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Abstract— A mathematical model for the scheduling of angio-
genic inhibitors to control a vascularized tumor is considered
as an optimal control problem. A complete synthesis of optimal
solutions is given.

I. INTRODUCTION

In all cancer treatments which have cells of abnormal
growth as the target, an important factor seriously limiting
the success of these therapies is acquired drug resistance.
Various biological phenomena like gene amplification or just
simple mutation often create new cancer cells which no
longer show a response to drugs being used. At the same
time, it is interesting to notice that similar phenomena do not
take place for the healthy proliferating cells. For example,
regretfully bone marrow does not develop drug resistance
to the killing agent [6]. A natural thought therefore is to
try to turn this fact to our advantage and search for a
cancer therapy which would primarily target healthy cells
and cancerous ones only indirectly. Anti-tumor angiogenesis
is such a mechanism. A growing tumor, after it reaches just
a few millimeters in size, no longer can rely on blood vessels
of the host, but it needs to develop its own system for blood
supply. In this process called angiogenesis an important role
is played by endothelial cells which provide the lining for
the newly forming blood vessels of the tumor. Angiogenic
inhibitors like endostatin target those cells preventing the
tumor from developing its own blood vessel system and
thus blocking its growth. The tumor, deprived of necessary
nutrition, regresses. Since the treatment targets normal cells,
no occurrence of drug resistance has been reported in lab
studies. (These treatments still only are in an experimental
stage.) For this reason anti-tumor angiogenesis has been
called a therapy resistant to resistance which provides a new
hope in treatment of tumor type cancers [6].

Although tumor angiogenesis and its inhibitors seem to
have been seriously researched medically only since the mid
nineties, mathematical models to describe these phenomena
are already being developed by the biomedical community.
In this paper, we follow a path initiated by Hahnfeld et al.
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in [5] where a model for tumor growth under the action
of angiogenic stimulation and inhibition was developed and
medically validated. It was modified and formulated within
an optimal control framework by Ergun, Camphausen and
Wein in [4]. Introducing an objective, they analyzed the prob-
lem of optimal scheduling of anti-angiogenic therapy and
radiotherapy as monotherapies and in combination. However,
their analysis, even for the case of anti-angiogenic therapy as
monotherapy, left several questions open. Although singular
controls were computed, it was not clear how they combine
with constant controls in a full synthesis of optimal controls.
In this paper we continue the analysis from [4] and present
such a full synthesis of optimal controls for the model.

II. MATHEMATICAL MODEL FOR DYNAMIC

ANTI-ANGIOGENIC MONOTHERAPY [4]

We consider the problem formulation from [4] that is
based on the previously developed and validated model in
[5]. In this model the spatial aspects of the underlying diffu-
sion that stimulate and inhibit angiogenesis are incorporated
into a non-spatial 2-compartment model for cancer cells
and vascular endothelial cells. Let p denote the volume of
primary tumor cells and let e denote the volume of the
vascular endothelial cells. It is assumed that the tumor growth
is Gompertzian with a variable carrying capacity resulting in
the following equation for the rate of change in the volume
of primary tumor cells:

ṗ = −ξp ln(
p

e
) (1)

where ξ denotes a tumor growth parameter. The equation
modelling the rate of change in the volume of vascular
endothelial cells is taken in the form

ė = be
2

3 − de
4

3 − Gue, (2)

where b (birth) and d (death) are endothelial stimulation and
inhibition parameters, respectively. The variable u represents
the control in the system and corresponds to the angiogenic
dose rate; G is a constant that represents the anti-angiogenic
killing parameter. (In [5] the following numerical values are
given for these parameters1: ξ = 0.192

ln 10 = 0.084 per day, b =
5.85 mm per day, d = 0.00873 per mm per day, G = 0.15

1Only the value of ξ needs to be adjusted to the natural logarithm.
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kg per mg of dose). This model represents a simplification
of the spatial analysis in [5] in the sense that the angiogenic
inhibitor is taken proportional to the tumor radius, not the
tumor surface (see [4] for details on the justification of the
equations and the relations between the two models).

Ergun, Camphausen and Wein then consider the following
optimal control problem: for a free terminal time T minimize
the value p(T ) subject to the dynamics (1) and (2) over all
Lebesgue measurable functions u : [0, T ] → [0,∞) which
satisfy a constraint of the form

∫ T

0

u(t)dt ≤ A (3)

on the total amount of anti-angiogenic treatment adminis-
tered. For the case d = 0 it is shown in [4] that optimal
controls generally follow a three part regimen starting with
a large initial dose, then a phase of drug intensification where
the system follows an optimal singular arc, and a terminal
phase when the system leaves this singular arc. However, the
details of the initial and final stage of the regimen are left
open in the analysis [4, pg. 415].

