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Abstract— For linear inclusions in discrete or continuous time
several quantities characterizing the growth behavior of the
corresponding semigroup are analyzed. These quantities are the
joint spectral radius, the initial growth rate and (for bounded
semigroups) the transient bound. It is recalled how these
constants relate to one another and how they are characterized
by various norms. A complete duality theory is developed in
this framework, relating semigroups and dual semigroups and
extremal or transient norms with their respective dual norms.

I. INTRODUCTION

In this paper we discuss duality relations between growth
rates, i.e. joint spectral radii, initial growth rates and transient
bounds of semigroups generated by linear inclusions. Our
approach is based on the classical concept of a dual norm,
see e.g. [17], as norms play a role in the description of all
three quantities we are discussing

The joint spectral radius as introduced by Rota and Strang
[1] characterizes the exponential growth rate of a linear
semigroup generated by a compact set of matrices in discrete
or continuous time, see also [2], [3]. One important tool in
the study of the joint spectral radius consists in extremal
norms, which characterize it. This study has begun with
results by Barabanov [4], [2] and Kozyakin [5].

The initial growth rate is another quantity that character-
izes an aspect of the exponential growth of a semigroup.
It was introduced by Dahlquist [8] and Lozinskii [9] under
the names “logarithmic norm” or “logarithmic derivative”,
Vidyasagar [16] uses the name “matrix measure”. Its study
has been motivated by problems in numerics, where the
concept is used to obtain estimates for the accuracy of ODE
solvers, or calculating the sensitivity of matrix exponentials.

Finally, the transient bound characterizes the overshoot
of the semigroup. While the practical problem is classical,
sharp bounds for the transient behavior are elusive and there
is no complete theory on this issue. A number of results
may be found in [10] and [11, Chapter 5]. It is known that
the transient behavior may be characterized via appropriate
norms. Also in this setting we develop a duality theory.

The main results of the paper concern duality notions
between the different constants describing the growth of
linear semigroups. To this end, we define for a given linear
inclusion the corresponding dual inclusion. It is easy to
see that joint spectral radius and transient bound for the
dual semigroup are the same. Furthermore, two main results
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are obtained concerning dual norms: In the literature two
specific constructions for extremal norms may be found, due
to Barabanov [4], [2] and Protasov [12]. We show that these
constructions are dual to one another in the sense, that if v

is a Barabanov norm for a semigroup, then the dual norm
v∗ is a Protasov norm for the dual semigroup. A similar
situation occurs for transient norms. In the literature there is a
standard technique for constructing a norm that characterizes
the transient bound, which to the best of our knowledge goes
back to Feller, [13]. We show that there is a dual construction
to Feller’s, which appears to be new in this context. Again a
norm is a Feller norm for a bounded semigroup if and only
if its dual norm is of this dual type for the dual semigroup.

The paper is organized as follows. After introducing the
basic concepts in Section II, in Section III we discuss
initial growth rates for the continuous time case and give
interpretation in terms of subgradients of norms. Section IV
is devoted to some easy bounds for the transient behavior
of linear semigroups. In Section V several important norms
are introduced. Extremal norms are those that characterize
the joint spectral radius, in that the initial growth rate
is equal to the joint spectral radius with respect to these
norms. Similarly, transient norms characterize the transient
behavior in terms of their eccentricity, which we define
below. Section VI is devoted to duality results concerning
the joint spectral radius. Dual semigroups are introduced and
it is shown that some construction procedures for extremal
norms are dual. In Section VII similar results are obtained
for transient norms.

For reasons of space some proofs had to be omitted. These
will appear in a future journal publication.

II. LINEAR INCLUSIONS

In the following we study linear inclusions in continuous
and discrete time. When necessary we specify the time set
T, which is thus either equal to R+ := [0,∞) or to N.

Let K = R, C. Given a compact set ∅ �= M ⊂ K
n×n and

the time set T = N we consider the discrete inclusion

x(t + 1) ∈ {Ax(t) | A ∈ M} , t ∈ N (1)

x(0) = x0 ∈ K
n .

