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Abstract— Higher-Order Iterative Learning Control (HO-
ILC) algorithms use past system control information from more
than one past iterative cycle. This class of ILC algorithms
have been proposed aiming at improving the learning efficiency
and performance. This paper addresses the optimality of HO-
ILC in the sense of minimizing the control error covariance
matrix in the presence of measurement noise. It is shown that
the optimal weighting matrices corresponding to the control
information associated with more than one cycle preceding
the current cycle are zero. Consequently, an optimal HO-ILC
is automatically reduced to an optimal first-order ILC. The
system under consideration is a linear discrete-time varying
systems with different relative degree between the input and
each output. Furthermore, a suboptimal second-order ILC is
proposed for a class of nonlinear systems. Based on a numerical
example, it is shown that a compatible suboptimal first-order
ILC yields better performance than the proposed suboptimal
second-order ILC algorithm.

I. INTRODUCTION
In the past two decades Iterative Learning Control (ILC)

has attracted considerable attention in many areas and ap-
plications. ILC is an approach aimed to improve the desired
dynamic behaviors of systems that operate repetitively over
a fixed time interval. It is useful for problems whose system
must follow different types of inputs in the face of modeling
uncertainty. The high accuracy output tracking potential of
ILC algorithms makes them attractive despite the run-to-
run implementations problems inherited to this approach.
ILC incorporates past control information such as tracking
errors and their corresponding control input signals into the
construction of the present control action.
ILC algorithms may be categorized in terms of their order.

Traditional ILC algorithms (e.g., [1]) are classified as first-
order ILC scheme, which only employs control information
of the previous cycle. The -order updating law uses
the data of the previous cycles including control inputs
and their corresponding output errors. The class of ILC
corresponding to 1 are known as higher-order ILC (HO-
ILC) algorithms. Many researchers have considered HO-
ILC algorithms; e.g., [2]-[10]. Most of the proposed HO-
ILC algorithms are shown to be robust and, in absence
of measurement errors, drive the output error to zero for
different classes of systems. It is also interesting to note
that at the 15 IFAC World Congress on Automation and
Control a special session was devoted to HO-ILC;e.g., [7]-
[9]. The basic incentive for using HO-ILC is to improve
the control performance by using more of the past control
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information. However, there are 2 × gain or weighting
matrices associated with a traditional -order P-type ILC.
Half of these gains multiply the previous control inputs
and the other half multiplies the corresponding output er-
rors. Appropriate selection of these gain matrices can be
troublesome. In [6] lower order ILC algorithms are shown
to outperform (speed of convergence) higher-order ILC in
the sense of time weighted norm. However, the results in
[6] are only applicable to SISO LTI systems in absence of
measurement errors. Based on numerical examples, many
have demonstrated that the speed of tracking convergence of
a second-order ILC outperforms a first order ILC;e.g., [2],
[3], [5]. In [10], it is shown that HO-ILC could be used to
reduce the variance of the effect of measurement noise.
The problem addressed in this paper is based on the

following question: consider a first-order ILC and assume
that the present control action exploits "optimally" the past
control information in every iterative cycle (in presence
of measurement errors) could a HO-ILC algorithm further
contribute to the optimality measure under consideration?
The optimality measure considered in this paper is in the
sense of minimizing the control error covariance matrix.
The system under consideration is a MIMO linear discrete-
time varying systems in presence of measurement noise
with different relative degree between the input and each
output. The problem is tackled by first considering a second-
order ILC whereby the gains associated with the update law
are established by minimizing the control error covariance
matrix. It is shown that the gains corresponding to the control
information associated with two cycles preceding the current
cycle are zero. That is, the optimal second-order ILC is
automatically reduced to an optimal first-order ILC. The
generalization of HO-ILC is then readily deduced.
Since the optimal ILC algorithm requires knowledge of

system dynamics and disturbance statistics, a suboptimal
second-order ILC is proposed for a class of nonlinear sys-
tems. Based on a numerical example, it is shown that a com-
patible suboptimal first-order ILC yields better performance
than the proposed suboptimal second-order ILC.
This paper is organized as follows. Section II formulates

the problem addressed in this paper. The optimality of HO-
ILC is presented in Section III. The proposed suboptimal
second-order ILC is presented in Section IV. A numerical
example, illustrating the performance of the proposed algo-
rithm, is included in Section V.

