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Abstract— We consider generalized products of random ma-
trices. They arise in discrete event systems (DES), such as
queueing networks or stochastic Petri nets, where they are
used to express the state transition dynamic. Instances of such
DES are those whose state dynamic can be modelled through
a matrix-vector multiplication in conventional, max-plus and
min-plus algebra. We will present a Taylor series approach to
numerical evaluation of finite horizon performance character-
istics of systems modelled by generalized matrix products. The
cornerstone of our analysis is the introduction of a differential
calculus, based on the concept of weak derivative of a random
matrix. We illustrate our results with a couple of numerical
computations performed on a classical DES example.
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I. INTRODUCTION

In this paper we study discrete event systems (DES) that
can be modelled by linear recurrence of the type

x(k + 1) = A(k + 1) � x(k), k ≥ 0 , (1)

where A(k) is a square matrix of dimension m modelling
the kth state transition, x(k) is vector of dimension m
denoting the kth state of the system (with initial state x(0) =
x0) and � denotes the matrix-vector product defined in a
suitable algebra, such as, max-plus, min-plus, min-max or
conventional algebra.

In the case that system dynamic is time independent, i.e.,
A(k) = A for k ≥ 1, powerful tools exist for evaluating
the system. See, for example, [4] and [14]. However, DES
are typically prone to random influences. For example,
processing times of a machine in a manufacturing model
may vary due to variability in the processed material, running
times of trains in a train network may be increased (delays)
due to weather conditions. Unfortunately, in the presence
of stochastic noise, no efficient algorithm for computing
characteristics of the state vector (such as expected value)
exists and explicit solutions only in special cases.

To approximately compute performance characteristics of
DES with random noise whose state-dynamic follow (1),
Taylor series expansions have been proposed. In particular,
Taylor series expansions of max-plus linear DES systems
are an area of active research. When it comes to queueing
networks, the approach dominant in the literature is that of
light traffic approximations for stationary waiting times in
open max-plus linear queuing systems with Poisson arrival
stream. More specifically, let Wi denote the ith component
of the vector of stationary waiting times in an open queueing
system with Poisson-λ-arrival stream. The pioneering paper

on light traffic expansions for E[Wi] is [6], where sufficient
conditions for the existence of the light traffic approximation
for E[Wi] with respect to λ are established and the (first)
elements of the Taylor series are computed analytically.
These results have been extended in [8] to E[f(Wi)], where
f belongs to the class of performance measures F , where
h ∈ F if h : [0,∞) → [0,∞) and h(x) ≤ c xν for x ≥ 0 and
ν ∈ N. In [1] expansions are obtained for E[f(Wi,Wj)], for
f : [0,∞)2 → [0,∞) with f(x, y) ≤ cxν1xν2 for x, y ≥ 0
and ν1, ν2 ∈ N. In [2], [3], explicit expressions are given for
the moments, Laplace transform and tail probability of the
waiting time of the kth customer. Furthermore, starting with
exact expressions for transient waiting times, exact expres-
sions for moments, Laplace transform and tail probability
of stationary waiting times in a certain class of max-plus
linear systems with deterministic service times are computed.
Taylor series expansions have also been successfully applied
in [11] to control of max-plus linear DES; for an application
based on the concept of variability expansion [13].

In this paper we report on results on Taylor series ap-
proximations for general stochastic “linear” systems. Here
“linearity” means that the matrix-vector product in (1) is
given by a generalized matrix-product in the sense of Cohen
[9] (to be presented shortly). The underlying theory is
based on the concept of weak convergence of probability
measures. However, due to lack of space, proofs and details
on the mathematical analysis are postponed to the full-
length version of the paper and we focus here on presenting
basic ideas and numerical results. The paper is organized
as follows. Section II introduces the general framework for
modelling linear DES. The concept of weak differentiation is
discussed in Section III. Our general results on Taylor series
expansions are presented in Section IV. Numerical examples
illustrating our approach are given in Section V. We conclude
by identifying topics of further research.