In this paper, for the model when the dose rate u is
bounded, 0 ≤ u ≤ a, we augment the analysis in [4] to
give a complete characterization of optimal controls in form
of a synthesis. As will be seen, the most general structure
of optimal controls is of the form “0asa0

′′ denoting a
concatenation of a trajectory with no anti-angiogenic therapy
followed by a period of maximum rate therapy until a
singular arc is reached. Along the singular arc a specific
varying dose at less than maximum is given. This is followed
at the end by possibly another period of maximum dose
therapy before therapy is terminated. While there will always
be a final interval where u = 0, this only holds since the
terminal time T is free in the problem. In general, anti-
angiogenic treatment stops exactly when equality holds in
(3), i.e. when the allowable total amount of anti-angiogenic
treatment is reached. If this occurs along the singular arc,
then optimal controls directly switch to u = 0 as postulated
in [4]. But it is possible that the singular arc saturates
before this happens (i.e. the dose rate needed to maintain
the singular arc exceeds the postulated upper bound a) and
in this case an extra interval with maximum rate therapy is
inserted. Without this upper bound on u (as the problem was
considered in [4]) the initial and terminal phases of therapy
become much guess work and therefore the authors were
“unable to characterize the final, nonsingular portion of the
solution”. Also, in our analysis here we do not assume that
d = 0.

Equation (2) for the rate of change in the volume of
vascular endothelial cells is not Lipschitz and indeed has
multiple solutions at e = 0. For a mathematical analysis it
is preferable to eliminate the for the problem biologically
irrelevant trivial solution e ≡ 0 and to work with a smooth
dynamical system instead. We therefore change variable from
e to x defined by e = x3. This results in the following

dynamical system:

ẋ =
1

3

(
b − dx2 − Gux

)
. (4)

Hence we consider the following equivalent optimal control
problem:

(P) minimize p(T ) over all Lebesgue measurable func-
tions u : [0, T ] → [0, a] subject to

ṗ = −ξp ln(
p

x3
), p(0) = p0, (5)

ẋ =
1

3

(
b − dx2 − Gux

)
, x(0) = x0, (6)

ẏ = u, y(0) = 0, (7)

and terminal condition y(T ) ≤ A with the terminal
time T free.

We briefly summarize some elementary properties of the
controlled dynamical system Σ given by (5) and (6): It is

clear from (6) that the strip {x ∈ R : 0 < x <
√

b
d
}

is positive invariant for any control u. Also the state p
remains positive. (For z = ln p we have ż = −ξz + f(t) for
some continuously differentiable function f and therefore
z cannot blow up.) Hence all trajectories lie in the region

R = {(p, x) : p > 0, 0 < x <
√

b
d
}. However, this region

still is too large as set of meaningful initial conditions and
will allow for some degenerate optimal solutions which we
simply prefer to exclude altogether. It is easily seen that
the system Σa corresponding to the control u ≡ a has an
asymptotically stable node at (pa, xa) = (x̄3, x̄) where

x̄ =
−Ga +

√
G2a2 + 4bd

2d
, (8)

and for u ≡ 0 the corresponding system Σ0 has an asymp-

totically stable node at (p0, x0) = ( b
d

√
b
d
,
√

b
d
). Fig. 1 gives

the phase-portrait of the uncontrolled system Σ0 for the
numerical values specified earlier [5].

Initial conditions x0 which lie below x̄ given by (8) are
not meaningful medically [4] and therefore we also restrict
the initial data to lie in the set

D = {(p, x) : x̄ ≤ x ≤
√

b

d
, p > 0}. (9)

It is easily seen from the phase portraits of the systems
Σ0 and Σa that this set is positively invariant under any
admissible control.

