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Abstract—Although flexible neural networks (FNNs) have
been used more successfully than classical neural networks
(CNNs), nothing is rigorously known about their properties. In
fact, they are not even well known to the systems and control
community. In this paper, theoretical evidence is given for their
superiority over CNNs. Following an overview of flexible 
bipolar sigmoid functions (FBSFs), several fundamental
properties of feedforward and recurrent FNNs are established.
For the feedforward case, it is proven that similar to CNNs,
FNNs with as few as a single hidden layer (SHL) are universal
approximators. It is also proven that unlike irreducible SHL
CBSNNs, irreducible SHL FBSNNs are nonuniquely
determined by their input-output (I-O) maps, up to a finite 
group of symmetries. Then, recurrent FNNs are introduced. It is
observed that they can be interpreted as a generalization of the
conventional state-space framework. For the recurrent case, it is
substantiated that similar to CBSNNs, FBSNNs are universal
approximators. Necessary and sufficient conditions for the
controllability and observability of a generic class of them are 
established. For a subclass of this class, it is proven that unlike
CBSNNs, FBSNNs are nonuniquely determined by their I-O 
maps, up to a finite group of symmetries, and that every system
inside this subclass is minimal. Finally, a new class of FNNs,
namely, flexible bipolar radial basis neural networks
(FBRBNNs) is introduced. It is proven that as in the case of 
classical radial basis neural networks (CRBNNs), feedforward
SHL FBRBNNs are universal approximators.

I. INTRODUCTION

RTIFICIAL neural networks (ANNs) have been a topic
of extensive research in the last few decades. Several 

types of ANNs have found their ways to control systems:
Hopfield network, Kohonen’s self-organizing map,
Boltzmann machine, support vector machine, recurrent
network, multilayer perception, and FNNs, to mention
among others [1]-[7].

FBSNNs and FUSNNs (flexible unipolar sigmoid neural
networks) were introduced in [1]-[4] where it was shown that
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1: The mathematical tools for the derivation of these results typically fall 
in two main categories: a) algebras of functions (leading to Stone-Weierstrass
theorem [11]) and b) translation invariant subspaces (leading to Tauberian 
theorems [12]).

they have superior learning capacity over CBSNNs and
CUSNNs, respectively. Despite the successful applications of 
FNNs, they are not yet well known to the systems and control
community. Besides, nothing is rigorously known about their
properties, while several fundamental properties of CNNs
have already been established. 

The universal approximation capabilities of feedforward
CNNs, which comprise univariate function units, have been 
established in a number of works, see e.g. [8]-[10] and the
references therein 1 .

In this work, the same results are proven for feedforward
FNNs, which consist of bivariate function units. More
precisely, it is substantiated that feedforward FNNs with as 
few as an SHL are universal approximators.

The interpolation capabilities of feedforward SHL CNNs 
have been extensively studied in e.g. [13]-[15] and the
references therein. The question of the number of hidden
nodes needed to achieve a specific objective was first
addressed in [13]. In [14] it was proven that two irreducible
nets with the same I-O maps are equivalent, i.e., related by a
transformation in a finite group of symmetries (permutations
of the hidden nodes, and changing the sign of all the weights
associated with a particular hidden node).

In this work, the same property is investigated for
feedforward SHL FNNs. More exactly, the following
question is addressed: To what extent is a feedforward SHL 
FBSNN uniquely determined by its I-O map? (Note that this
is also referred to as the identifiability problem.) To this end,
in line with [14], we first derive conditions under which an
FBSNN is irreducible. By irreducibility we mean that the
number of hidden nodes cannot be decreased without
changing the I-O map of the net. These conditions can easily
be checked. Then, we define a minimal net as one whose I-O 
map cannot be obtained from a net with fewer hidden nodes. 
This is not an easy condition to check on its own. Based on 
the above definitions, it is clear that a minimal net is 
irreducible. We prove that the converse is also true, as the
corollary of our theorem on the equivalence of irreducible
nets.

On the other hand, recurrent CNNs are teeming in the
literature. They can be interpreted as a representation of the
evolution of a collection of parallel processing neurons. They
have been used in sequence extrapolation for time series
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prediction, signal processing, control, and associative
memories (Tank-Hopfield networks), to mention among
others [5]-[7]. To date, several fundamental properties, or 
rather system-theoretic properties, of recurrent CNNs have 
been discovered. For example, their approximation capability,
controllability, observability, identifiability, and minimality
have been extensively studied in [16]-[21].

