
Distributed Balancing of AAVs for Uniform Surveillance Coverage

Brandon J. Moore and Kevin M. Passino*
Dept. Electrical and Computer Engineering

The Ohio State University
Columbus, OH 43210

mooreb@ece.osu.edu, passino@ece.osu.edu

Abstract— This paper addresses the problem of enabling
a group of autonomous air vehicles to provide surveillance
coverage for an area significantly larger than their communica-
tion radius. Our formulation spatially decomposes the overall
surveillance mission into subtasks and we develop a distributed
cooperative control algorithm that continuously reassigns AAVs
to these subtasks based on only local information in order to
achieve the most balanced distribution of AAVs possible within
a finite time interval of known bound. Various applications are
discussed and simulations are included to illustrate convergence
dynamics as well as to measure practical performance as a
function of problem parameters.

I. INTRODUCTION AND PROBLEM STATEMENT

This work is motivated by a mission scenario in which
a group of autonomous air vehicles (AAVs) with proximity
restricted communications are tasked to provide cooperative
surveillance for a large area of interest. If the mission is
simply to find stationary targets, the AAVs could simply fly
in a formation that preserved communication connectivity
and sweep the area together in order to find those targets (e.g.
the “mowing the lawn” approach taken in [1]). However, we
are more often concerned with targets that are either mobile
or “pop-up” in nature [2], [3], and can easily evade detection
by a single formation of AAVs. Thus our primary desire
is to disperse the AAVs throughout the area of interest as
uniformly as possible in order to maximize the probability
that a particular target will be spotted by at least one AAV.
Because this dispersal means that the AAVs will be out of
communication range of each other most of the time, we
need to develop a way for the group to detect and react to
events that destroy the uniformity of their distribution, such
as the possible loss of AAVs due to attack, refueling needs,
mechanical failures, and reassignment to other tasks, or the
possible deployment of extra AAVs to their group.

In this paper we consider a surveillance mission that is
composed of many subtasks; we partition the whole region
to be covered into smaller areas to which the individual
AAVs are then assigned in order to provide visibility for
a particular part of the environment (i.e. an AAV assigned
to a certain area will limit its search path to that area
rather than exploring the whole environment). In order to
provide distributed control for the group of AAVs, each
area will be presided over by one or more coordinators

*This work was supported by the AFRL/VA and AFOSR Collaborative
Center of Control Science (Grant F33615-01-2-3154). In addition, the work
was supported by a DAGSI Fellowship to B. Moore.

who direct the actions of the individual AAV. In practice
these coordinators would most likely be another AAV (of a
special type perhaps) that would loiter in a certain location
by flying a predetermined route along the boundary between
two or more adjacent areas. A simple example illustrating
this concept appears in Figure 1. The coordinators make
decisions concerning the movement of AAVs from one area
to another, creating a hierarchical structure in which the
surveillance AAVs, while possibly having a large degree of
autonomy in regard to how they conduct their search within
the area to which they are assigned, essentially become
resources that the coordinators may distribute among the
different areas according to higher level considerations. That
is to say that a coordinator makes local decisions to transfer
AAVs between two of the areas it “connects” by virtue of its
physical location and that this decision is based on the need
for surveillance in the different areas. We can see from the
above description that the overall system can be organized
as a graph; if we think of the areas as the vertices of this
graph, then we can consider each coordinator to be an edge
(or set of edges) because it defines a link between the areas it
connects. The surveillance AAVs can then be moved around
this graph to achieve the desired distribution.

AAV

surveillance areas

coordinator

nominal coordinator

location

coordinator

flight path

Fig. 1. A simple two surveillance area example.