II. GENERAL MULTIPLICATIVE MONOIDS

Let S0 denote a non-empty set endowed with two binary
associative operators f and h, such that f is commutative
and h distributes over f . A generalized matrix product, in
symbols, ⊗f ·h (denoted shortly by ⊗ when no confusion
occurs), is defined on the set Mm(S0) of m-dimensional
square matrices with elements in S0, as follows:

[A ⊗ B]ij = [Af · hB]ij
def= (Ai1hB1j)f · · · f(AimhBmj),

for each pair (i, j) with 1 ≤ i, j ≤ m and each A = [Aij ],
B = [Bij ]. For instance, one can recover the classical
matrix multiplication out of this definition, by setting f =
+ and h = ×. Note that, like in conventional algebra,
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this product rule can be extended to general (e.g., non-
square) matrices, of appropriate size (e.g., matrix-vector
multiplication). Nevertheless, due to space limitations, we
focus on square matrices. This matrix product is associative
and consequently, if we set S

def= Mm(S0), we have that
(S,⊗) is a monoid. For a more detailed background see [9],
[16], [10]. Furthermore, if both binary operators f and h
admit neutral elements, say 1f and 1h, respectively, such
that 1f is absorbing for h (i.e. s h 1f = 1f for each
s ∈ S0), then the above introduced monoid admits a neutral
element too. Specifically, we shall denote the matrix having
all diagonal elements equal to 1h and the rest of them equal
to 1f , by E(f ·h) or shortly by E when no confusion exists.
Then it is immediate that E is neutral element for ” ⊗ ”.
A zero element E(f ·h) can be introduced as well, where
[E(f ·h)]ij = 1f for each pair of indices (i, j). Then, we have
A ⊗ E(f ·h) = E(f ·h) ⊗ A = E(f ·h) for each A ∈ S. We omit
the subscript “(f · h)” when no confusion occurs.

Assume now that S0 is endowed with a metric δ. Then,
the mapping d : S × S → R+ defined through:

d(A,B) = max
1≤i,j≤m

δ(Aij , Bij)

for each A,B ∈ S, is a metric on S and (S, d) is a separable
and complete metric space, provided that (S0, δ) is.

By upper bound, we mean a continuous application (for
instance a norm, seminorm) ‖ · ‖ : S → R, satisfying:

1) ‖s‖ ≥ 0, ∀s ∈ S
2) either ‖s ⊗ r‖ ≤ ‖s‖ + ‖r‖, ∀r, s ∈ S or

‖s ⊗ r‖ ≤ ‖s‖ · ‖r‖, ∀r, s ∈ S.
The upper bound will be called additive or multiplicative
according to the operation in the right-hand side of the
inequality.

Example 1: Classical examples of monoids equipped with
an upper bound are given in the following.

1) A first example (the conventional algebra setting) was
already presented in the paper. One can construct a
monoid by choosing: S = [0,∞)m2

, the positive cone
in the m2-dimensional euclidean space. The maximum
norm (i.e., ‖A‖∞ def= max

1≤i,j≤m
Aij) acts as an upper-

bound in this case.
2) f

def= max and h
def= + (i.e. max-plus multiplication).

We have S0
def= {ε def= −∞} ∪ [0,∞). An appropriate

metric on S0 is given by

δ(x, y) def=
{ |ex − ey|, for x, y ≥ 0;

ex, for x ≥ 0, y = ε.

The following upper-bound can be introduced on S.
Set for each A ∈ S,

‖A‖ def=
{

0, if Ai,j = ε, ∀1 ≤ i, j ≤ m;
max{Aij �= ε; 1 ≤ i, j ≤ m}, otherwise.

We denote the neutral element of “+” by e
def= 0.

3) f
def= min and h

def= +. In this case, S0
def= [0,∞) ∪

{∞}. A suitable metric on S0 is given by

δ(x, y) def=
{ |ex − ey|, for x, y < ∞;

ex, for x < ∞, y = ∞.
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Fig. 1. The initial state of the multi-server system (three customers).

The mapping

‖A‖ def=
{

0, if Ai,j = ∞,∀1 ≤ i, j ≤ m;
max{Aij < ∞; 1 ≤ i, j ≤ m}, otherwise.

denotes an upper bound on S.
4) f

def= max and h
def= ×. Set S0

def= {ε} ∪ [0,∞). We
choose δ and ‖ · ‖ just like in (2) above.