In this work, recurrent CBSNNs are extended to recurrent 
FBSNNs through the use of flexible neurons. In line with
[16]-[19], the aforementioned properties are then addressed
for a generic class of them. As will be observed, recurrent
FBSNNs are more powerful than recurrent CBSNNs, since 
e.g. the flexible parameters may be used to make the system
controllable/observable and/or to satisfy some other design
objectives. Due to lack of space the results are presented only 
for continuous-time systems.

Finally, a new class of FNNs namely FBRBNNs is
introduced. It is proven that similar to CRBNNs, feedforward
SHL FBRBNNs are universal approximators.

The organization of this work is as follows. First an
overview of the FBSF is given in the following. Then,
feedforward and recurrent FNNs are studied in Sections II 
and III, respectively. FBRBNNs are introduced in Section IV 
while conclusions are presented in Section V. The paper is
wrapped up in Section VI by some hints for future work. 

A.   An Overview of FBSFs 

An FBSNN is basically composed of some FBSFs as its 
parallel processing units (or nodes) in an SHL, where the
output of the ith unit is given by the bivariate function,
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in which is the input to the ith node and is its parameter
which must be trained. The FBSF is depicted in Figure 1. 
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Fig. 1. Shapes of the FBSF 

It is well known that the CBSF (i.e., (1) with 1z ) is linear

well inside the input interval and saturates outside that.
However, it is easy to verify that the FBSF exhibits both
linear (  as ) and nonlinear (otherwise, unless
well inside the input interval ) behavior over the
whole range of the input. This accounts for its superiority
over CBSF which has been verified by simulation and 
experimental results of various case studies like connected
tanks and robot manipulators [1]-[4].
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In this work we further reveal this superiority in a 
theoretical framework by e.g. characterizing the structure of 
the flexibility in both feedforward and recurrent FBSNNs.
We also prove that by the proper choice of the flexible
parameters a recurrent FBSNN may become
controllable/observable while its classical counterpart is not.

II. FEEDFORWARD FNNS

The approximation capabilities of FNNs are studied in the
following development.

A. Universal Approximation Property
Since the extension of our results to the multi-output case is 

trivial, only single-output FNNs are considered. Given an
FNN with n units in its SHL and a summation node in its
output, the input to the jth hidden node is given by,
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where is the input vector,

 where  in

which is the threshold (or the bias term) of the jth hidden

node and the rest of the entries are the connection weights
from the inputs to that node. The output of the network is
thus,
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where  in which is the parameter of

the jth hidden node,  where 

is the bias term of the output node and is the output

weight of the jth hidden node. 
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Let be the m-dimensional unit cube, . The 

following theorems can be presented. 
m

I
m]1,0[

Theorem 2.1: Finite sums of the form (3) where f  is given
by (1) are dense in the space of continuous functions on the 
m-dimensional cube, . In other words, for any)(

m
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Theorem 2.2: Finite sums of the form (3) where f  is given
by (1) are dense in the space of integrable functions on the 

m-dimensional cube, . In other words, for any
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)(1
m

IL

)(1)(
m

ILxh 0 ),,,( wzYxF

dxxhwzYxF
m

I
|)(),,,(|

m
Ix

Proofs: It is easily seen that (3) can be rewritten as or rather
reduced to, 
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where
).2exp(1
).2exp(1

).(g is a univariate function and (4) fits

the class of systems considered in [8, theorem 1] and [8, 
theorem 4], respectively. 

.
Remark 2.1: It is clear that the above theorems also apply

to FUSNNs in which f is given by
.))||2exp(1/(||2),( xzzzxf

In the sequel subsection, the identification of the
parameters and weights of an SHL FBSNN from its I-O data
is studied.