By itself, the partition of the whole region into smaller
areas may not by itself solve the communication problem.
As previously mentioned, communication between the AAVs
may be limited by a very small transmission radius due
to such things as hardware shortcomings (e.g. a low-power
transmitter on a micro-AAV) or by special operational re-

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThB03.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 7060

quirements (e.g. the voluntary limitation of the strength and
duration of radio transmissions for stealth missions). When
this is the case, the surveillance AAVs would have to “check
in” periodically with each coordinator for the area to which
it is currently assigned by flying to where those coordinators
are loitering. These periodic visits accomplish a couple of
things. Since the coordinators cannot always communicate
directly with the AAVs or the other coordinators, they can
only estimate how many AAVs are in the area at any given
point in time. When a new AAV is added to the area by one
coordinator, it must eventually visit the other coordinators
for that area so that they can update their estimates. By
extension, if a limit is imposed on the maximum length
of time an AAV is allowed to go between visits to any
given coordinator, then if a coordinator has not seen an
AAV for that amount of time it can safely assume that it
has been removed from the area and can adjust its estimate
accordingly. In this way it can be said that each coordinator
senses the number of AAVs in an area but with some
inaccuracy due to the delays involved. The other thing these
periodic visits accomplish is to give a coordinator a period
of time in which they have sole control over an AAV and
can transfer it to another area without having to worry about
other coordinators trying to transfer the same AAV at the
same time.

In regards to the distribution of the surveillance AAVs,
we have already stated that our objective is to disperse them
as uniformly as possible throughout the region of interest.
In terms of the framework we have been discussing this
means that we would like each area to have a number of
AAVs proportional to its physical size (so that the density
of AAVs in each area is as equal as possible). However, if
we have special information that makes surveillance a higher
priority in one part of the region than another, then this is
not necessarily the case. In order to handle a wider range
of problem scenarios while keeping our formulation simple,
let us instead make it our objective to distribute the AAVs
as evenly as possible among the areas and assume that the
region of interest is partitioned in a manner such that the
size of an individual area is inversely proportional to the
priority of the area it covers. If we then want a uniform
density of AAVs we can partition the region along a regular
grid with areas of equal size (see Figure 2), but if we want
greater surveillance in a particular section of the region we
can design the areas that cover that section to be smaller
than the rest so that the density of AAVs is greater there
(see Figure 3).

The balancing of surveillance AAV resources is conceptu-
ally related to traditional load balancing objectives in distrib-
uted computing [4] (with the AAVs viewed as a finite number
of discrete load blocks and the areas as the processors) with
a few key exceptions. In this scenario, decisions to move
AAVs from a given surveillance area to a neighboring one
are made in a distributed manner at the interconnections
between the two areas (i.e. by the coordinators) rather than
coordinated centrally as they are in a system where a single
processor controls an area. Also, in discrete load balancing

21 3

7

910

1312

11

6

4 5

8

Fig. 2. Example of a surveillance area layout with uniformly sized areas.
Shaded squares are surveillance areas and white crossed circles are nominal
coordinator locations (a coordinator connects all areas this circle touches).

1

2

3

4

5

Fig. 3. Example of surveillance area layout with areas of unequal size.
The density of AAVs in area 5 will be higher than the other areas if the
number of AAVs per area is the same.

systems, a locally balanced state is all that is guaranteed,
so neighboring processors may differ by as much as the
size of the largest load block for both the delay and non-
delay cases [5], [6] and so the global imbalance grows with
the diameter of the network. While such imbalances may
be acceptable in a system with a large total load, since the
ratio of AAVs to areas may be fairly small in these missions
it is important to achieve a globally balanced state. That
is to say that each surveillance area should have at most
one AAV more than any other area. The message passing
algorithm presented in [7] is able to achieve a state in
which every processor’s set of neighbors is balanced within
the largest block size, but is still not able to guarantee
that that will result in a globally balanced state. It is also
possible to reduce the expected size of the global imbalance
by employing nondeterministic algorithms such as the one
presented in [8]. A final difference between the usual load
balancing framework and our problem is that in traditional
load balancing systems there is the desire that the occurrence
and volume of load transfer events should diminish as load
imbalances become small. We, however, might prefer that
whenever the number of AAVs is not evenly divisible by
the number of areas, that the “excess” AAVs continue to
transition between different areas so that some sort of average

7061

coverage is achieved on each one.
We note that after submission of this paper we found work

in [9] that contains ideas similar to those in the algorithm
we develop here. That work was done in a highly specialized
context of load balancing for a grid of parallel processors and
does not address the delays and asynchronicity present in our
model.