5) f
def= min and h

def= ×. We choose S0
def= [0,∞)∪{∞},

whereas δ and ‖·‖ are exactly the same as in (3) above.
For illustrative purposes we will focus in what follows on

max-plus algebra. Consider the following situation:
Example 2: (Baccelli & Hong, [5]) Consider a cyclic

tandem queueing network consisting of a single server and
a multi server, each with deterministic service time. Service
times at the single-server station equal σ, whereas service
times at the multi-server station equal σ′. Three customers
circulate in the network. Initially, one customer is in service
at station 1, the single server, one customer is in service
at station 2, the multi-server, and the third customer is
just about to enter station 2. The time evolution of this
network is described by a max-plus linear sequence x(k) =
(x1(k), . . . , x4(k))t, where x1(k) is the kth beginning of
service at the single–server station and x2(k) is the kth

departure epoch at the single-server station; x3(k) is the kth

beginning of service at the multi-server station and x4(k) is
the kth departure epoch from the multi-server station. The
system then follows

x(k + 1) = D ⊗ x(k) ,

where

D =

⎛
⎜⎜⎝

σ ε σ′ ε
σ ε ε ε
ε e ε e
ε ε σ′ ε

⎞
⎟⎟⎠ ,

with x(0) = x0
def= (0, 0, 0, 0)t. Figure 1 shows the initial

state of this system.
Consider the cyclic tandem network again, but one of the

servers of the multi-server station has broken down. The
system is thus a tandem network with two single server
stations. Initially one customer is in service at station 1, one
customer is in service at station 2, and the third customer is
waiting at station 2 for service. This system follows

x(k + 1) = P ⊗ x(k) ,

7794



��
����
��

��
��

�

�•

•
�

��
�

•

Fig. 2. The initial state of the multi-server system with breakdown (three
customers).

where

P =

⎛
⎜⎜⎝

σ ε σ′ ε
σ ε ε ε
ε e σ′ ε
ε ε σ′ ε

⎞
⎟⎟⎠ ,

with x(0) = x0. Figure 2 shows the initial state of the system
with breakdown.

Assume that whenever a customer enters station 2, the
second server of the multi server station breaks down with
probability θ. Let Aθ(k) have distribution

P( Aθ(k) = D ) = 1 − θ

and
P( Aθ(k) = P ) = θ ,

then
xθ(k + 1) = Aθ(k + 1) ⊗ xθ(k); k ≥ 0,

describes the time evolution of the system with breakdowns.
That the above recurrence relation indeed models the sample
path dynamic of the system with breakdowns is not obvious
and a proof can be found in [5].

III. WEAK DIFFERENTIATION OF RANDOM OBJECTS

Let (S, dS) be a separable metric space and let M =
M(S) be the set of all finite signed (real valued) regular
measures on the measurable space (S,B), where B denotes
the Borel field of S (i.e. the ”smallest” σ-algebra which con-
tains the open sets), see, for example, [15] for details. Denote
by M1(S) the subspace of regular probability measures on
S (the elements of M(S) having the total mass equal to 1).

Denote by Cb(S) the space of bounded continuous real
valued functions on S and let D(S) be a set of real
valued functions on S. For technical reasons we assume that
Cb(S) ⊂ D(S). Such a set will be called a set of performance
(test) functions.

Finally, let Θ ⊂ R be a bounded interval and assume that
{µθ; θ ∈ Θ} ⊂ M1(S) is a family of probability measures
(it can be also thought as a measure-valued mapping on Θ).

Definition 1: Let θ ∈ Θ. We say that µθ, is weakly D(S)-
differentiable, if there exists a real valued measure µ′

θ ∈ M,
such that for all g ∈ D(S) it holds:

lim
∆→0

θ+∆∈Θ

1
∆

(∫
gdµθ+∆ −

∫
gdµθ

)
=

∫
gdµ′

θ. (2)

Moreover, if µθ is D(S)-differentiable, then any triple
(cθ, µ

+
θ , µ−

θ ) with cθ ∈ R and µ+
θ , µ−

θ probability measures,
satisfying for all g ∈ D(S):∫

gdµ′
θ = cθ

(∫
gdµ+

θ −
∫

gdµ−
θ

)
, (3)

will be called a D(S)-derivative of µθ.
Remark 1: Note that, if exists, an weak derivative is not

unique. If the left-hand side limit in (2) exist, then an instance
of the weak derivative can always be found via the Hahn-
Jordan decomposition Theorem [15]. If the above limit is
0 for all g ∈ D(S), we say that the weak derivative is
not significant and for technical convenience, we choose the
representation µ′

θ
def= (1, µθ, µθ).