B. Identifiability and Minimality 

Let a) denote the set of all feedforward SHL 

FBSNNs with m inputs (labeled ), n hidden nodes 
(labeled ) with parameters  ( ),

and a single output given by a summation node, as in
Subsection II.A, and b) a net be a member of  for 

some m, n and 
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Therefore, the output of the network is given by (4) where g
is the hyperbolic tangent function. The function

 is the I-O map of the net. For a given m, we 
call two nets I-O equivalent if their I-O maps are the same.
Our main theorem states that two I-O equivalent nets are the
same up to a finite group of symmetries. It follows from this
theorem that an irreducible net is minimal.
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Let the two functionals  and  be called

sign-equivalent if . We call a net

reducible if one of the following conditions holds:
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It is clear that if (a) holds, the corresponding hidden node 
makes no contribution to the output and thus can be excluded
form the net. As for (b) note that f is odd with respect to v,
even with respect to z, and odd with respect to v and z. Equally, 
g is odd with respect to zv. Therefore, if (b) holds, i.e.,
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thus the number of the hidden nodes can be reduced. Finally,
if (c) holds, the corresponding node can be excluded provided
the bias of the output node is changed accordingly. 

The aforementioned finite group of symmetries G is 
introduced in the following. There are some obvious
transformations which do not alter the I-O map of the net.
These are: 1) changing the sign of any , 2) changing the

sign of the output and all the input weights of any hidden
node (note that the output weight of the jth hidden node is

based on (4) which we are using, and its input

weights are ), and 3) interchanging (i.e., relabeling) two

hidden nodes, as well as their associated weights and 
parameters (note that this also results in relabeling their

’s). It is clear that any combination of the above 

transformations is also acceptable. The above-defined 
transformations form a finite group of transformations,
denoted by G , on the set . We call two nets in

this set equivalent if they are related by a transformation in
this group. It thus follows that two equivalent nets are I-O 
equivalent. The following theorem states that the converse is
true for irreducible nets.
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[14, (2)] and thus [14, lemma 1] applies.
Lemma 1: Let J be a finite set and let  be a

family of non-constant linear affine functions on , no two
of which are sign-equivalent. Then the functions ,

, and the constant function 1 are linearly independent.
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argument as that in [14, page 593] we conclude that ,

,  and 

21 nn

2
0

1
0

ww 2211
j

v
j

z
j

v
j

z
2

2

1

1

j
z

j
w

j
z

j
w

with the same

choice of sign in both. In other words,  and  are 

equivalent.
1

N
2

N

.
Corollary 2.1: An irreducible net is minimal.
Proof: The proof is the same as that of [14, corollary 1].

.
Remark 2.2: It is worth mentioning that our result contains

that of [14] as a special case ( ) and that the 

structure of the inherent flexibility has been completely
characterized. This freedom (or flexibility) in the choice of
parameters and weights further explains the superior learning
capabilities of FBSNNs over CBSNNs, as previously stated
and verified in [1]-[4].
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Remark 2.3: An interpretation of the result is that there is 
no mechanism other than the three mentioned in the definition
of reducibility to reduce the number of hidden nodes without 
changing the I-O map of the net.

III. RECURRENT FBSNNS

To see how the dynamics of the general system is derived,
the following illustrative example is considered, see Fig. 2.
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Fig. 2. A 2-dimensional, 2-input, 2-output recurrent FBSNN 

Hence, given the quadruple (Z,A,B,C) where 

, , ,

and are the parameter, state, input and output
matrices, respectively, the continuous-time recurrent FBSNN
is described by the state-space equations, 

),...,1(0},,,
1

{ ni
i

z
n

zzdiagZ
nnRA mnRB

np
RC

)(1 ZBuZAxgZx ,
Cxy ,                              (5) 

in which g  is the diagonal mapping,
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and ).tanh().(g . To further reveal the structure of the 
flexibility, the transformation is applied by which (5) 
is reduced to,

Zxv

)1( ZBuvZAZgv ,

vCZy 1 ,                                   (7) 

denoted by G, which is reminiscent of similarity
transformations and equivalence in the conventional
state-space framework. The following two points are 
noteworthy: i) It is possible to derive some slightly different
models from (5),(7) (see e.g. [16]-[19]), but this work is
restricted to (5),(7) only. The main advantage is that this
model can be viewed as a generalization of the conventional
model considered in the context of linear systems theory in
which g is the identity function. Therefore, their theoretical
properties may be studied in parallel, as done inhere; ii) In the
above procedure the bivariate function f has been reduced to
the univariate function g, and that (5),(7) contain the
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representation of recurrent CBSNNs as the special case that Z
is the identity matrix.