II. AAV BALANCING ON A UNIDIRECTIONAL RING OF

AREAS

The problem introduced in Section I may prove very
difficult to solve for an arbitrary graph; the physical delays
associated with AAVs traveling between coordinators is
likely to result in unstable oscillations in the system because
the coordinators are forced to make decisions based on
outdated information. In both [4] and [5], the distorting
effects of delays are overcome by algorithms that ensure
“bad” information is eventually purged from the system. We
accomplish the same effect in this work by restricting the
interconnection graph of the areas to a special structure.
Each surveillance area will be connected to exactly two
others and instead of allowing the connecting coordinators
to transfer AAVs in either direction we stipulate that on
each surveillance area one coordinator may only add AAVs
to that area while the other one may only remove them.
Since we implicitly assume the graph of areas is connected,
the structure we are discussing is a unidirectional ring. We
note that focusing on this topology is not as restrictive
as it might first appear. For instance, the surveillance area
layouts in both Figures 2 and 3 can both be converted to
unidirectional rings by simply restricting the action of the
coordinators. The only layouts that cannot be converted in
this manner are those whose underlying graph does not
contain a Hamiltonian cycle (e.g. a line graph or a tree),
but so long as the surveillance area layout is a matter of
design these can be avoided.

For convenience, let us associate each surveillance area
with the coordinator that removes AAVs from it and refer
to this combination as a node. If there are N areas in our
system, let us denote the set of nodes by N = {1, . . . , N}.
The graph (N ,A), with A = {(i, i + 1) : i, j ∈ N} (with
i + 1 denoting modulo N addition throughout this paper
whenever i ∈ N) then describes our AAV balancing network.
Specifically, the coordinator of node i senses the AAVs on
the areas of nodes i and i + 1 and may transfer them from
node i to (and only to) node i + 1.

The manner in which a coordinator senses the AAVs of
its node and those of another is subject to substantial delays.
A coordinator can only directly detect the presence of an
AAV on a surveillance area when it flies near the loitering
location of the coordinator; it has to estimate the total number
AAVs on the areas to which it is connected based on what it
knows about those areas and the dynamics of the AAVs.
Specifically, a coordinator will only notice that an AAV
has been added to a surveillance area when it flies near
that coordinator’s location. Since the areas are finite we can
assume that when an AAV is added to a node, the node’s

coordinator will notice the new AAV within some time delay
that is finite and has a known bound. Similarly, once a
coordinator has recognized that an AAV is on a surveillance
area, if that AAV is later removed, the coordinator will
recognize that it is gone within some bounded time interval.
Initially, the actual number and location of the AAVs in the
system will generally be different from each coordinator’s
estimate, with each coordinator thinking that there are some
AAVs on a surveillance area when they are not and not
knowing about some AAVs that are there. If the total number
of AAVs in the system remains constant after a certain time,
however, the coordinators should be able to intelligently
update their estimate of AAV numbers so that they eventually
have an estimate that, while not completely accurate, at least
possesses some relationship to the real numbers that allows
the system to achieve a globally balanced state.

A. Model

We will model our AAV balancing network with a discrete
event system model of the same form used in [5]. The state of
the system will be updated at discrete time instants according
to the occurrence of particular events describing the relevant
behavior of the system. The sequence of events is non-
deterministic but is constrained by the state of the system
at each time step as well as by casual links between pairs of
events over time.

The state of the complete system will be composed of
those state variables describing the plant (the location of
AAVs) and those describing the distributed controller (the
coordinator’s estimates of the AAVs locations). For the plant,
each node i ∈ N has an associated resource level for its
surveillance area equal to the number of AAVs on that node’s
surveillance area and denoted as xi ∈ N, where we take the
definition of the natural numbers to be N = {0, 1, 2, . . .}
(i.e. the non-negative integers as opposed to just the positive
integers as is sometimes seen). Let xP = [x1, . . . , xN]� be
the entire state of the plant. For the controller, the coordinator
of node i has a (possibly outdated) estimate of the true
values of its own resource level and that of node i + 1. Let
these values be denoted by x̃i

i and x̃i+1
i , respectively, and let

xC = [x̃1
1, x̃

2
1, . . . , x̃

N
N , x̃1

N]� denote the entire state of the
controller. The state of the system is then x = [x�

P , x�
C]�

and we let the state space be denoted by X = N
3N . Let

x(k) ∈ X denote the state of the system at logical time
index k (with similar notation for its components).