III. ANALYSIS OF THE MATHEMATICAL MODEL

First-order necessary conditions for optimality of a control
u are given by the Pontryagin Maximum Principle [8], [2].
If u∗ is an optimal control defined over the interval [0, T ]
with corresponding trajectory (p∗, x∗, y∗), then there exist
a constant λ0 ≥ 0 and an absolutely continuous co-vector,
λ : [0, T ] → (R3)∗, (which we write as row-vector) such that
(λ0, λ(t)) �= (0, 0) for all t ∈ [0, T ], satisfying the adjoint

935



10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3
x 10

4

x

p

Fig. 1. Phaseportrait for Σ for u = 0

equations with transversality condition,

λ̇1 = ξλ1

(
ln

(
p∗(t)

x3
∗
(t)

)
+ 1

)
, λ1(T ) = λ0, (10)

λ̇2 = −3ξλ1
p∗(t)

x∗(t)
+

1

3
λ2(2dx∗(t) + Gu∗(t)), λ2(T ) = 0,

(11)

λ̇3 = 0, λ3(T ) =

{
0 if y(T ) < A

free if y(T ) = A
, (12)

such the optimal control u∗ minimizes the Hamiltonian H ,

H = −λ1ξp ln
( p

x3

)
+

1

3
λ2

(
b − dx2 − Gux

)
+λ3u, (13)

along (λ0, λ(t), p∗(t), x∗(t), y∗(t)) over the control set [0, a]
and the minimum value is given by 0.

We call a pair ((p, x, y), u) consisting of an admissible
control u with corresponding trajectory (p, x, y) for which
there exist multipliers (λ0, λ) such that the conditions of
the Maximum Principle are satisfied an extremal (pair)
and the triple ((p, x, y), u, (λ0, λ)) is an extremal lift (to
the cotangent bundle). Extremals with λ0 = 0 are called
abnormal while those with a positive multiplier λ0 are called
normal. Here all extremals are normal and we henceforth
normalize λ0 = 1. We summarize this statement and other
basic properties in the Lemmas below.

Lemma 3.1: All extremals for problem (P) are normal.
Proof. If λ0 = 0, then by (10) and (11) both λ1 and λ2

vanish identically. Thus by the nontriviality of the multiplier
λ3 can never vanish in [0, T ]. But then by H ≡ 0 we must
have u ≡ 0 and thus y(T ) < A implying λ3(T ) = 0.
Contradiction. �

Lemma 3.2: The multiplier λ1 is positive on [0, T ], λ2 is
positive on [0, T ) and λ3 is constant.

Proof. Since λ1(T ) = 1, the first statement is immediate
from (10). The second one follows from the fact that when-

ever λ2(τ) = 0, then we have λ̇2(τ) = −3ξλ1(τ) p∗(τ)
x∗(τ) < 0.

Since λ2(T ) = 0 this implies that λ2 is positive for t < T .
�

Lemma 3.3: If u∗ is an optimal control, then y(T ) = A.
Proof. Suppose y(T ) < A. Then λ3 ≡ 0 and it follows

from H(T ) = 0 that p(T ) = x3(T ). Extend the control
by adding another interval [T, T + ∆] where u ≡ a and
∆ > 0 is chosen so that y(T + ∆) = A. It follows from
the phase portrait of the system Σa for the control u = a
that the p-value decreases along this final piece and thus
p(T + ∆) < p(T ) contradicting the minimality of p(T ). �

The minimum condition on the Hamiltonian H is equiva-
lent to minimizing the linear function(

λ3(t) − 1

3
λ2(t)Gx∗(t)

)
v (14)

over v ∈ [0, a]. Thus, if we define the so-called switching
function Φ as

Φ(t) = λ3(t) − 1

3
λ2(t)Gx∗(t), (15)

then optimal controls satisfy

u∗(t) =

{
0 if Φ(t) > 0
a if Φ(t) < 0

. (16)

A priori the control is not determined by the minimum
condition at times when Φ(t) = 0. However, if Φ(t) ≡ 0 on
an open interval, then also all derivatives of Φ(t) must vanish
and this may determine the control. Controls of this kind are
called singular while we refer to the constant controls as
bang controls. Optimal controls then need to be synthesized
from these candidates through an analysis of the switching
function. For example, if Φ(τ) = 0, but Φ̇(τ) �= 0, then
the control has a switch at time τ . In order to analyze the
structure of the optimal controls we therefore need to analyze
the switching function and its derivatives.

These computations simplify significantly within the
framework of geometric optimal control theory and we
therefore now write the state as z = (p, x, y)T and express
the dynamics in the form

ż = f(z) + ug(z) (17)

where

f(z) =

⎛
⎜⎜⎜⎜⎝

−ξp ln
(

p

x3

)
1
3

(
b − dx2

)
0

⎞
⎟⎟⎟⎟⎠ and g(z) =

⎛
⎜⎜⎜⎜⎝

0

− 1
3Gx

1

⎞
⎟⎟⎟⎟⎠ .