Equations of the form (5),(7) can be interpreted as follows.
The vector x represents the evolution of n flexible neurons 
where each coordinate  of x is the internal state of the ith
flexible neuron. Each flexible neuron has its own adaptable/

ix

flexible parameter . The elements of matrices A, B, and C

denote the weights (or synaptic strengths) of different
connections. The function  is the activation
function.

iz

RRg :

In the following subsections some properties of recurrent
FBSNNs are presented. Prior to this, it should be mentioned
that in (7) is exactly the same as that considered in 
[16]-[19] and thus satisfies the following conditions:

g
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Remark 3.1: The sequel properties which are presented for
the system G in (7) imply the same for the original system in
(5).

Remark 3.2: The following results can be obtained for 
more general mappings than the hyperbolic tangent
embedded in FBSNNs, see [16]-[19] for more details.

A. Universal Approximation Property

Recurrent FBSNNs of the form (7) are universal 
approximators in the following sense. Given any system G :

)(,),( vhyuvfv  with dimension n , m inputs and p outputs,

where nmn RRRf : is continuously differentiable, f and

are continuous on v
v

f  and u, and pn RRh :  is 

continuous. We assume that the solution )),0(,( uvtv , ],0[ Tt

exists for every nRv )0( and every measurable, essentially
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RTu ],0[:

Consider the two compact subsets nRK1 , , an 
 and a . We say that system G (with dimension n, m

inputs, and p outputs) in the form of (7) approximates or 
simulates G

mRK 2
0 0T

on the sets ,  in time T and up to accuracy 
if for every
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bounded) input there exist two differentiable
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for all ],0[ Tt , where , in general, denotes the

unique solution  of G with the initial condition
and the (measurable, essentially bounded input)

, and similarly for 

)),0(,( uvtv
nRTv ],0[:

)0(v
mRTu ],0[: )),0(,( uvtv .

The sequel theorem can be offered whose proof is in line
with that of [16, theorem 1].

Theorem 3.1: For every system G  and every , ,1K 2K , T

as above, there is a system G  in the form of (7) which 
simulates G  on the sets ,  in time T up to accuracy 1K 2K .

.
Remark 3.3: The above result can be seen as a counterpart

for the convergence property of some classes of recurrent
NNs studied in [20],[21] and the references therein.

In the rest of this section, as in the case of the literature on
recurrent CBSNNs, the sequel generic set B will play a 
crucial role,

B }{ :and0:|:, j
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i
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where  denotes the ith row of
i

B B . It is clear that in the case 

of single-input systems, i.e., ,1m ZB B iff all the
elements of the single-column matrix ZB are nonzero and have
different absolute values.

The results of the following subsections are in a geometric
framework, see [22] for an introduction.

B. Controllability

The definition of controllability for system (7) is the same
as that for conventional linear systems. More precisely, the
system is said to be controllable if every initial state can be
steered (or controlled) to every state in some finite time. The
subsequent results can be proven similar to those of [17].

Theorem 3.2: If ZB B,  then  system  (7)  is controllable

(for all 1
ZAZ ).

.
Note that it is possible that B but the system is 

controllable for some

ZB

1ZAZ . A trivial converse of the above
theorem is as follows.

Theorem 3.3: If system (7) is controllable for all 1
ZAZ ,

then ZB B.
.

It is remarkable that the above results are in contrast to
those of conventional linear systems, in which the pair

is controllable independent of),1( ZBZAZ
1ZAZ  iff ZB is of

full rank n. Besides, the effect of Z (on the controllability of
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the system) is partly characterized by the fact that if B B

because
j
, then B

i
B ZB B if .

j
z

i
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C. Observability

The definition of observability for system (7) is also the
same as that for conventional linear systems. More exactly,
the system is called observable if there is some control that
gives different outputs when the system is initialized at any
two different initial states.

Let nnRM and V be a subspace. It is said that V

is M-invariant if MV V. Also, let denote the

canonical basis elements in . A subspace spanned by 
is called a coordinate subspace. The

following results can be proven along those of [18].
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Theorem 3.4: If ZB B, then system (7) is observable iff

O , where the
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1ker1ker CZZAZ 0)1,1( CZZAZc

1
ZAZ -invariant coordinate subspace 

included in is denoted by O .1ker CZ )1,1( CZZAZc
.