Higher-order weak derivatives are given in an obvious way.
For details on weak differentiation see [17], [12].

Let (S,⊗) be a monoid, as in the previous section and
assume that a metric dS exists on S. Then (S, d) is a

separable metric space, hence a topological space. Let B def=
σ(S, d) denote the canonical Borel σ-algebra on S. Thus,
(S,B) becomes a measurable space on which we can define
random objects. Finally, with measurability and the upper
bound at hand we can define the space Cp(S), as (p ≥ 1):

Cp(S) def= {g : S → R;∃a, b > 0, s.t.|g(s)| ≤ a + b‖s‖p} .

From now on, Cp(S) will be our test functions set and
whenever we refer to weak differentiability we mean weak
Cp(S)-differentiability.

Let now {Aθ}θ be a family of random elements in
S, defined on some common underlying probability space
(Ω,F , P), with distribution µθ(·) def= P(Aθ ∈ ·) ∈ M1(S),
for θ ∈ Θ. We call Aθ weakly differentiable if its distribution
µθ is. According to Definition 1, if the triple (cθ, µ

+
θ , µ−

θ )
is a weak derivative for µθ then, assuming that A+

θ and A−
θ

are two random elements on S having distributions µ+
θ and

µ−
θ respectively, we have the means to compute d

dθ E[g(Aθ)],
for g ∈ Cp(S). Indeed, according to (3) we have:

d

dθ
E[g(Aθ)] = cA

θ · E
[
g(A+

θ ) − g(A−
θ )

]
, (4)

with cA
θ = cθ. Consequently, we call the triple (cA

θ , A+
θ , A−

θ )
a weak derivative of Aθ and denote it by A′

θ, if (4) holds for
all g ∈ Cp(S). If the left-hand side in (4) equals to zero for

each g ∈ Cp(S), then we set A′
θ

def= (0, E , E).Higher-order
weak derivatives A

(n)
θ are defined similarly, provided that

they exist for n ≥ 1.
Example 3: We consider the so-called Bernoulli example

(i.e. when Aθ has a Bernoulli-type distribution) a version
of which we presented in Example 2. Assume that Aθ is
a random variable on S, Bernoulli distributed, on the set
{x1, x2} ⊂ S, with parameter θ ∈ [0, 1], namely

P(Aθ ∈ ·) = (1 − θ)δx1(·) + θδx2(·),
where δx denotes the Dirac distribution in point x. An weak
derivative of Aθ is given by: A′

θ = (1, x2, x1) (note that the
weak derivative does not depend on θ). Furthermore, it is
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immediate that all higher-order derivatives A
(n)
θ for n ≥ 2

are not significant, so we set A
(n)
θ = (0, x1, x1).

The next result is crucial for the sequel. It provides the
means for differentiating expressions like E[g(Aθ ⊗ Bθ)]:

Theorem 1: Let Aθ, Bθ be random elements in S, sto-
chastically independent. If Aθ, Bθ are Cp(S)-differentiable,
having weak derivatives (cA

θ , A+
θ , A−

θ ) and (cB
θ , B+

θ , B−
θ ),

respectively, then for all g ∈ Cp(S) it holds that

d

dθ
E[g(Aθ ⊗ Bθ)] =cA

θ E
[
g(A+

θ ⊗ Bθ) − g(A−
θ ⊗ Bθ)

]
+cB

θ E
[
g(Aθ ⊗ B+

θ ) − g(Aθ ⊗ B−
θ )

]
(5)

In order to develop a differential calculus, analogue to
the classical one we need to introduce some new algebraical
objects and operations. The main reason behind this technical
work is the following. The weak derivative of a random
object is not anymore a random object, but a triple. Thus
it is not possible for instance to ”multiply” a random matrix
by its derivative. The idea is to embed the space S into a
richer one, such that Aθ and A′

θ are objects of the same kind.
We give here a sketch. For details see [12].