A sequence {x(t)}t∈N is called a solution of (1) with initial
condition x0 if x(0) = x0 and if for all t ∈ N there exists
an A(t) ∈ M such that x(t + 1) = A(t)x(t). Associated to
(1) we consider the sets of products of length t given by

St := {A(t − 1) . . . A(0) | A(s) ∈ M , s = 0, . . . , t − 1} ,

where we set S0 = {In} for t = 0, and the semigroup given
by S :=

⋃∞
t=0 St.
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In a similar manner we obtain a semigroup in the contin-
uous time case. Given a compact set ∅ �= M ⊂ K

n×n and
the time set T = R+, we consider the semigroup generated
by a differential inclusion

ẋ ∈ {Ax(t) | A ∈ M} . (2)

A function x : R+ → K
n is called solution of (2) if it is

absolutely continuous and satisfies ẋ (t) ∈ {Ax(t) | A ∈
M} almost everywhere. Equivalently, x(·) is the solution of
a linear time-varying differential equation

ẋ = A(t)x(t) (3)

for an appropriately chosen measurable map A : R+ → M.
We denote the evolution operators of (3) by ΦA(t, s). The
set of time t transition operators is then given by

St := {ΦA(t, 0) | A : R+ → M measurable} .

Again S =
⋃

t∈T
St defines a semigroup. In the sequel, we

will tacitly assume that S is generated by an inclusion of
the form (1) or of the form (2), if we speak of a semigroup
(S, T). Moreover it is assumed, that M is convex if T = R+.
Together with our compactness assumption this ensures that
the sets St, t ∈ T are compact. Note that if T = R+ we have
by classical relaxation results, that

clSt(M) = St(convM) ,

so that by going over to the convex hull of M we do not
alter the semigroup significantly.

In the following we wish to introduce several quantities
that characterize the growth behavior of a semigroup S.
These are the joint spectral radius (or maximal Lyapunov
exponent, or Lyapunov indicator), that characterizes the long
term exponential growth behavior, the initial growth rate and
the transient bound.

Remark 2.1: Whenever discrete time and continuous time
systems are considered simultaneously, the dilemma appears
that in discrete time it is natural to denote exponential growth
in the form rt, while in continuous time it of interest to
consider elog rt. To keep notation short we have opted for a
unified notation using the discrete time approach.

We begin our definitions with the joint spectral radius. Let
r(A) denote the spectral radius of A and let ‖ · ‖ be some
operator norm on K

n×n. Define for t ∈ N

ρt(M) := sup{r(S)1/t | S ∈ St} ,

ρ̂t(M) := sup{‖S‖1/t | S ∈ St} .
(4)

The joint spectral radius is defined by

ρ(M) := lim sup
t→∞

ρt(M) = lim
t→∞

ρ̂t(M) .

By the results in [14] the above quantity is well-defined.
Note in particular that it does not depend on the choice of
the norm ‖·‖. A further characterization of ρ is given by

ρ(M) = inf{ρ ∈ R | ∃Mρ : ∀t ∈ T, S ∈ St : ‖S‖ ≤ Mρρ
t} .

(5)

On the other hand, the initial growth rate of M depends
on the norm under consideration. Given a norm ‖ · ‖ on K

n

we define for the discrete time case T = N the initial growth
rate by

µ(M) := sup{‖A‖ | A ∈ M} . (6)

In the continuous time case T = R+ we set for an individual
matrix A ∈ K

n×n

µ(A) := exp
(
lim
t→0

1
t log

∥∥eAt
∥∥)

(7)

and for M ⊂ K
n×n we let µ(M) := sup{µ(A) | A ∈ M}.

If µ(A) ≤ 1 then A is called dissipative. The following
result extends statements in [16] and shows that µ is con-
ceptually closely related to ρ, if we compare (5) with (8).

Proposition 2.1: Let T = N, R+. Suppose ‖·‖ is an
operator norm on K

n×n. For M ⊂ K
n×n the initial growth

rate µ(M) is the least upper exponential bound for ‖S‖, i.e.,

µ(M) = min
{
µ ∈ R | ∀t ≥ 0, S ∈ St : ‖S‖ ≤ µt

}
. (8)

Note, that from comparing (5) with (8) it is immediate,
that for any norm ‖·‖ on K

n we have

ρ(M) ≤ µ‖·‖(M) .