There are three subsets of this state space in which we are
interested. The first,

XL =

{
x ∈ X :

N∑
i=1

xi = L

}

with L =
∑N

i=1 xi(0), is actually a family of subsets
parameterized by the initial condition xP (0). One of our
primary assumptions will be that no AAVs enter or leave the
system during its operation, which is a standard assumption
in load balancing formulations [4], [5]. This assumption is
equivalent to the statement that x(k) ∈ XL for all k ≥ 0.

7062

The second subset of interest,

XE =
{

x ∈ X : x̃i
i ≤ xi ≤ x̃i

i−1 ∀ i ∈ N
}

defines a condition where the coordinator for each node i
does not overestimate the resource level of the surveillance
area of node i nor underestimate the resource level of the
surveillance area of node i + 1. By assuming that x(k) ∈ XE

for all k ≥ 0, we will be able to greatly simplify our
model and later analysis. This assumption requires some
justification, however, because an arbitrary initial state for the
controller xC(0) is not guaranteed to posses any relationship
to the real resource levels xP (0).

Take an arbitrary initial condition for the system and con-
sider the coordinator of node i. This coordinator’s estimate
of the number of AAVs on the surveillance area of its node
is based on 1) some AAVs it thinks are present and are,
2) some AAVs it thinks are present but are not, and 3) a
number of AAVs that are present but the coordinator has not
yet detected. Based on the description of the system above,
there is a limited amount of time that can pass before the
coordinator will recognize the absence of all the AAVs it
initially believed to be present. Since that coordinator is the
only one which can remove AAVs from its own surveillance
area (and it keeps track of those), after some time period
the coordinator’s estimate for that area differs from the real
number of AAVs only by those AAVs which are present but
have not yet been detected (and hence x̃i

i ≤ xi). Similarly,
since the same coordinator is the only one that can add
AAVs to the surveillance area of node i + 1, after a finite
time that coordinator will have detected every AAV on that
area, but possibly believe that some AAVs removed by the
coordinator of node i + 1 are still present, and so its estimate
of the number of AAVs on that surveillance area will be
no less than the actual value (i.e. x̃i+1

i ≥ xi+1). Since the
previous argument holds regardless of the initial condition
of the system and because the state xP (k) is bounded for all
k (because x(k) ∈ XL for k ≥ 0), we can, without any loss
of generality, assume that the state of the system lies within
the set XE for all time. For convenience, let X0 = XL ∩XE

be the intersection of the these first two subsets, giving us
x(k) ∈ X0 for all k.

The last subset of interest is the goal set that we want the
system to reach (and remain within). This set is given by

XI = {x ∈ X0 : |xi − xj | ≤ 1 for all i, j ∈ N}
and represents the set of all states lying in X0 such that
resource levels of all nodes are balanced to within one unit
of each other. This is the best configuration possible given
that xP ∈ N

N and the fact that the total number of AAVs
may not be divisible by N .

There are two types of events of interest in this system,
namely, the passing of AAVs from one node to another and
a change in a coordinator’s resource level estimates (when it
recognizes that an AAV has been added to or removed from
a surveillance area). Let e

α(i,k)
i denote the “partial” event of

node i passing α(i, k) ∈ N AAVs to node i + 1 at time k. By

the logic underlying our assumption that the initial state lies
in X0, we need only consider estimate changes for node i’s
coordinator that either increase its estimate of the resource
level of its own surveillance area or decrease its estimate
of the resource level of the surveillance area of node i + 1.
Therefore, let e

β(i,k,m)
i denote that at time k the coordinator

of node i has detected β(i, k, m) ∈ N of the AAVs that were
added to its own surveillance area at time m ≤ k. Similarly,
let e

γ(i,k,m)
i denote that at time k the coordinator of node i

has noticed the absence of γ(i, k, m) ∈ N of the AAVs that
were removed from the surveillance area of node i + 1 at
time m ≤ k.