Let the largest 1ZAZ -invariant subspace included in 

be denoted by . Thus, in the 
realm of conventional linear systems observability of the pair 

is equivalent to . Since 

includes both  and 

O , the above theorem results in:

1ker CZ )1,1( CZZAZO

)1,1( CZZAZ 0)1,1( CZZAZO

)1,1( CZZAZO 1ker CZ

)1,1( CZZAZc

Corollary 3.1: If ZB B   and the pair  is)1,1( CZZAZ

observable, then system (7) is observable.
.

There are different  ways  to  compute O )1,1( CZZAZc

and . In particular, a recursive algorithm can 
easily be designed for the former similar to that of [18].

)1,1( CZZAZO

On the other hand, if A is invertible, then

. Hence: 01ker1ker CZZAZ

Corollary 3.2: If ZB B and A is invertible, then system (7)

is observable iff O .0)1,1( CZZAZc
.

Also, it can easily be shown that if C has no zero column,

then O . Consequently:0)1,1( CZZAZc

Corollary 3.3: If ZB B, and
there is no zero column in C, then system (7) is observable.

01ker1ker CZZAZ

.
It should be mentioned that if B, then a) the observabi- ZB

lity of the pair is no longer sufficient for the
observability of system (7), and b) the conditions of theorem
3.4 are still necessary (but not sufficient) for the observability
of system (7). These are examples of the well-known fact that
for nonlinear systems – in contrast to conventional linear
systems – observability may depend on the input matrix.

Moreover, it is not difficult to show that

and , but O KO .
Thus, Z affects the observability of the system (independently
of its effect on 

)1,1( CZZAZ

AZZAZ ker1ker

CZCZ ker1ker )1,1( CZZAZc ),( CAc

B ).

D. Identifiability and Minimality 

Identifiability refers to the possibility of identifying (or
recovering) the elements of the quadruple (Z,A,B,C) from the 
I-O map of the system G, given by the function in (7). yu

Given the quadruples  and 

denoting the systems  and , respectively, with

arbitrary initial states. We call the systems equivalent if 
 and there exists a matrix
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where  in which P is a permutation matrix
and

}{ | PQTT

}{diag , 1 or 1. The following results hold
similar to those of [19].

Theorem 3.5: Let the systems  and in the form of (7) 

be observable and satisfy the generic condition (9). Then, 
they are I-O equivalent iff they are equivalent.

1
G

2
G

.
It is worth mentioning that conditions (10) completely

characterize the structure of the inherent flexibility in
observable recurrent FBSNNs satisfying (9).

Remark 3.4: If ZB B, observability is a necessary 
condition for I-O equivalence to result in equivalence.

Remark 3.5: If ZB B and the system is not observable

because O , it can be reduced to an I-O 
equivalent observable system of a lower dimension.

0)1,1( CZZAZc

A recurrent FBSNN is said to be minimal if its I-O map
cannot be obtained from a recurrent FBSNN with a lower
dimension, i.e., with fewer flexible units. An important
interpretation of theorem 3.5 is that inside the class of
observable recurrent FBSNNs satisfying (9), there is no way
to reduce the number of the nodes of a system without
altering its I-O map. In other words, inside this class a system
is always minimal. This is in contrast to that of linear systems,
in which it is well known that the order of an uncontrollable
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(unobservable) system can be reduced without changing its
I-O map.

Remark 3.6: By the appropriate selection of Z it may be
possible to satisfy some of the conditions in this section. Thus,
the use of flexible neurons makes recurrent FBSNNs more
powerful than recurrent CBSNNs.

IV. FBRBNNS: A NEW CLASS OF FNNS

The proposed FBRBNN basically consists of a collection 
of parallel processing FBRBF units in an SHL, where the
output of the ith node is given by the bivariate function,

)2/2||exp(),( izicixiziz
i

xf                 (11) 

in which is the input to the ith node, is its center, and
is its size of influence which must be trained. The FBRBF 

is depicted in Figure 3. 

ix ic

iz

����	�

�

���

���

���

��

Fig.3. Shapes of the FBRBF 

Similar to [1]-[4], FBRBNNs can easily be used in both
supervised and unsupervised learning modes, and both
connection weights and ’s can be adjusted. FBRBNNs 
have superior learning capabilities over CRBNNs since the 
size of influence of each unit is trained. Simulation results and
a detailed theoretical treatment are reported elsewhere. (Here 
we suffice to note that one can get either excitory or
inhibitory units in FBRBNNs by training their size of 
influence only, leaving output/connection weights untrained.
More precisely, for a given  and , the FBRBF is onto
with respect to . This is in sharp contrast with CRBNNs.) 

iz

ix ic

iz

As in the case of FBSNNs/FUSNNs, a single-output 
network is considered in the following. The formulation is as
that in Subsection II.A. 