For stable linear inclusions (those that generate a bounded
semigroup) we define the transient bound by

M0(M) := sup{‖S‖ | S ∈ S(M)} . (9)

In particular, if M is a set of dissipative matrices then
the semigroup S(M) generated by M is a contraction
semigroup with M0(M) = 1.

In Section VI we will discuss the interplay of ρ, µ and M0

with dual semigroups. Before doing so, we discuss initial
growth rates in more detail.

III. INITIAL GROWTH RATES

In this section we review some known results on initial
growth rates. We also present a characterization of initial
growth rates in terms of subgradients of the norm. While
this characterization is not difficult or surprising from the
point of view of nonsmooth analysis, the remark does not
appear to have been made in this context.

We now discuss the characterization of initial growth rates
using subgradients. To this end we need subgradients of
norms, which are given through the dual norm. Recall that
for a fixed norm v on K

n the dual norm is defined by

v∗(x) := max{|〈l, x〉| | v(l) ≤ 1} . (10)

Note that v = (v∗)
∗. A pair of vectors l, x ∈ K

n is called
dual pair, if 〈l, x〉 = v(x)v∗ (l). See [17] for further details.

Let us denote the unit sphere of the vector norm v by
Tv = {x ∈ K

n |v(x) = 1} and the unit sphere of its dual
norm by T ∗

v . We want to relate the initial growth rate to pairs
of dual vectors. To this end we need to recall the concept
of a subdifferential of a convex function. Given a convex
function f : K

n → R the subdifferential ∂P f(x) is defined
by

∂P f(x) := {l ∈ K
n | f(y) ≥ f(x)+Re 〈l, y−x〉, ∀y ∈ K

n}.
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We see that for a norm v on K
n that the elements of ∂P v(x)

are normals for supporting hyperplanes in x of the convex
set v(x)Bv := {y ∈ K

n | v(y) ≤ v(x)}. It follows from [18,
Corollary 23.5.3] that

∂P v(x) = {l ∈ K
n | v∗(l) = 1, 〈l, x〉 = v(x)} . (11)

Proposition 3.1: Let T = R+. Given a norm v on K
n, the

associated initial growth rate µv of a matrix A is given by

log µv(A) = max{Re 〈l, Ax〉

| (l, x) ∈ T ∗
v × Tv is a dual pair of v}.

For A ∈ K
n×n we denote by A∗ the dual matrix with

respect to the standard scalar product, that is, A∗ = A
T
.

Proposition 3.1 can be used to derive, in a simple manner,
a (well-known) formula for the initial growth rate µ2 with
respect to the Euclidean norm.

Lemma 3.1: The Euclidean initial growth rate of A ∈
K

n×n is given by log µ2(A) = 1
2λmax(A + A∗).

Proof: For the Euclidean norm all vectors are self-dual,
as 〈x, x〉 = ‖x‖2

2. Hence

log µ2(A) = max{Re 〈x,Ax〉 | ‖x‖2 = 1}

= 1
2 max

x�=0

〈x,(A+A∗)x〉
〈x,x〉 = 1

2λmax(A + A∗)

which follows from the Rayleigh-Ritz theorem, see [17].

IV. BOUNDS FOR THE TRANSIENT BEHAVIOR

In this section we discuss how to obtain transient bounds
via the initial growth rate. To this end we introduce the
eccentricity to be able to compare two norms.

Definition 4.1: Suppose v and ‖·‖ are norms on K
n. The

eccentricity of v(·) with respect to ‖·‖ is given by

ecc(v) = ecc(v, ‖·‖) :=
max‖x‖=1 v(x)

min‖x‖=1 v(x)
. (12)

The eccentricity measures the deformation of the unit balls
of two norms w.r.t. each other. It is easy to see that

ecc(v, ‖·‖) = ecc(‖·‖ , v). (13)

This notion can be used to compare the transient behavior
under different norms.

Corollary 4.1: Given M ⊂ K
n×n and two norms

‖·‖ , v(·) on K
n. Then for all S ∈ St(M, T) we have

‖S‖ ≤ ecc(v, ‖·‖)µv(M)t, t ∈ T. (14)

V. EXTREMAL AND TRANSIENT NORMS

Both joint spectral radius and transient bound are closely
related to specific norms.