Let the total event space E be defined as the union of the
following sets minus the null set ∅,

P({eα(i,k)
i : i ∈ N and α(i, k) ∈ N})

P({eβ(i,k,m)
i : i ∈ N , β(i, k,m) ∈ N, and m ∈ N)

P({eγ(i,k,m)
i : i ∈ N , γ(i, k, m) ∈ N, and m ∈ N)

where P(·) is the power set of its argument. Then e(k) ∈ E
denotes an event occurring at time k that is composed of
partial events (and can therefore represent multiple simulta-
neous AAV passes and estimate updates).

Which events may actually occur will depend on the
state of the system; specifically, a set-valued enable function
g : X → E is defined as follows: if e(k) ∈ g(x), then

(a) for each e
α(i,k)
i ∈ e(k) the following conditions hold:

(i) α(i, k) = 0 if and only if x̃i
i(k) ≤ x̃i+1

i (k),
(ii) if x̃i

i(k) > x̃i+1
i (k), then

1 ≤ α(i, k) ≤ ⌈
1
2 (x̃i

i(k) − x̃i+1
i (k))

⌉
(iii) e

α′(i,k)
i �∈ e(k) if α(i, k) �= α′(i, k).

Condition (i) prevents the coordinator of node i from
passing any of the AAVs on its associated surveillance area
unless it thinks that its resource level is higher than the
surveillance area of node i + 1. Condition (ii) ensures that
the coordinator of node i attempts to balance the resource
level between its surveillance area and that of node i + 1 by
passing at least one AAV from the former to the latter, but not
more than would make the resource level of its surveillance
area less than than one unit below that of node i + 1 after
the transfer (this is more aggressive than most load balancing
schemes which stipulate that a processor should not pass an
amount of load that would make it less lightly loaded than
its neighbors). We note that the assumption x(k) ∈ X0 and
these first two conditions prevent a coordinator from passing
more AAVs than actually exist on its patrol path. Condition
(iii) simply limits the number of partial events for node i to
at most one per composite event e(k).

(b) for each e
β(i,k,m)
i and e

γ(i,k,m)
i in e(k) it must

be the case that k ≥ m to preserve causality and that
both e

β′(i,k,m)
i �∈ e(k) if β(i, k, m) �= β′(i, k, m) and

e
γ′(i,k,m)
i �∈ e(k) if γ(i, k, m) �= γ′(i, k,m) for the same

reason as condition (iii) in part (a).

7063

Now, at each time index k some event e(k) ∈ g(x(k))
occurs and alters the state of the system according to an
update function x(k + 1) = f(x(k), e(k)) defined by

xi(k + 1) = xi(k) − α(i, k) + α(i − 1, k)

x̃i
i(k + 1) = x̃i

i(k) − α(i, k) +
k∑

m=−∞
β(i, k, m)

x̃i+1
i (k + 1) = x̃i+1

i (k) + α(i, k) −
k∑

m=−∞
γ(i, k, m)

where the indexed α, β, and γ values here on are taken from
the partial events in e(k) (and we let α(i, k), β(i, k, m),
or γ(i, k,m) equal zero if there is no corresponding partial
event). Simply put, the update function sets node i’s surveil-
lance area’s resource level at the next time index to its current
level less what its coordinator passes to the next surveillance
area in the graph and plus whatever is passed to it. It then
updates a coordinator’s estimate of resource levels according
to that coordinator’s actions and new information that it has
received.

Let E ⊂ EN be the set of all event trajectories. The
set of valid event trajectories EV ⊂ E contains all event
trajectories E such that there exists a valid state trajectory
X(x(0), E, k) ∈ XN for some initial condition x(0) ∈ X
(i.e. e(k) ∈ g(x(k)) for all k ∈ N and E ∈ EV). Whereas
the enable function captures the dynamics of this system
from one time step to the next, we will need to define a set
of allowed trajectories in order to fully describe its behavior
over time. This subset of EV , denoted EB , consists of all
event trajectories that meet the following conditions:

(1) There exists B > 0 such that for every event trajectory
E ∈ EB and for any time index k, the series of events
e(k), e(k + 1), . . . , e(k + B − 1) contains at least one
occurrence of the partial event e

α(i,k)
i for all i ∈ N . B is

therefore the maximum number of events that may occur in
the longest possible time interval between two AAV transfer
decisions by a coordinator (i.e. the longest time a coordinator
is permitted to ignore an resource level imbalance plus the
longest time it could take for an AAV to approach the
coordinator’s location and be transferred). The actual value
for B will depend on the number of AAVs in the system and
how often they visit the coordinators.