(18)
Then the derivatives of the switching function can easily be
computed using the following well-known result that can be
verified by a direct calculation.

Proposition 3.1: Let h be a continuously differentiable
vector field and define Ψ(t) = 〈λ(t), h(z(t))〉. Then the
derivative of Ψ along a solution to the system equation (17)
for control u and a solution λ to the corresponding adjoint
equations (10)-(12) is given by

Ψ̇(t) = 〈λ(t), [f + ug, h]z(t)〉 , (19)
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where [f, h] denotes the Lie bracket of the vector fields f
and h. �

Recall that the Lie bracket is computed in local coordinates
as

[f, h](z) = Dh(z)f(z) − Df(z)h(z) (20)

where Df denotes the matrix of the partial derivatives of f .
We therefore have for

Φ(t) = 〈λ(t), g(z(t))〉 (21)

that

Φ̇(t) = 〈λ(t), [f, g]z(t)〉 (22)

Φ̈(t) = 〈λ(t), [f + ug, [f, g]]z(t)〉 (23)

Direct computations give that

[f, g](z) =

⎛
⎜⎜⎜⎜⎝

ξGp

− 1
9G

(
b + dx2

)
0

⎞
⎟⎟⎟⎟⎠ , (24)

[f, [f, g]](z) =

⎛
⎜⎜⎜⎜⎝

ξ2Gp + 1
3ξGp b+dx2

x

− 4
27Gbdx

0

⎞
⎟⎟⎟⎟⎠ , (25)

and

[g, [f, g]](z) =

⎛
⎜⎜⎜⎜⎝

0

− 1
27G2

(
b − dx2

)
0

⎞
⎟⎟⎟⎟⎠ . (26)

Proposition 3.2: If u∗ is an optimal control, then u∗ can
take on the value 0 only along an initial interval [0, τ1] and
a final interval [τ4, T ].

Proof. Suppose there exists an interval [α, β] ⊂ (0, T )
such that Φ(α) = Φ(β) = 0 and Φ is positive on (α, β).
Then there exists a time τ ∈ (α, β) where Φ attains its
maximum and with all functions evaluated at τ we have

0 = Φ̇(τ) = 〈λ, [f, g](z)〉
= λ1ξGp − 1

9
λ2G

(
b + dx2

)
. (27)

But

Φ̈(τ) = 〈λ, [f, [f, g]](z)〉

= λ1ξGp

(
ξ +

b + dx2

3x

)
− 4

27
λ2Gbdx

=
1

9
λ2G

(
b + dx2

) (
ξ +

b + dx2

3x

)
− 4

27
λ2Gbdx

=
1

9
λ2G

(
ξ
(
b + dx2

)
+

(
b − dx2

)2

3x

)
> 0.

Thus Φ has a local minimum at τ . Contradiction. Hence the
switching function is strictly increasing or decreasing along

the control u ≡ 0 and thus 0-arcs can only lie at the ends of
the interval [0, T ]. �

While it follows from the synthesis given below that there
can exist optimal trajectories which end with an interval
where u ≡ a, this only happens in certain degenerate (and
medically unrealistic) scenarios if the upper limit A on the
total amount of anti-angiogenic treatment administered is too
small. The typical scenario is indeed that optimal trajectories
end with a 0-arc defined over an interval [τ4, T ]. It then
follows from the condition H(T ) = 0 that

p(T ) = x3(T ). (28)

This condition determines the terminal time T in the prob-
lem.

The middle section of optimal controls is determined by
an optimal singular arc. If u∗ is singular on an open interval
I , then

Φ(t) = 〈λ(t), g(z(t))〉 ≡ 0 (29)

on I and differentiating Φ twice yields

Φ̇(t) = 〈λ(t), [f, g]z(t)〉 ≡ 0 (30)

and
Φ̈(t) = 〈λ(t), [f + ug, [f, g]]z(t)〉 ≡ 0. (31)

Here we have that

〈λ(t), [g, [f, g]]z(t)〉 ≡ − 1

27
λ2(t)G

2
(
b − dx(t)2

)
(32)

and this quantity is negative by Lemma 3.2 and the invariance
properties of x. Thus the singular control is of order 1
and satisfies the strengthened Legendre-Clebsch condition
for minimality [7] (and hence is locally minimizing). The
singular control can therefore formally be computed as

usin(t) = −〈λ(t), [f, [f, g]]z(t)〉
〈λ(t), [g, [f, g]]z(t)〉 . (33)