Let Sext denote the set of all finite sequences of triples
(c, A, B), with c ∈ R+ and A,B ∈ S. A generic element of
Sext is therefore given by

α =
(
(c1, A1, B1), (c2, A2, B2), . . . , (cn, An, Bn)

)
, n ≥ 1.

If n = 1 we say that α is elementary. On Sext we introduce
the operation “+” as the concatenation of sequences. For
instance, if αi

def= (ci, Ai, Bi) then the above equality reads

α = α1 + α2 + . . . + αn.

Note that the weak derivative of a random matrix is elemen-
tary in Sext. Scalar multiplication is defined as:

r · (c, A,B) def= (rc, A,B),

for elementary elements, and extend it to general elements
via “+” linearity. We embed S into Sext via the mapping:

A �→ (1, A, E).

The real-valued function g : S → R is extended to the
function gϕ : Sext → R defined through:

gϕ(c, A, B) def= c
(
g(A) − g(B)

)
,

for elementary elements and extend it via “+” linearity to
general elements. Note that gϕ(1, A, E) = g(A) and

gϕ

(
n∑

i=1

riαi

)
=

n∑
i=1

rig
ϕ(αi).

Moreover, (4) can be re-written as:

d

dθ
E[g(Aθ)] = E[gϕ(A′

θ)].

The space Sext can be endowed with a metric (thus a
topology) so that it becomes a measurable metric space on
which one can define random objects.

However, Sext has a very poor algebraic structure (for
instance “+” fails to be commutative). On the other hand,
componentwise equalities are not for practical interest. That
is why we introduce the concept of weak equality. Namely,
for α, β random elements in Sext, we say that they are
weakly equal (and write ”α ≡ β”) if:

E[gϕ(α)] = E[gϕ(β)],∀g ∈ Cp(S).

Of course, if we think about the elements of Sext as
random elements having Dirac distribution, then the weak
equality relation describes an equivalence relation on Sext.
Reformulating now the classical algebraical properties (i.e.
commutativity, associativity, distributivity) in terms of weak
equalities, it can be checked that although “+” is not com-
mutative, it is weakly commutative. Furthermore, the weak
derivative is unique in the weak sense.

Finally, introduce the multiplication “⊗′” on Sext: for
elementary α1 = (c1, A1, B1), α2 = (c2, A2, B2) set:

α1 ⊗′ α2
def=

c1c2 · ((1, A1 ⊗ A2, A1 ⊗ B2)+ (1, B1 ⊗ B2, B1 ⊗ A2)) .

and we extend it to general elements s.t. ⊗′ is linear and
distributes over “+”. It can be checked that the above
definition does not depend on the representatives and:

(1, A1, E) ⊗′ (1, A2, E) ≡ (1, A1 ⊗ A2, E),

so that ⊗′ extends ⊗ to Sext.
We go back now to random matrices and differential

calculus. Re-writing the right-hand term in (5), we obtain:

d

dθ
E[g(Aθ ⊗ Bθ)] = E[gϕ(A′

θ ⊗′ Bθ + Aθ ⊗′ B′
θ)],

which in terms of weak equalities reads:

(Aθ ⊗ Bθ)′ ≡ A′
θ ⊗′ Bθ + Aθ ⊗′ B′

θ.

This last (weak) equality represents the basis of our weak
differential calculus. Like in the classical analysis, it leads
to the more general formula for nth order weak derivatives
(Leibniz-Newton):

(Aθ ⊗ Bθ)
(n) ≡

n∑
k=0

(
n

k

)
· A(n−k)

θ ⊗′ B(k)
θ .

IV. TAYLOR SERIES

Elaborating on our above results on weak differential
calculus we obtain the following differentiation rule for
finite products of random matrices:

Assume that A1, . . . , Ak; k ≥ 1 are independent random
matrices on S weakly differentiable w.r.t. θ. Then their
product is still weakly differentiable and it holds:

(
k⊗

i=1

Ai

)(n)

≡
∑

j∈J (k,n)

n!
j1! · · · jk!