(2) For the same constant B as above, each coordinator
must detect an AAV added to or removed from the areas it
joins within B time steps of when that AAV was transferred.
Strictly speaking, for all i ∈ N and any k ∈ N the following
must hold

k+B−1∑
n=k

β(i + 1, n, k) =
k+B−1∑

n=k

γ(i − 1, n, k) = α(i, k),

β(i, n, k) = γ(i, n, k) = 0 for all n �∈ [k, k + B − 1]

B. Convergence Properties

For the system in Section II-A we prove that the set XI is
invariant and that the state of the system converges to XI in
finite time. We include here the important lemmas and the

final convergence theorem. Proofs have been omitted due to
space constraints.

Lemma 1: The set XI is invariant with respect to the
system in Section II-A.

Remark: Trajectories within the invariant set XI are not,
in general, static. When the total number of AAVs, L,
is not evenly divisible by the number of nodes, N , the
excess AAVs are continually passed around the ring so
that the resource level of each node alternates between two
consecutive integers. When L is divisible by N , however, the
only state within XI is the perfectly balanced state xi = xj

for all i, j ∈ N .

Lemma 2: For the system described in Section II-A, the
minimum resource level of the nodes is non-decreasing in
time.

Lemma 3: For the system described in Section II-A the
following inequalities hold

x̃i
i(k) ≥ xi(k − B) −

k−1∑
n=k−B

α(i, n)

x̃i+1
i (k) ≤ xi+1(k − B) +

k−1∑
n=k−B

α(i, n)

for all i ∈ N and for all k ≥ B, where B is the delay
associated with EB .

Lemma 4: Define m(k)∆=mini xi(k) as the minimum re-

source level at time k and n(k)∆=
∣∣∣{i ∈ N : xi(k) = m(k)}

∣∣∣
as the number of nodes achieving that minimum resource
level at time k. For the system described in Section II-A, for
any time index k and any x(k) ∈ X0 − XI , there exists a
finite number T ∈ N such that either m(k + T) > m(k) or
n(k + T) < n(k). In other words, whenever the state of the
system is not in the invariant set XI , it is eventually the case
that the minimum resource level of the nodes increases or the
subset of nodes with that minimum resource level decreases
in size.

Theorem 1: For the AAV balancing system in Section
II-A, for any initial condition x(0) ∈ X0 there exists a finite
number Tx(0) = 2B
N

2 �(� L
N + 1) such that x(k) ∈ XI for

all k ≥ Tx(0).

III. SIMULATIONS

We include simulations for two purposes. The first is to
provide an illustrative example of the system in operation
and the second is explore the effects of various parameters
on the convergence time of the system through Monte Carlo
trials. In all simulations, the length of time taken between
an AAVs visits to the same coordinator were identical for
all areas and AAVs. Passing decisions were taken by the
coordinators every time they were visited by an AAV (so
the coordinators were limited to either passing one AAV or
none at a time).

Figure 4 shows an example scenario of the system in
operation. At t = 0 the system is in equilibrium with each

7064

of the 10 nodes having either 10 or 11 AAVs (with a total of
L = 104 AAVs). From t = 0 to t = 5 the non-static nature of
the invariant set XI is evident as the nodes fluctuate between
10 and 11 AAVs. At t = 5 some event occurs that results
in the removal of all AAVs from nodes 1 and 2 (reducing
the total number of AAVs to L = 83), and we can see
how the system reacts so that by approximately t = 25 it
has recovered equilibrium, albeit at a slightly lower average
resource level.

The Monte Carlo simulations that were performed con-
sisted of 50 trial runs each (a small number justified by the
extremely small variance of the performance measure). The
initial condition for all of these simulations involved taking
an empty system and adding all of the AAVs to one node
at t = 0 because this creates the largest initial imbalance
possible and should give us a decent estimate of its worst
practical performance. In Figure 5 we show the results of
increasing the average resource level L

N for systems with
differing numbers of nodes. From these plots, it appears that
the average convergence time of the system is approximately
proportional to the logarithm of L

N as opposed to just L
N as

predicted by the bound in Theorem 1 (which is not surprising
since that theorem uses a worse case analysis). Figure 6
shows the effect on average convergence time of holding the
average resource level constant and increasing the number
of nodes in the system. Here the average convergence time
appears to have an asymptotically linear relationship to
number of nodes.