Definition 5.1: Let K = R, C, T = N, R+ and let (S, T)
be a semigroup in K

n×n.
(i) A norm v on K

n is called extremal for S if

µv(S) = ρ(S) . (15)

(ii) an extremal norm v on K
n is called Barabanov norm

corresponding to S if for all x ∈ K
n, t ∈ T there is an

S ∈ clSt such that

v(Sx) = ρ(S)tv(x) . (16)

(iii) a norm v on K
n is called Protasov norm correspond-

ing to S if the unit ball Bv of v satisfies

ρ(S)tBv = conv clStBv , ∀ t ∈ T. (17)
Remark 5.1: It has become common to use the name

Barabanov norms because they have been introduced in
[4], [2]. A sufficient criterion for their existence is that M
is irreducible, i.e., only the trivial subspaces {0} and K

n

are invariant under all matrices A ∈ M. It is clear that
Barabanov norms are extremal. The converse is false.

In a similar vein, we use the name Protasov norm, because
these norms have been introduced in [12]. It is easy to see
directly that they are extremal. This also follows from the
duality result Theorem 6.1.
The next lemma provides a construction for Protasov norms.

Lemma 5.1: Let K = R, C, T = N, R+ and let (S, T) be
an irreducible semigroup in K

n×n. If v is an extremal norm
on K

n with unit ball B then

B̃ =
⋂
t∈T

conv cl {ρ(S)−tSB |S ∈ clSt}

is the unit ball of a Protasov norm for S.

Proof: We may assume ρ(S) = 1. Obviously, B̃ is
convex, balanced and closed. It is not contained in any
hyperplane, because the semigroup is irreducible. From the
definition it follows that B̃ = conv clStB̃ , ∀ t ∈ T. Hence,
B̃ is a level set of a Protasov norm.

Definition 5.2: Let K = R, C, T = N, R+ and let (S, T)
be a bounded semigroup in K

n×n generated by M ⊂ K
n×n.

Consider a fixed vector norm ‖·‖.
(i) A norm v on K

n is called transient for S if

µv(M) ≤ 1 , and ecc v, ‖·‖ = M0(M) . (18)

(ii) The Feller norm corresponding to M and ‖·‖ is defined
by

‖x‖M = sup
S∈S

‖Sx‖ . (19)

(iii) The convex-transient norm corresponding to M and ‖·‖
is defined by its unit ball given by

B̃M = conv cl {Sx |S ∈ S, x ∈ B} = conv cl
⋃

S∈S

SB

(20)
where B is the unit ball of ‖·‖.

Remark 5.2: The name transient norm comes from the
fact that the eccentricity of the norm characterizes the
transient bound. We opted for the name Feller norm as the
norm x �→ supt≥0 ‖Ttx‖ for a semigroup (T, R+) has been
introduced in [13]. Note that µv(M) ≤ 1 implies for any
norm v that ecc(v, ‖·‖)≥M0(M). We will now show that the
Feller norm ‖·‖M is a transient norm. The same statement for
the convex-transient norm follows from our duality results.

It is easily verified that ‖·‖M is indeed a norm. We claim
that ecc ‖·‖M = M0(M). This may be seen as follows:

ecc(‖·‖M , ‖·‖) =
sup‖x‖=1 supS∈S ‖Sx‖

inf‖x‖=1 supS∈S ‖Sx‖
,
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but inf‖x‖=1 supS∈S ‖Sx‖ = 1 because otherwise S is not
bounded. Furthermore, µM(M) ≤ 1 because

‖Sx‖M = sup
T∈S

‖TSx‖ ≤ sup
T∈S

‖Tx‖ = ‖x‖M . (21)

More precisely, we have the following result for the initial
growth rate with respect to the transient norm.

Lemma 5.2: Let M ⊂ K
n×n generate a bounded semi-

group S. Then the initial growth rate associated with the
Feller norm satisfies µM(M) = min{µ(M), 1}.

Proof: If for the original norm µ(M) ≤ 1, then, by
Proposition 2.1, ‖Sx‖ ≤ µ(M)t ‖x‖ ≤ ‖x‖ for all x ∈ K

n

and all S ∈ St. Hence ‖·‖M = supS∈S ‖S·‖ = ‖·‖ and so
µM(M) = µ(M).