For our system the vector fields g, [f, g] and [g, [f, g]] are
everywhere linearly independent and thus [f, [f, g]] can be
expressed as a linear combination in this basis. A direct
computation verifies that

[f, [f, g]] =

(
ξ +

1

3

b + dx2

x

)
[f, g] − ψ(x)[g, [f, g]] (34)

where

ψ(x) =
1

G

(
b − dx2

x
+ 3ξ

b + dx2

b − dx2

)
. (35)

Since 〈λ(t), [f, g](z(t))〉 ≡ 0 on I , it therefore follows that
the singular control is given as a smooth feedback control
(that only depends on x) by

usin(t) = ψ(x(t)). (36)

However, this control is only admissible if the value lies in
the interval [0, a]. It is easy to see that the function ψ is

strictly convex (ψ′′(x) > 0) and positive on (0,
√

b
d
) with

poles at x = 0 and x =
√

b
d

. Hence, for large enough a

there exist exactly two values x∗

� and x∗

u, 0 < x∗

� < x∗

u <

937



√
b
d

, such that the singular control is admissible for x ∈
[x∗

� , x
∗

u], saturates with values u∗ = a at x∗

� and x∗

u, and is
inadmissible for x /∈ [x∗

� , x
∗

u]. If a is too small, the singular
arc is inadmissible or shrinks to a point. (In this case the
synthesis of optimal controls has the form “0a0” and we do
not discuss it further.)

However, for a trajectory to be an extremal, the singular
arc also needs to satisfy the extra requirement that H ≡ 0,
or, equivalently

〈λ(t), f(z(t))〉 ≡ 0. (37)

Since λ(t) �= 0 (e.g. Lemma 3.2) the three conditions (37),
(29) and (30) are consistent if and only if the determinant for
the corresponding linear system in λ1, λ2 and λ3 vanishes.
This is equivalent to the linear dependence of the vector
fields f , g and [f, g], i.e.

0 =

∣∣∣∣∣∣∣∣∣∣

−ξp ln
(

p

x3

)
0 ξGp

1
3 (b − dx2) − 1

3Gx − 1
9G(b + dx2)

0 1 0

∣∣∣∣∣∣∣∣∣∣

= −1

3
ξGp

∣∣∣∣∣∣
− ln

(
p

x3

)
1

b − dx2 − 1
3 (b + dx2)

∣∣∣∣∣∣

= −1

3
ξGp

(
1

3
(b + dx2) ln

( p

x3

)
− b + dx2

)
,

or, equivalently,

ln
( p

x3

)
= 3

b − dx2

b + dx2
. (38)

Summarizing, we have
Proposition 3.3: There exists a locally minimizing singu-

lar arc S defined in (p, x)-space by

p = p(x) = x3 exp

(
3
b − dx2

b + dx2

)
(39)

for x∗

� ≤ x ≤ x∗

u. The corresponding singular control is
given in feedback form as

usin(x) = ψ(x) =
1

G

(
b − dx2

x
+ 3ξ

b + dx2

b − dx2

)
(40)

and the values x∗

� and x∗

u are the unique solutions to the

equation ψ(x) = a in (0,
√

b
d
). �

Fig. 2 gives the graph of the singular curve defined by
(39) for the numerical values in [5], b = 5.85, d = 0.00873,
ξ = 0.084, G = 0.15, and it also identifies the admissible
arc for a = 15. In this case x∗

� = 2.9005 and x∗

u = 23.0704,
so that the admissible piece of the singular arc almost starts
at the origin. The function p = p(x) is strictly increasing for

x ≥ 0 with a stationary point for x =
√

b
d

, which for the
data above is given by 25.8863.

Proposition 3.4: Except for the lower saturation point x∗

� ,
concatenations of the type sa are not optimal: for x > x∗

� ,
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Fig. 2. Singular curve and admissible arc

optimal controls leave the singular arc with the constant
control u = 0. �

Essentially this follows from the local optimality of the
singular arc which makes it superior to small bang-bang
segments of the type a0 that would return the system back to
the singular arc. Mathematically, a computation akin to the
one given in the proof of Prop. 3.2 can be invoked to verify
that there cannot be any a0 switches in the x-range where the
singular control is admissible and this can be used to prove
the proposition above. However, due to space limitations this
argument is omitted.