0 5 10 15 20 25 30 35 40
0

5

10

15

Time
(one time unit = maximum UAV transit time between buoys)

A
ss

et
 le

ve
ls

Fig. 4. resource levels in a system when a number of AAVs are removed
at time t = 5.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

As we have seen, the system described in Section II-
A converges to a globally balanced state within a finite
amount of time that can be bounded in terms of system
parameters. It therefore solves the more general problem
presented in Section I by restricting the allowed surveillance
area interconnections to the specific topology of a unidirec-
tional ring (and thus to any Hamiltonian topology by simple
modification) Although presented in the context of an AAV
mission, the algorithm developed here has a generic resource
balancing application. Future directions lie in developing
algorithms for area-coordinator interconnections other than a
unidirectional ring, considering the case of virtual load [5],

0 5 10 15 20
0

20

40

60

80

100

120

140

160

180

200

Average load (UAVs per node)

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e
(o

ne
 ti

m
e

un
it

=
 m

ax
im

um
 U

A
V

 tr
an

si
t t

im
e

be
tw

ee
n

bu
oy

s)

error bars denote sample
minimum and maximum

N=20

N=18

N=16

N=14

N=12

N=10

Fig. 5. Average convergence time versus average resource level for different
numbers of nodes.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

Number of nodes

A
ve

ra
ge

 c
on

ve
rg

en
ce

 ti
m

e
(o

ne
 ti

m
e

un
it

=
 m

ax
im

um
 U

A
V

 tr
an

si
t t

im
e

be
tw

ee
n

bu
oy

s)

error bars denote sample
minimum and maximum

L/N=16

L/N=8

L/N=4

L/N=2

Fig. 6. Average convergence time versus number of nodes for different
values of average resource level.

and perhaps finding a way to replace the use of coordinators
with AAV to AAV communication.

REFERENCES

[1] C. Schumacher, P. R. Chandler, and S. J. Rasmussen, “Task allocation
for wide area search munitions via iterative network flow,” in AIAA
Guidance, Navigation, and Control Conference, no. 2002–4586, (Mon-
terey, CA), 2002.

[2] Y. Liu, J. B. Cruz, and A. G. Sparks, “Coordinating networked uninhab-
ited air vehicles for persistent area denial,” in 43rd IEEE Conference
on Decision and Control, (Paradise Island, Bahamas), pp. 3351–3356,
December 2004.

[3] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing
in a stochastic time-varying environment,” in 43rd IEEE Conference
on Decision and Control, (Paradise Island, Bahamas), pp. 3357–3363,
December 2004.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Bellmont, MA: Athena Scientific, 1997.

[5] K. L. Burgess and K. M. Passino, “Stability analysis of load balancing
systems,” International Journal of Control, vol. 61, pp. 357–393, Feb
1995.

[6] J. Finke, K. M. Passino, and A. Sparks, “Cooperative control via
task load balancing for networked uninhabited autonomous vehicles,”
in 42nd IEEE Conference on Decision and Control, (Maui, Hawaii),
pp. 31–36, December 2003.

[7] A. Cort́es, A. Ripoll, F. Cedó, M. Senar, and E. Luque, “An asynchro-
nous and iterative load balancing algorithm for discrete load model,”
Journal of Parallel and Distributed Computing, vol. 62, pp. 1729–1746,
December 2002.

[8] R. Els and B. Monien, “Load balancing of unit size tokens and expan-
sion properties of graphs,” in SPAA ’03: Proceedings of the fifteenth
annual ACM symposium on Parallel algorithms and architectures,
pp. 266–273, ACM Press, 2003.

[9] D. Henrich, “The liquid model load balancing method,” Journal of
Parallel Algorithms and Applications, Special Issue on Algorithms for
Enhanced Mesh Architectures, vol. 8, pp. 285–307, 1996.

7065

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

