integral control of
linear systems with actuator nonlinearities: lower bounds for
the maximal regulating gain, IEEE Trans. Auto. Control, 44
(1999), 1315-1319.

D. Salamon. Infinite-dimensional linear systems with un-
bounded control and observation: a functional analytic ap-
proach, Trans. Amer. Math. Soc., 300 (1987), 383—431.

O.J. Staffans. Well-Posed Linear Systems, Cambridge Univer-
sity Press, Cambridge, 2005

[10] OJ. Staffans and G. Weiss. Transfer functions of regular linear
systems, part II: the system operator and the Lax-Phillips
semigroup, Trans. Amer. Math. Soc., 354 (2002), 3229-3262.

[11] G. Weiss. Transfer functions of regular linear systems, part
I: Characterization of regularity, Trans. Amer. Math. Soc., 342
(1994), 827-854.

397



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