IV. SYNTHESIS OF OPTIMAL CONTROLS

Based on these results a complete synthesis of optimal
controls can now be developed. Let S− denote the integral
curve of Σa through the upper saturation point (p∗u, x∗

u) of

the singular arc for t ≤ 0 until the value x =
√

b
d

is reached
and let S+ denote the integral curve of Σa through the lower
saturation point (p∗� , x

∗

� ) for t ≥ 0. This trajectory reaches
the equilibrium (pa, xa) = (x̄3, x̄) asymptotically as t → ∞.
Then denote the curve which corresponds to a concatenation
of S− with the admissible singular arc S and then with S+

by S. Note that over a finite interval S corresponds to an
admissible trajectory for the problem (P ) as long as the
constraint y ≤ A will not be violated. The curve S divides
the region D into a connected region D0 which lies above
S and another region Da which lies below S. Combining
the phase-portraits of the flows Σ0 and Σa with our results
on optimal controls we get the following characterizations
of optimal controls:

Theorem 4.1: For an initial condition (p0, x0) ∈ D0 the
optimal control initially takes the value u ≡ 0 on an interval
[0, τ1] and τ1 is the unique time when the integral curve of Σ0

starting at (p0, x0) intersects the curve S. Then the optimal
trajectory follows the curve S for an interval (τ1, τ4] where
τ4 is the unique time when y(τ4) = A. Depending on the

938



0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

x

p

Fig. 3. Synthesis in (p, x)-space

value of A and whether the initial portion of the trajectory
intersects S at time τ1 in the section S−, S, or S+ there
exist times τ2 and τ3, τ1 ≤ τ2 < τ3 ≤ τ4, such that u ≡ a
on (τ1, τ2] and (τ3, τ4] and u is given by the singular control
usin on (τ2, τ3]. (Not all pieces need to be present.) Then
the optimal control still is u ≡ 0 on a final interval (τ4, T ]
and the optimal terminal time T is the unique time when the
terminal portion of the trajectory satisfies p(T ) = x3(T ).

Theorem 4.2: For an initial condition (p0, x0) ∈ Da the
optimal control immediately takes the value u ≡ a on some
interval [0, τ2]. It will only switch if the singular arc S
is reached before the overall amount of drug is exhausted
i.e. y(τ2) < A. In this case, the optimal trajectory then
follows S over an interval (τ2, τ4] until y(τ4) = A (possibly
including an interval (τ3, τ4] along S+). The final portion
is characterized as in Theorem 4.1. Degenerate subcases
arise if y(τ) = A occurs on the initial portion before S
is reached. In this case, depending on whether p(τ) > x3(τ)
or p(τ) ≤ x3(τ), either a terminal portion [τ, T ] with u ≡ 0
and T described as above is added, or the trajectory simply
terminates at T = τ .

Some examples of projections of optimal trajectories in
(p, x)-space are given in Fig. 3. The admissible singular arc
is shown as a curve with circles indicating its initial and
end points where saturation occurs at u = a. Integral curves
for u ≡ a entering the singular arc are shown as ‘dash-dot’
lines on the right hand side and integral curves for u ≡ 0
are shown as ‘dash-dash’ lines both on the left side entering
the singular arc and on the bottom portion of the right side
leaving the singular arc. We identify by a ‘star’ end points
of optimal trajectories which occur on the curve p = x3 = e.

The actual synthesis defined by the specifications in The-
orems 4.1 and 4.2, however, is constructed in (p, x, y)-space
and is memoryless. The optimality of the controls in the field
directly follows from existing results about regular synthesis,
such as Boltyansky’s [1], or the more general results of of
Piccoli and Sussmann [9]. The verification that all required
conditions are met is routine.

V. CONCLUSION

In this paper we gave a complete synthesis of optimal
controls for an optimal control problem formulated in [4]
for the control of tumor growth under angiogenic inhibitors.
We have kept the formulation as it was in [4], but several
extensions of the problem formulation readily can be ana-
lyzed with similar methods. For example, the choice of a free
terminal time T generates the somewhat unrealistic scenario
of ‘stopping’ treatment at the most opportune time when
in reality in absence of treatment the value of p will then
be increasing again approaching the equilibrium (p0, x0)
in steady-state. On the other hand, this formulation gives
the minimum size tumor, respectively maximum shrinkage
possible and this is a quantity of medical interest. But clearly
it follows from the synthesis and the structure of the phase
portrait Σ0 that any such shrinkage is temporary and and
will need to reinforced with other treatment intervals as time
progresses.
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