Theorem 4.1: Finite sums of the form (3) where f  is given
by (11) are dense in the space of continuous functions on the 
m-dimensional cube, . In other words, for any

 and 

)(
m

IC

)()(
m

ICxh 0 there exists a finite sum

for which

),,,( wzYxF

|)(),,,(| xhwzYxF , .
m

Ix

Theorem 4.2: Finite sums of the form (3) where f  is given
by (11) are dense in the space of integrable functions on the

m-dimensional cube, . In other words, for any

 and 

)(1
m

IL

)(1)(
m

ILxh 0 there exists a finite sum

for which , .

),,,( wzYxF

dxxhwzYxF
m

I
|)(),,,(|

m
Ix

Proof: It is easily seen that (3) can be rewritten as, 

n
j j

z
j

vf
j

z
j

wwwzYxF 1 ),(
0

),,,( ,          (12) 

where f is the class of systems considered in [10, page 255].
.

It should be noted that our proposed function differs from
that of [10, page 255] in that the function considered therein
has no coefficient, i.e., it is simply

where can vary. (Note that this makes no difference in the
proof.) Moreover, [10], giving reference to some old papers,
does not consider this class as practically/theoretically
important and is restricted to the case of a fixed influence size.
This wrong idea has been the prevailing stereotype since the 
early introduction of NNs and unfortunately still to some
extent continues to be. 

)2/2||exp( izicix

iz

V. CONCLUSIONS

The superiority of FNNs over CNNs has been shown and
explained in a theoretical framework. Several fundamental
properties of feedforward and recurrent FNNs have been
established. It has been substantiated that: a) feedforward
SHL FNNs are universal approximators, b) irreducible
feedforward SHL FBSNNs are nonuniquely determined by
their I-O maps, up to a finite group of symmetries, and
c) recurrent FBSNNs are universal approximators. For a 
generic class of recurrent FBSNNs: d) necessary and
sufficient conditions for the controllability and observability
have been presented. For a subclass of this class: e) it has
been proven that they are nonuniquely determined by their
I-O maps, up to a finite group of symmetries, and e) every
system in this subclass is minimal. It has also been shown that
recurrent FNNs represent a generalization of the state-space 
framework. Then, a new class of FNNs, i.e., FBRBNNs has 
been proposed. It has been proven that feedforward SHL
FBRBNNs are also universal approximators. It is hoped that
this paper helps inspire further investment in a more powerful
and versatile class of NNs, namely, FNNs. 

VI. FUTURE WORK

Among the topics for future research on FNNs are the
computational power and sample complexity for learning in
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both feedforward and recurrent FNNs, the effect of
noise/disturbance on identifiability, and the complete
characterization of the effect of Z (and in general, similarity
transformation-like transformations, a special case being T in
(10)) on the approximation error (and convergence rate),
controllability and observability of recurrent FNNs. In this
direction, the other system-theoretic properties like
decoupling, sensitivity, failure tolerance, and stability
[23]-[26] can also be investigated since recurrent FBSNNs
are a generalization of the conventional state-space
framework. It is clear that the results will contain those on
recurrent CBSNNs – yet not fully established, see e.g.
[16]-[19], [27]-[31] – as the special case that IZ .

On the other hand, the properties of discrete-time recurrent
FNNs should be studied. Although in general similar results
for the properties considered in this paper are valid for them,
in particular their controllability is still an (almost) open
problem [16]-[19],[32].

The application domain of FNNs is quite wide. Of 
particular interest is the use of FNNs as controllers [1]-[4]. A 
typical field would be decentralized (adaptive) control of 
large-scale systems [24],[26],[33],[34] where CNNs, in
particular CRBNNs, are already at issue, see e.g. [35],[36]
and the references therein. 
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