Now, if µ(M) > 1 there exist x0 ∈ K
n and S ∈ St0 , t0 >

0 such that ‖Sx0‖ = ‖x0‖M > ‖x0‖. By Proposition 2.1
this shows µM(M) ≥ 1 and so µM(M) = 1 by (21).

We note the following property of the unit ball of the
Feller norm for further reference.

Lemma 5.3: Suppose that M ⊂ K
n×n generates a

bounded semigroup. Then the unit ball BM of the associated
Feller norm ‖·‖M is given by

BM =
⋂

S∈S

S−1B (22)

where B is the unit ball of ‖·‖ .

Proof: The set
⋂

S∈S S−1B is a closed convex balanced
set. Also, 0 is contained in the interior of this set by the
boundedness of S. Therefore

⋂
S∈S S−1B is the unit ball of a

norm. By definition, x ∈ BM holds if and only if for all S ∈
S, Sx ∈ B, or equivalently, x ∈ S−1B which yields (22).
Finally, we note that if ρ(M) = 1 and M is bounded,
then the Feller norm and the convex-transient norm are also
extremal for M, but in general different from a Barabanov
or Protasov norm. Thus another way to construct extremal
norms for irreducible inclusions, is to define the Feller or
convex-transient norm for the normalized semigroup given
by the finite time sets ρ(M)−tSt(M).

VI. DUALITY

In this section we investigate the dual of semigroups. Also
duality properties of Barabanov and Protasov norms as well
as Feller and convex-transient norms are shown.

Let K = R, C and T = N, R+. Given a semigroup
(S, T) ⊂ K

n×n, we define the dual semigroup to be

S∗ := {S∗ |S ∈ S} ,

where we assume in particular that we have

(S∗)t = {S∗ |S ∈ St} , t ∈ T .

It is then immediate that ρ (S) = ρ (S∗). Let us briefly
discuss how the generating sets can be constructed.

In the case T = N let S be the semigroup generated by
(M, N). Then S∗ is generated by (M∗, N), where we define

M∗ := {A∗ | A ∈ M} .

In the continuous time case T = R+, on the other hand, we
consider the differential inclusion

ẋ(t) ∈ {A∗(t) |A ∈ M} . (23)

It is well known that for every t ≥ 0 the evolution operators
Φ(t, 0) of (3) of the form

Φ(t, 0) = eAktkeAk−1tk−1 · · · eA1t1 ,

where Aj ∈ M, j = 1, . . . , k,
∑k

j=1 tj = t, lie dense in
St(M, R+). It is obvious, that the dual of these operators lies
dense in St(M

∗, R+), so clSt(M, R+)∗ = clSt(M
∗, R+).

Thus we see that in both discrete and continuous time we
may consider M∗ to be the generator of S∗.

Our first duality result is the following, see also [2].
Lemma 6.1: Let K = R, C, T = N, R+. Let w be an

extremal norm for (S, T). Then w∗ is extremal for (S∗, T).
We now show that Barabanov norms and Protasov norms

are dual concepts.
Theorem 6.1: Let K = R, C, T = N, R+ and let (S, T) be

a semigroup. The norm v is a Barabanov norm for (S, T) if
and only if the dual norm v∗ is a Protasov norm for (S∗, T).

Proof: We may assume that ρ(S) = 1. Assume
furthermore that v is a Barabanov norm and let t ∈ T and
x ∈ K

n, v(x) = 1 be arbitrary. By assumption there exists
an S ∈ St such that v(Sx) = v(x) = 1. As v = v∗∗

it
follows that

v(Sx) = v(x) = max {Re 〈l, x〉 | v∗(l) ≤ 1}

= max {Re 〈S∗l, x〉 | v∗(l) ≤ 1}

≤ max {Re 〈l, x〉 | l ∈ convS∗
t Bv∗} .

On the other hand by the extremality of the norm v∗ we have
v(x) ≥ max {Re 〈l, x〉 | l ∈ convS∗

t Bv∗}. This implies
equality throughout the calculation. As x was arbitrary this
means that v is the dual norm of the norm with the unit
ball convS∗

t Bv∗ . As the dual norm is uniquely defined this
implies that convS∗

t Bv∗ is the unit ball of v∗ and as t ∈ T

was arbitrary, condition (17) is satisfied. Hence, v∗ is a
Protasov norm.