II. PROBLEM FORMULATION
The system considered (similar to [11]-[14]) is a discrete-

time-varying linear system described by the following dif-
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ference equation

( + 1 ) = ( ) ( ) + ( ) ( ) + ( )

( ) = ( ) ( ) + ( ) (1)

where [0 ] ( ) < ( ) < ( )
< ( ) < and ( ) < .
(A1) Relative Degree Assumptions: Assume that for all
[0 ], and 1

( + )

1Y
=1

( + ) ( + ) = 0, (2)

with 1 1, and 1 , and where
Q0

=1( ) =
, and the × matrix

( ) =

1( + 1)
hQ

1 1
=1 ( + 1 )

i
( )

...
( + )

hQ 1
=1 ( + )

i
( )

is either of full column rank (requires ) or of full row
rank (requires ). Note that if = 1, then ( +
1) ( ) 6= 0.
(A2) Realizable Trajectory Assumption: It is assumed that
( ) =

£
1 ( ) · · · ( )

¤
is a realizable desired

output trajectory. That is, for any realizable output trajectory
and an appropriate initial condition (0), there exists a
unique control input ( ) < generating the trajectory for
the nominal plant. That is, the following difference equation
is satisfied

( + 1) = ( ) ( ) + ( ) ( )

( ) = ( ) ( ) (3)

Define the state and the input error vectors as ( ) ,
( ) ( ), and ( ) , ( ) ( ), respectively.

Denote , and to be the expectation operators with
respect to time domain, and iteration domain, respectively.
(A3) Statistical Assumptions: It is assumed that the state
disturbance ( ), and the measurement noise ( ) are
modeled as zero-mean white noise and statistically inde-
pendent. Furthermore, ( ( ) ( ) ) = is positive
semi-definite matrix, ( ( + ) ( + ) ) = +

is positive definite matrix for all , The initial state error
(0 ) is a zero-mean statistically independent random

variable, and without loss of generality, the initial input
( 0) = 0 [0 ].
The learning update law under consideration is given by

( + 1) = [0]( ) ( ) + [1]( ) ( 1)

+ [0]( ) ( + ) (4)
+ [1]( ) ( + 1)

where ( + ) , [ 1( + 1 ) ( + )] ,
[0 1]( ) is the ( × ) input gain matrix, [0 1]( ) is
the ( × ) learning control gain matrix, with [0]( 0) = ,
[1]( 0) = 0, and [1]( 0) = 0, [0 ]. Furthermore,
( ) , ( ) ( ), for 1 , is the output

measurement error due to the control action ( );that is,
( ) = ( ) ( ).

Problem Statement: Let system (1) satisfy Assumptions
(A2)-(A3), and updating law (4) be applied. The problem
addressed in this paper consists of finding the optimal values
of [0]( ), [1]( ), [0]( ), and [1]( ) such that
the trace of the input error covariance matrix is minimized.
The results are presented in Section III. Furthermore, another
issue addressed in this paper is the development of an
algorithm for finding the "suboptimal" values of [0]( ),
[1]( ), [0]( ), and [1]( ) for a class of nonlinear
systems (21). The suboptimal algorithm is presented in
Section IV.
In what follows, we denote the matrix norm k k = k k2

(l-2 norm).