· A(j1)
1 ⊗′ . . . ⊗′ A

(jk)
k ,

where J (k, n) def= {j = (j1, . . . , jk); j1 + . . . + jk = n}.
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Finally, we introduce the concept of weak analyticity.
Definition 2: Let Aθ be a random matrix on S. We say

that Aθ is weakly analytical if there exist a neighborhood Vθ

of 0 such that for all ∆ in Vθ s.t. θ + ∆ ∈ Θ it holds that:

Aθ+∆ ≡
∑
n≥0

∆n

n!
A

(n)
θ .

The sum in the right-hand side of the above expression
(provided that it has a meaning) is called the Taylor series
expansion of Aθ.

The main result regarding analyticity is the following:
Theorem 2: Let Aθ and Bθ be two independent random

matrices. If Aθ and Bθ are weakly analytical, then Aθ ⊗Bθ

is weakly analytical. Moreover, the Taylor series of Aθ ⊗Bθ

converges for all ∆ for which both Taylor series of Aθ and
Bθ, respectively are convergent.

Applying inductively the above result, we can compute the
Taylor series expansion of the product A

def= (A1⊗· · ·⊗Ak).
Precisely, we have:

Aθ+∆ ≡
∑
n≥0

⎡
⎣ ∑

j∈J (k,n)

∆n

j1! · · · jk!
· A(j1)

1 ⊗′ . . . ⊗′ A
(jk)
k

⎤
⎦ .

Let us turn back to the Bernoulli example. Assume that
A1, . . . , Ak are i.i.d. Bernoulli distributed.

Then A
(j)
i =

⎧⎨
⎩

(1, Ai, E), j=0;
(1, P,D), j=1;
not significant, j ≥ 2,

for each 1 ≤ i ≤ k, j ≥ 0.
Thus, for n > k the nth order derivatives of the product A1⊗
· · · ⊗ Ak are not significant and therefore the Taylor series
is finite. For computing the rest of the derivatives, for n ≤ k

we need the following notations. Let [k] def= {1, 2, . . . , k}
and I ⊂ [k]. Denote by |I| the cardinal number of I and let

ΠI
def=

k⊗
i=1

Bi,

where

Bi
def=

{
P, i ∈ I;
D, otherwise.

For instance, Π∅ = D⊗k, Π{i} = D
1
⊗ . . . ⊗ P

i
⊗ . . . ⊗ D

k
,

1 ≤ i ≤ k, . . ., Π[k] = P⊗k.
Let now g : R

m → R given by g(x1, . . . , xm) = x1 and
x0 ∈ R

m. Then the mapping G : S → R defined through
G(A) def= g(A ⊗ x0) belongs to Cp(S).
Finally, set: σk(n) def=

∑
|I|=n G(ΠI), for 0 ≤ n ≤ k. Thus,

we have σk(0) = g(D⊗k ⊗ x0) and σk(k) = g(P⊗k ⊗ x0).
Then the analyticity of A1 ⊗ · · · ⊗ Ak in 0 yields:

E[g(Xθ(k))] =
k∑

n=0

θn

⎡
⎣ n∑

j=0

(−1)n−j

(
k − j

n − j

)
σk(j)

⎤
⎦ .

We conclude this section with a short discussion of the
error in the above approximation. Namely, one is interested

to fix a certain p < k and to evaluate the error term

ε
def=

∣∣∣∣∣∣E[g(Xθ(k))] −
p∑

n=0

θn

⎡
⎣ n∑

j=0

(−1)n−j

(
k − j

n − j

)
σk(j)

⎤
⎦

∣∣∣∣∣∣ .

By computation, the following can be found (θ < 1
2 ):

ε ≤ 2k−1(2θ)p+1

(1 − 2θ)
√

k + 1
‖P⊗k ⊗ x0 − D⊗k ⊗ x0‖∞, (6)

where ‖ · ‖∞ denotes the maximum norm in R
m.

Thus, for fixed k and θ, one can compute the order p of
the Taylor series, necessary for a certain level of accuracy.