Conversely, assume that (17) holds for v∗ and let t ∈ T

and x ∈ K
n, v(x) = 1 be arbitrary. Then

v(x) = max {Re 〈l, x〉 | v∗(l) ≤ 1}

= max {Re 〈l, x〉 | l ∈ convS∗
t Bv∗}

= max {Re 〈S∗l, x〉 | v∗(l) ≤ 1, S∗ ∈ S∗
t }

= max {Re 〈l, Sx〉 | v∗(l) ≤ 1, S ∈ St}

= max {v(Sx) |S ∈ St} ,

which shows that v is a Barabanov norm.
A particularly satisfying situation occurs in the case that

S = S∗ as in this case there is a natural candidate for an
extremal norm.

Proposition 6.1: Let K = R, C, T = N, R+ and let (S, T)
be an irreducible semigroup with S = S∗ then the Euclidean
norm ‖·‖2 is an extremal norm for S.

Proof: Without loss of generality we may assume
ρ (S) = 1. Assume the assertion is false, then for some
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x ∈ K
n, ‖x‖2 = 1 and some t ∈ T there is an S ∈ St

such that ‖Sx‖2 > 1. As S∗ ∈ S we have S∗S ∈ S
and r (S∗S) ≥ 〈S∗Sx, x〉 = ‖Sx‖2

2 > 1. This contradicts
ρ (S) = 1 and the contradiction proves the assertion.

In the continuous time case T = R+ we also point out
the following reformulation of a result by Barabanov that
will turn out to be useful later. Here we relate for the
continuous time case extremality properties of a norm with
the infinitesimal growth of the trajectories of the system.

Proposition 6.2: Let K = R, C, T = R+ and let (S, R+)
be an irreducible semigroup generated by M ∈I (Kn×n).

(i) A norm v is an extremal norm for S if and only if
for all dual pairs l, x ∈ K

n and all A ∈ M it holds that

Re 〈l, Ax〉 ≤ log ρ (M) v (x) v∗ (l) . (24)

In this case, there exist dual pairs l, x ∈ K
n and A ∈ M

where equality in (24) is attained.
(ii) A norm v is a Barabanov norm for S if and only if

for all x ∈ K
n there exists an l ∈ K

n such that l, x is
a dual pair and an A ∈ M such that

Re 〈l, Ax〉 = log ρ (M) v (x) v∗ (l) . (25)
The following result is a counterpart of Proposition 6.2

for the discrete-time case [4]. We assume that all matrices
in the set M are nonsingular.

Proposition 6.3: Let K = R, C, T = N and let (S, N) be
an irreducible semigroup generated by M ∈I (Kn×n).

(i) A norm v is an extremal norm for S if and only if
for all pairs l, x ∈ K

n and all A ∈ M it holds that

Re 〈l, Ax〉 ≤ ρ (M) v (x) v∗ (l) . (26)

In this case, there exist pairs l, x ∈ K
n and A ∈ M

where equality in (26) is attained.
(ii) A norm v is a Barabanov norm for S if and only if

for all x ∈ K
n there exists an l ∈ K

n and an A ∈ M
such that

Re 〈l, Ax〉 = ρ (M) v (x) v∗ (l) . (27)
Example 6.1: Consider the case T = N. Let A1 =

diag (0.5, 1), A2 = SA1S
−1, where S =

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
is a

rotation by angle ϕ. Let us take ϕ = π
4 for convenience. A1

is an orthogonal contraction with respect to the y-axis, while
A2 = 1

4

(
3 −1
−1 3

)
is an orthogonal contraction with respect

to the axis y = −x.
The set M = {A1, A2} is irreducible (i.e. it has no

common nontrivial subspace). Note also that M = M∗,
so that by Theorem 6.1 the dual of a Barabanov norm
for M is a Protasov norm for M∗ = M. It is easy
to see that the joint spectral radius satisfies ρ(M) = 1.
The unit ball B of a Barabanov norm is given by a par-
allelogram spanned by the vertices {

(
0
1

)
,
(
2
1

)
,
(

0
−1

)
,
(
−2
−1

)
}.