III. OPTIMAL SECOND-ORDER ILC
In this section, we develop the optimal values of [0]( ),
[1]( ), [0]( ), and [1]( ), which minimize the
trace of the input error covariance matrix.
In what follows, we derive an expression for the input

error covariance matrix. Iterating in the time domain the state
variable of (1) from to + , with being ant positive
integer, we get

( + ) = b ( )

+

1X
=0

b 1 [ ( + ) ( + ) + ( + )]

where b ,
Q

=1 ( + ) with
Q 1

= ( ) , . It follows
that the output for 1 can be expressed as

( + ) = b ( ) + b 1
( ) ( )

+

1X
=0

b 1
( + ) + ( + )

where , ( + ). Similarly, an expression for
( + ) can be derived. Consequently, the output

measurement error is given by

= b ( ) ( + )

+ b 1
( ) ( )

1X
=0

b 1
( + )

, ( + ). It follows that the input error associated
with (4)

( + 1) = [0]( ) ( ) [0]( ) ( )
[0]( ) [ ( ) ( ) + ] + ( )

+ [1]( ) ( 1) [1]( ) ( )
[1]( ) [ ( ) ( 1) + 1]

,
·
( ) ( ) +

1P
=0

( ) ( + ) + ( + )

¸
and the rows of ( ) , [{ b 1 }, ( ) , { b },
and ( ) = { b 1}, 1 . ( + ) , [ 1( +
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1 ) ( + )] and with the condition that if
, max1 ( ), then the row of ( ), for
, is zero.

( + 1) =
h

[0]( ) [0]( ) ( )
i

( )

+
h

[1]( ) [1]( ) ( )
i

( 1)

+
h

[0]( ) [1]( )
i

( )

[0]( ) [1]( ) 1

Let the input error and the state error covariance matrices
be defined as ( ) = [ ( ) ( ) ], and ( ) =
[ ( ) ( ) ], respectively.

Notations. For compactness, the argument is
dropped as follows: [0 1] , [0 1]( )

[0 1] ,
[0 1]( ) , ( ) , ( ), , ( ),
[0 1] ,

£
[0 1]( ) [0 1]( ) ( )

¤
,£

[0]( ) [1]( )
¤
, , [ ( ) ( ) ],

, [ ( ) ( ) ], 1 , [ ( ) ( 1) ]

1 , [ 1] = [ ( ) ( 1) ] ,
and , [ ] = [ ( ) ( ) ] +P 1

=0 + + .
Thus, ( + 1) =

h
[0] [0]

i
( ) +h

[1] [1]
i

( 1) +
h

[0] [1]
i

( )
[0] [1]

1. It follows that

+1 =
h

[0] [0]
i

+
h

[1] [1]
i

1

+
h

[0] [1]
i

(5)

( +1) , [ ( + 1) ( + 1) ]

=
³

[0] [0]
´

( )

³
[0] [0]

´
+
³

[1] [1]
´

( 1)

³
[1] [1]

´
+
h

[0] [1]
i h

[0] [1]
i

+
[0]

³
[0]
´
+

[1]
1

³
[1]
´

+
³

[0] [0]
´

1

³
[1] [1]

´
+
³

[1] [1]
´

1

³
[0] [0]

´
+
³

[0] [0]
´ ³

[0] [1]
´

+
h

[0] [1]
i ³

[0] [0]
´

+
³

[1] [1]
´

1

³
[0] [1]

´
+
h

[0] [1]
i

1

³
[1] [1]

´
+

[0]
1

³
[1]
´
+

[1]
1

³
[0]
´

Expanding and rearranging the "square" terms, we obtain

( +1) = +
[0]

³
[0]
´
+

[1]
1

³
[1]
´

+
[0] £

( ) +
¤ ³ [0]

´
(6)

+
[1] £

( 1) + 1

¤ ³ [1]
´

+ +

where , ( ) + , and

, [0]
( )(

[0]
)

[1]
( 1)(

[1]
)

[0] [1]
+

[0]
(

[1]
)

+
[0]

1(
[1]
)

[0]
1(

[1]
)

[1]
1(

[0]
) +

[0]
1(

[1]
)

+
[0] [0]

(
[1]
) +

[0]
(

[0]
)

+
[0]

(
[1]
) (

[0]
) +

[1]
1

[1]
1 (

[0]
) +

[1]
1 (

[1]
)

+
[1]

1 (
[0]
) 1 (

[1]
)

+
[0]

1(
[1]
)