Sometimes, one is interested to evaluate the relative error:

εr
def=

ε

‖P⊗k ⊗ X0 − D⊗k ⊗ X0‖∞
(6)

≤ 2k−1(2θ)p+1

(1 − 2θ)
√

k + 1
,

in order to get an accurate estimation relative to the length
of the interval within which E[X(k)] takes values.

Numerical computations for E[X(k)], Taylor series expan-
sions, absolute and relative errors are illustrated in the next
section as applications to the Baccelli & Hong example.

V. NUMERICAL RESULTS

For the experiments performed in this section, we let σ =
14 and σ′ = 24. This yields for the nominal matrix

D =

⎡
⎢⎢⎣

14 ε 24 ε
14 ε ε ε
ε 0 ε 0
ε ε 24 ε

⎤
⎥⎥⎦

and for the perturbed matrix

P =

⎡
⎢⎢⎣

14 ε 24 ε
14 ε ε ε
ε 0 24 ε
ε ε 24 ε

⎤
⎥⎥⎦ .

Figure 3 shows true value of E[X1(10)] as function of θ
and Taylor series approximations of degree p = 1 to p = 3.
The exact values are given in Table 4.

Note that the 1st (2nd and 3rd) Taylor series polynomials
is obtained by considering all possible matrix products
involving only D matrices and at most one (two resp. three)
occurrence of matrix P ; see Section IV.

The numerical values show that the Taylor series approx-
imation of degree p = 3 approximates the true performance
quite accurately up to θ = 0.35. This is confirmed with
Table 5 where the exact absolute and relative errors for this
approximation are listed.

Unfortunately, for large values of θ, the estimated relative
error margin fails to be ”close” to the true one (according to
the last column in Table 5, we can predict reasonable margins
for θ up to 0.15). This inconvenience can be removed by
increasing correspondingly the order of Taylor series but this
would require a larger computation time.
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Fig. 3. E[x1(10)] and its 1st, 2nd and 3rd order Taylor approximations;
the thick line represents the true value.

θ E[x1(10)] T1(θ) T2(θ) T3(θ)
0.00 150.000 150.000 150.000 150.000
0.05 152.601 152.600 152.595 152.602
0.10 155.229 155.200 155.180 155.234
0.15 157.911 157.800 157.755 157.937
0.20 160.675 160.400 160.320 160.752
0.25 163.540 163.000 162.875 163.719
0.30 166.527 165.600 165.420 166.878
0.35 169.655 168.200 167.955 170.270
0.40 172.945 170.800 170.480 173.936
0.45 176.420 173.400 172.995 177.916
0.50 180.105 176.000 175.500 182.250

Fig. 4. Table of values for E[x1(10)] and its 1st, 2nd and 3rd order
Taylor approximations.

θ E[x1(10)] T3(θ) ε εr est. εr

0.00 150.000 150.000 0.000 0.000 0.000
0.05 152.601 152.602 0.001 0.001 0.019
0.10 155.229 155.234 0.005 0.006 0.343
0.15 157.911 157.937 0.026 0.032 1.984
0.20 160.675 160.752 0.077 0.096 7.317
0.25 163.540 163.719 0.179 0.223 21.438
0.30 166.527 166.878 0.351 0.438 —–
0.35 169.655 170.270 0.615 0.768 —–
0.40 172.945 173.936 0.991 1.238 —–
0.45 176.420 177.916 1.496 1.870 —–
0.50 180.105 182.250 2.145 2.681 —–

Fig. 5. The absolute, true and estimated relative error (percentage) of the
3rd order Taylor approximation.

VI. CONCLUSION AND TOPICS FOR FURTHER RESEARCH

We have presented a general approach to numerical ap-
proximate computation of generalized matrix products. Weak
derivatives are not unique and it is a topic of further research
to find representations of the derivatives that allow for a
more efficient implementation. In particular the application
of our methods to large scale problems is an open issue. The
ultimate goal is to come up with Taylor series algorithms
for the Lyapunov exponents of generalized matrix products.
Improvements of the accuracy of error estimation as well as
studying the trade-off between increasing the order of Taylor
series p and getting a better error margin are topic of future
research.
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