Its dual ball B̃ is a parallelogram spanned by the vertices
{
(

1
−1

)
,
(
0
1

)
,
(
−1
1

)
,
(

0
−1

)
}. As A1

(
0
1

)
=

(
0
1

)
and A2

(
1
−1

)
=(

1
−1

)
we have conv {A1B̃, A2B̃} = B̃, hence it is the norm

ball of a Protasov norm for M, see Fig. 6.1 for an illustration.

B �
��

B̃���

A2B̃ �

A1B̃

�

Fig. 1. Extremal norms of Example 6.1

VII. TRANSIENT NORMS AND DUALITY

Let us now investigate duality issues for transient norms
and initial growth rates. We introduce one further notation. If
M0(M) is the transient bound of S(M) with respect to the
norm ‖·‖, then we denote by M∗

0 (M) the transient bound
with respect to the dual norm, i.e.

M∗
0 (M) = sup{‖S‖∗ | S ∈ S} .

For dual norms we obtain the following result.
Theorem 7.1: Suppose that ‖·‖ is a vector norm on K

n

with associated initial growth rate µ(·) and let µ∗(·) denote
the initial growth rate with respect to the dual norm ‖·‖∗ on
K

n. Then for a set of matrices M ⊂ K
n×n the following

statements hold
1) M0(M) = M∗

0 (M∗),
2) µ(M) = µ∗(M∗).
3) log µ2(M) ≤ 1

2 (log µ(M) + log µ∗(M)).
Proof: The first statement is obvious. We prove the

remaining statements for the case T = R+, the discrete
time case follows in a similar manner. It follows from
Proposition 3.1 that for all A ∈ M

log µ(A) = max
‖x‖=1

max
‖l‖∗=1,〈l,x〉=1

Re 〈l, Ax〉,

log µ∗(A∗) = max
‖l‖∗=1

max
‖x‖=1,〈l,x〉=1

Re 〈x, A∗l〉.

Now as Re 〈l, Ax〉 = Re 〈x, A∗l〉 the equality µ∗(A) =
µ(A∗) is proved. The final statement follows from the
second, because

log µ(A) + log µ∗(A) = log µ(A) + log µ(A∗)

≥ log µ(A + A∗) ≥ α(A + A∗)

= λmax(A + A∗) = 2 log µ2(A)

where we used that log µ(B) is a convex function, which
is bounded from below by the spectral abscissa α(B) =
max Re σ(B), see [16]. In case of a Hermitian matrix B =
A + A∗ this abscissa is an eigenvalue. By Lemma 3.1
this eigenvalue equals log µ2(A). Clearly, log µ(A) +
log µ(A∗) ≤ log µ(M) + log µ(M∗) for all A ∈ M.
This theorem shows that the initial growth rate for the
spectral norm is the best lower bound for all mean values of
dual initial growth rates. Especially, for the the dual 1- and
∞-norms we immediately obtain µ∗

1(M) = µ∞(M) for all
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M ⊂ K
n×n. Formulas for these initial growth rates are well

known, see [16]. Using these formulas part 2 of Theorem 7.1
implies

Corollary 7.1: Suppose that M ⊂ K
n×n is a set of col-

umn or row diagonally dominant matrices with log µ1(A) +
log µ∞(A) < 0 for all A ∈ M. Then S(M) satisifies
log µ2(M) ≤ 0.

Now that we have treated the initial growth of dual norms
we proceed to the second main result of this paper. Feller
norms and convex-transient norms are dual concepts. To this
end we first need the following property of the eccentricity.

Proposition 7.1: For norms v, ‖ · ‖ on K
n it holds that

ecc(v, ‖·‖) = ecc(v∗, ‖·‖∗).
Proof: By symmetry and using (13) it is suffi-

cient to show that max‖y‖∗=1 v∗(y) = maxv(x)=1 ‖x‖ and
min‖y‖∗=1 v∗(y) ≥ minv(x)=1 ‖x‖. To show the first of these
claims note that by definition,

max
‖y‖∗=1

v∗(y) = max
v(x)=1

max
‖y‖∗=1

|y∗x| = max
v(x)=1

‖x‖ . (28)