Theorem 1. Let system (1) satisfy Assumptions (A2) and

(A3) and the updating law presented by (4) be applied.
The optimal [0]( ), [1]( ), [0]( ), and [1]( ),
which minimize the trace of the input error covariance matrix
for all and [0 ], are given by

[1]( ) = 0, [1]( ) = 0, [0]( ) =
[0]

= ( )

£
( ) +

¤ 1 (7)

In addition, the recursive algorithm for the input error
covariance matrix is given by

( +1) = (
[0]

) ( ) (8)

Proof. We differentiate the trace of ( +1), in (6), with
respect to [0], [1], [0] and [1] and set each to zero.

(trace( ( +1)))
[0]

= 2
[0]

2
[0]

0 (9)

where
[ ]

, 1
2

(trace( + ))
[0] , where { } and

{0 1}.
[0]

=
[0]

( ) +
[1] [1]

1

+
[1]

1 +
[1] [0]

+
[1]

1
[1]

1

(trace( ( +1)))
[1]

= 2
[1]

1 2
[1]

0 (10)
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[1]

=
[1]

( 1) +
[0] [0]

1

+
[0]

1 1 +
[0] [0]

+
[0]

1
[1]

1

(trace( ( +1)))
[0]

= 2
[0] £

( ) +
¤

2
[0]

0 (11)

[0]

=
[0]

( ) +
[1]

1
[1]

1

[0] [1]
+

[1]
1

(trace( ( +1)))
[1]

= 2
[1] £

( 1) + 1

¤
(12)

2
[1]

0

[1]

=
[1]

( 1) +
[0]

1

[0]
1

[1]
1

[0]
1 + 1

[0]
1

In the following, Equations (9)-(12) are substituted in (6).

( +1) = +
[0]

(
[0]
) +

[1]

(
[1]
)

+
[0]

(
[0]
) +

[1]

(
[1]
) + +

After cancelling all zero terms, the above equation becomes

( +1) =
³

[0] [1]
´

+
³

[0] [0]
´

+
³

[1] [1]
´

1 (13)

Comparing (13) with (5), we find = ( ). Thus,
Equations (9)-(12) become

0 =
[0]
[ ] [(

[1]
) ( )

+
³

[1] [1]
´ ¡

1 1

¢
] (14)

0 =
[1]
[ 1 ] [(

[0]
) ( 1 )

+
³

[0] [0]
´
( 1)] (15)

0 =
[0] £

+
¤

[(
[1]
)

+
³

[1] [1]
´

1
[1]

1](16)

0 =
[1] £

1 + 1

¤
[
³

[0]
´

1

+
³

[0] [0]
´

1
[0]

1] (17)

Next, we show that
[0]
+

[1]
= and [1]

=
[1] (18)

and = 1. Since ( 0) = 0, then 0 = .
For = 0

[1]
0 = 0, [1]

0 = 0, or [1]
0 =

[1]
0

and [0]
0 = , 1 0 =

³
[0]
0

[0]
0

´
= 1 . By

an induction argument, we assume that [0]
+

[1]
= ,

[1]
=

[1] and = 1 and show these are true
for +1. Since = ( ) and ( ) is symmetric then

1 = 1.

+1 =
³

[0] [0]
´

+
³

[1] [1]
´

1

+
³

[0] [1]
´

=
³

[0] [0]
´

Note that (13) implies

+1 =
³

[0] [0]
´

(19)

Consequently, +1 = +1 . Note that

0 =
[1]
+1 [ ] [(

[0]
+1) ( )

+
³

[0]
+1

[0]
+1

´
( +1 +1 )]

or ( [0]
+1

[1]
+1) ( ) = 0. Note =£

( )
¤
is nonsingular for 1. Consequently,

[0]
+1 +

[1]
+1 = . Next consider

0 =
[0]
+1 [ +1 ] [(

[1]
+1) ( +1 )

+
³

[1]
+1

[1]
+1

´ ¡
+1

¢
]

or
³

[1]
+1

[1]
+1

´³
+1

´
= 0. Similarly, since

+1 =
£
( ( ) ( + 1)

¤
is nonsingu-

lar, then [1]
+1 =

[1]
+1 . Next, we derive a useful ex-

pression relating [0] and [1]. Equation (16) reduces to³
[0] [0]

´
=

[1]
1

[0] . Equa-
tion (17) ³

[1] [1]
´

1 +
[1]

1³
[0] [0]

´
+

[0]
1 = 0

Making use of
³

[0] [0]
´

=
[1]

1

[0] , then [1]
1

[0]
+

[1]
1 +

[0]
1 = 0, or

[1] ¡
1 1

¢
=

[0]
( 1) (20)

Finally, we show that the gain values presented in (7),
that is, [1]

= 0, [1]
= 0, [0]

= , and [0]
=

( )

£
( ) +

¤ 1, along with the fact that
(just shown) = ( ) = 1, are consistent
with the condition given in (18) and solve all the optimal
conditions presented in Equations (14)-(17). We only col-
laborate the condition of (17). For [1]

= 0, (20) implies
that [0]

=
[0]

1. Consequently, (17) reduces to³
[0]

´
1

[0]
= 0. Since ( ) =

1, then the above equation or (17) can be written as
[0] ¡

( ) +
¢
= ( ) . The rest, that is,

2454



condition given in (18) and the optimal conditions presented
in Equations (14)-(16), are readily satisfied.¥
Remark 1. The optimality presented in Theorem 1 indicates
that the second-order ILC depends only on the control
information generated from the previous iteration. Since
the information from two previous iterations is not needed,
then the control information generated from all previous
iterations, with 2, are also not needed. In general, an
optimal higher-order ILC algorithm is nothing but an optimal
first-order ILC algorithm.
Theorem 2. Let system (1) satisfy Assumptions (A1)-(A3),
and the updating law presented by (4), (7) and (8) be applied.
Then the boundedness of all trajectories is guaranteed for all
and [0 ]. Furthermore, If is a full column rank

matrix for [0 ], then there exists a positive constant
such that k ( )k2 and lim ( ) = 0.

In addition, if k (0 )k2 0 for all and ( ) = 0,
then there exists a positive constant such that

k ( )k2 and lim ( ) = 0

and the output error converges to zero at a rate inversely
proportional to .
On the other hand, if is a full row rank matrix for all
and [0 ], ( ) = 0, and there exists a positive

constant 0 such that k (0 + 1) (0 )k 0 , then
there exist positive constants and , such that

k ( + 1) ( )k
k ( + )k2 and lim ( + ) = 0

where where the output error (· ) , (·)[ (·)
(· )] with 1 . ¥
Proof. The proof follows similar arguments that are presented
in [14], thus, omitted.
Remark 2. A suboptimal recursive algorithm, presented in
[14], is based on unknown system dynamics and unknown
disturbance statistics. The robustness and convergence is
shown to possess similar characteristics to the ones of the
optimal recursive algorithm summarized in Theorem 2 of this
manuscript.

IV. SUBOPTIMAL SECOND-ORDER ILC
The proposed optimal ILC algorithm requires knowledge

of system dynamics and disturbance statistics. In the case
of unknown system dynamics and disturbance statistics,
the optimality theory cannot be achieved. In this section,
a suboptimal second-order ILC is proposed for a class
of nonlinear systems. We consider the class of discrete-
time affine nonlinear systems described by the following
difference equation

( + 1 ) = ( ( )) + ( ( )) ( )

( ) = ( ( )) + ( ) (21)

The descriptions of the above system is similar to the ones
considered in [5] except for ( ), ( ) and ( ) can grow

as fast as any polynomial with arbitrary order (Lipschitz
condition is not required), and the × matrix

( ) =

1 1 1 [ ( ) + ( ) ]
...