To show the second claim, assume that α ∈ R+ is maximal
with the property v(αz) ≤ 1 for all ‖z‖ = 1. Setting u = αz

we have α = minv(u)=1 ‖u‖ . Then

min
‖y‖∗=1

v∗(y) = min
‖y‖∗=1

max
v(x)≤1

|y∗x| ≥ min
‖y‖∗=1

α |y∗z| (29)

= α = min
v(u)=1

‖u‖

where we replaced x by αz such that z satisfies ν(αz) ≤ 1,
‖z‖ = 1 and y∗z = ‖y‖∗ . Combining (28), (29) and (13),
we obtain

ecc(v∗, ‖·‖∗) ≤
maxv(y)=1 ‖y‖

minv(y)=1 ‖y‖
= ecc(‖·‖ , v) = ecc(v, ‖·‖).

By symmetry we obtain equality throughout.
By Proposition 7.1 the dual norm of a transient norm satisfies
ecc(v∗) = ecc(v) when ‖·‖ is the Euclidean norm. Let us
therefore consider the norm w(·) := (v(·)∗M∗)∗ which has
the same eccentricity as the Feller norm v(·)∗M∗ . Then w

coincides with the convex-transient norm.
Theorem 7.2: Let T = R+, N, K = R, C. Assume that

M ⊂ K
n×n generates a bounded semigroup (S, T). Then

the unit ball B̃M of the convex-transient norm satisfies(
B̃M

)∗

= B∗
M∗

where B∗ is the unit ball of ‖·‖∗ and B∗
M∗ =⋂

S∈S(M∗) S−1B∗.
Remark 7.1: To reinterpret the statement of the previous

Theorem 7.2 note that by Lemma 5.3 the ball B∗
M∗ is the

unit ball of the Feller norm corresponding to M∗ and the
norm ‖·‖∗. Thus the result states that the dual of a convex-
transient norm for M, ‖·‖ is a Feller norm for M∗, ‖·‖∗.

Example 7.1: For the case T = R+ we consider the
differential equation ẋ = Ax for the matrix A =

(
−5 36
0 −20

)
.

Its initial growth rate with respect to the Euclidean norm is
given by µ2(A) = 1

2λmax(A+A∗) = 7 hence the Euclidean
norm is not a transient norm. Figure 2 shows the unit balls
of the Feller norm, B, and of the convex-transient norm, B̃.
Both unit balls are invariant under the flow of the system.

B
���

B2
	

B̃

�

Fig. 2. Transient norms.

ACKNOWLEDGEMENT

This work was partially supported by the Enterprise Ire-
land grant 00/PI.1/C067. Elmar Plischke gratefully acknowl-
edges support by the DFG grant HI 372/4.

REFERENCES

[1] G.-C. Rota and G. Strang, “A note on the joint spectral radius,”
Indag. Math., vol. 22, pp. 379–381, 1960.

[2] N. E. Barabanov, “Absolute characteristic exponent of a class of linear
nonstationary systems of differential equations,” Siberian Mathemati-
cal Journal, vol. 29, no. 4, pp. 521–530, 1988.

[3] F. Colonius and W. Kliemann, “Maximal and minimal Lyapunov
exponents of bilinear control systems,” J. Diff. Eqns., vol. 101, pp.
232–275, 1993.

[4] N. E. Barabanov, “Lyapunov indicator of discrete inclusions. I-III,”
Autom. Remote Control, vol. 49, no. 2, pp. 152–157, no. 3, pp. 283-
287, no.5, pp. 558–565, 1988.

[5] V. S. Kozyakin, “Algebraic unsolvability of problem of absolute
stability of desynchronized systems,” Autom. Rem. Control, vol. 51,
no. 6, pp. 754–759, 1990.

[6] F. Wirth, “The generalized spectral radius and extremal norms,” Lin.
Alg. Appl., vol. 342, pp. 17–40, 2002.

[7] ——, Stability theory of perturbed systems: Joint spectral radii and
stability radii, ser. Lecture Notes in Mathematics. Berlin: Springer-
Verlag, 2005, to appear.

[8] G. Dahlquist, “Stability and error bounds in the numerical integration
of ordinary differential equations,” Tekn. Högskol. Handl., vol. 130,
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