1 [ ( ) + ( ) ]

is either of full column rank (requires ) or of full row
rank (requires ).
The proposed suboptimal algorithm is partially motivated

by the optimal theory presented in the previous section, in
particular, Equations (14), (18), (19) and (20). Although,
we drop the argument for compact presentation, in what
follows, the proposed gains are generally time varying. In
the following a recursive algorithm is presented to update
the gain matrices e[0], e[1], e [0], and e [1], in (4), which
correspond to [0]( ), [1]( ), [0]( ), and [1]( ),
respectively. e [0] = e[0] e ( e + e ) 1 (22)

e
+1 =

³e[0] e [0] ´ e , e [1]+1 = e [0]
+1 (23)

e[1]
+1 =

e [1]
+1 and e[0]+1 = e[1]

+1 (24)

where , ( ( )), e[1]0 = 0, e [1]0 = 0, e[0]0 = .
Furthermore, e0 and e are symmetric and positive-definite
matrices. The convergence characteristics of the proposed
algorithm are only illustrated in the following example and
compared with other ILC algorithms.

V. NUMERICAL EXAMPLE
In this example, three different ILC algorithms are applied

to the same example considered in [5], where performance
of the algorithms are compared. The ILC algorithms under
examination are:
1) The first-order suboptimal ILC algorithm presented in
[14], denoted by ILC1, where the recursive update of
the learning gain is given by

e = e e h e e e + e i 1

(25)e
+1 = ( e e ) e (26)

2) The proposed second-order ILC algorithm given by
(4), and (22)-(24), denoted by ILC2.

3) The second-order ILC algorithm presented in [5],
denoted by ILC3.

The same nonlinear discrete-time system, with relative
degree four, presented in [5], is considered. The system is
described by the following difference equation

1( + 1 ) = 0 5 sin( 2( ))

+(1 + 0 5 cos( 1( )) ( )

+1( + 1 ) = ( ) {1 2 3}
( ) = 4( ) + ( )

The desired output is given by ( ) = (1 96) 96 for
0 100. The measurement error ( ) is zero-mean
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white Gaussian noise with standard deviation = 0 05.
The initial state variables are given by (0 ) = (4
)+ 0 , where 0 is a zero-mean white Gaussian noise
with standard deviation = 0 1.
The learning gains, as employed in [5], are ( ) =

0 8 × 0 95 [1 + 0 5 cos( 1( ))]
1 and 1( ) = 0 2 ×

0 95 [1 + 0 5 cos( 1( 1))] 1 and the gains that multi-
plies ( ) and ( 1) are 0 8 and 0 2, respectively.
For consistency, the parameters used for the used in (25)
and (26), and for the proposed algorithm presented in (22)-
(24) are: e ( ) = [1 + 0 5 cos( 1( ))] 0 95, e0 = 1
for all , and e = 2 + 1 . The time average of the
matrices, e[0], e[1], e [0] (= e [1]), and e , employed in
the proposed algorithm (ILC2) are shown in Figure 1. As
expected lim

°°°e[0]°°° = 1 where as lim k k = 0,ne[1] e [0] e o. The performance index used in
[5] is given by = max4 100 | ( ) 4( )|. The
performance of the three algorithms is summarized in Figure
2. It can be noted that ILC1 and ILC2 outperforms ILC3.
Furthermore, unlike ILC3, ILC1 and ILC2 drive the output
error to zero. The maximum absolute output error, , de-
crease two orders of magnitude in three decades of learning
iterations. It is also worth noting that (corresponding to
ILC1 and ILC2) becomes less than the output measurement
errors standard deviation for all 10. Although the overall
performance of ILC1 and ILC2 are compatible, it can be
noted that ILC1 results in smaller tracking errors for 12.

VI. CONCLUSION
This paper addressed the optimality of HO-ILC in the

sense of minimizing the control error covariance matrix in
the presence of measurement noise. It was shown that if
the present control action exploits optimally or suboptimally
the past control information in every iterative cycle, then
HO-ILC algorithms are not needed for linear discrete-time
varying systems with different relative degree. Furthermore,
a suboptimal second-order ILC was proposed for a class of
nonlinear systems. Based on a numerical example, it was
shown that a compatible suboptimal first-order ILC resulted
in better performance than the proposed suboptimal second-
order ILC algorithm.
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