
  

Abstract—A state bounding observer aims at computing some 
domains which are guaranteed to contain the set of states that 
are consistent both with the uncertain model and with the 
uncertain measurements. In this paper, the estimated domains 
are represented by zonotopes. A zonotope is a particular 
polytope defined as the linear image of a unit interval vector 
(i.e. unit hypercube). Some results about the validated 
integration of ordinary differential equations are used to 
guarantee the inclusion of sampling errors. The main loop of the 
observation algorithm consists of a one step prediction with a 
limitation of the domain complexity and a correction using the 
measurements. The observer is applied to a Lotka-Volterra 
predator-prey model. 

I. INTRODUCTION 
HIS paper proposes an algorithm with polynomial 
complexity estimating the state vector of an uncertain 

non-linear continuous-time system described by (1), 
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where f is a non linear function of the state x, the known 
input u which is assumed to be held by a zero order hold, and 
the unknown but bounded input v. The uncertainty on the 
measurement y is described by the bounded input w. 
Modeling uncertainties in a deterministic (bounded error) 
rather than in a stochastic context is motivated by the fact 
that assumptions about the distribution of the random 
variables may be difficult to validate. Set-membership 
approaches consist in computing the state estimation as a 
compact set enclosing all the states that are consistent both 
with the uncertain model and the uncertain measurements. 
Since [21], many authors have worked on different domain 
representations such as ellipsoids [5], [6], parallelotopes [2], 
boxes and paving methods [8]. Following the work of Kühn 
[10]-[12] showing that zonotopes may be a suitable 
alternative to control the wrapping effect [13], a correction 
step has been introduced in [3] and [1] to obtain a state 
bounding observer based on zonotopes. A zonotope is a 
particular polytope defined as the linear image of a unit 
hypercube. Noticing that a unit hypercube can also be 
viewed as a unit box or as a vector of unit intervals ( = 
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[-1;+1]) underlines the links between zonotopes and interval 
analysis [14], [8], [7] that will be used together in this paper. 
The motivation for this is explained in relation with the two 
steps often characterizing a state bounding observer: a one 
step prediction and a correction using the measurements (as 
in Kalman filter). The literature on bounded error state 
estimation has been focusing on discrete time systems until 
the recent work of Jaulin [9]. In [9], interval analysis for 
Ordinary Differential Equations (ODE) is used in 
conjunction with consistency techniques [4]. Unfortunately, 
the proposed algorithm has an exponential complexity in the 
state space dimension (due to domain partitioning also called 
bisection). Then, it was shown in [17] and [18] that using a 
high order Taylor expansion in an interval based validated 
integration of ODE ([19], [15], [16]) made bisections 
unnecessary to obtain good predictions. However, bisections 
are still used in the correction step, resulting in an 
observation algorithm that still has an exponential 
complexity and that deals with domains always having the 
shape of a box. Based on a restricted measurement equation, 
the aim of this paper is to develop a state bounding algorithm 
having a polynomial complexity. It is based on the results 
about the validated integration of ODE to find zonotope 
enclosures of the solution sets induced by a model like (1). 
 
The paper is organized as follows: interval computation and 
zonotopes are introduced in section II. Some results about 
the validated integration of ODE are combined with a 
representation of domains by zonotopes to obtain a one step 
prediction algorithm in section III. Then, section IV recalls 
the principle of bounded error state observation and 
describes a possible correction algorithm. The resulting state 
bounding observer is applied to a Lotka-Volterra predator-
prey model in section V, before the paper conclusion. 

II. INTERVALS AND ZONOTOPES 

A. Interval computation 
The name of a variable x in brackets, [x], will denote a 

domain of possible values for x: x ∈ [x]. A (scalar) interval 
[x] = [x, x ] is a closed and connected subset of . The empty 
square  will denotes the unit interval: =[-1;+1].  is the 
set of all real intervals of . If • denotes any one of the 
operations +, −, ×, ÷ on real numbers x and y, then the 
corresponding operation on intervals [x] and [y] is: [x] • [y] 
= {x • y | x ∈ [x], y ∈ [y]}. An interval vector of n can be 
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viewed as an (aligned) box. n is the set of all the boxes of 
n. The interval function [f](.) : n → m is an inclusion 

function of f : n → m if ∀ [x] ∈ n, f([x]) ⊂ [f]([x]). 
Inclusion functions for standard functions like sqrt, exp, 
sin,… as well as matrix operations with interval elements can 
be easily computed using a usual interval package. In this 
work, the Intlab toolbox has been used [20]. It is entirely 
written in Matlab and it is free for academic use. A direct 
way to compute a box enclosing the image of a box by a 
function f is now described and discussed. Let f : n → m be 
a function such that an algorithm {f} based on the evaluation 
of elementary operators and functions for which an interval 
extension is available: the image y ∈ m of x ∈ n by f can 
be computed as y={f}(x). Let [x] ∈ n be a box. A box [y] ∈ 

m enclosing f([x]) can be computed as [y]={f}([x]) where 
elementary operators and functions in the algorithm {f} are 
evaluated using the interval arithmetic. {f}(.) evaluated over 
intervals is thus an inclusion function for f. However, each 
occurrence of the same (interval) variable is implicitly 
assumed to be independent, leading thus to a conservative 
approximation of the image domain. This is known as the 
dependency problem. For example: let f be the square 
function: y = x2. An algorithm to evaluate f is {f}=x×x. The 
image of [x]=[-1;+1] by f is f([x])=[0;+1] whereas 
{f}([x])=[x]×[x]=[-1;+1]. Even if the approximation may be 
very pessimistic, f([x]) ⊂ {f}([x]) is guaranteed. In order to 
limit the conservatism related to the computation of the 
image of a box, several approaches exist (constraint 
propagation, factorization, for instance). Another approach 
consists in characterizing the dependency between the 
variables using more complex domains than boxes. In this 
case, care has to be taken to develop algorithms of 
reasonable (i.e. polynomial) complexity. This motivates the 
use of zonotopes. 

B. Zonotope: definition and properties 
Zonotopes are a special class of convex polytopes. More 

precisely, a p-zonotope [z] in n is the linear image of a p-
dimensional unit box (unit hypercube) in n: 

 
[z] = c + R. p = c + R,   R ∈ n×p (2) 

c = c1+…+ cp,     R = [ r1…rp ] (3) 
 
c is the zonotope center and the unary operator  over the 

real matrices denotes the linear image of a unit box of 
appropriate dimension. The Minkowski sum of two sets, [x] 
and [y], is the set defined as [x] + [y] = {x + y | x ∈ [x], y ∈ 
[y]}. The zonotope [z] can also be defined as the Minkowski 
sum of p straight line segments in n. The ith segment, 
i=1…p, is then [Si] = ci + ri.  where ci ∈ n stands for the 
segment center, and ri ∈ n defines both the direction and 
the radius of [Si] (3). Some links exist between zonotopes 
and other domain representations [10]. In particular, if the 
matrix R is square and diagonal, then R is an (aligned) box 
(like R in Fig. 1). Following the previous definitions, some 

properties of centered zonotopes will be stated: (a) If R1 and 
R2 are identical up to a permutation of their column vectors, 
then R1 = R2. (b) The (Minkowski) sum of two centered 
zonotopes in n can be computed by a matrix concatenation: 

R1 + R2 = [R1 R2]. (c) The image of a centered 
zonotope by a linear mapping L can be computed by a 
standard matrix product: L( R) = (LR). (d) A centered 
zonotope is a convex set with central symmetry and satisfies 

( R) = [-1;+1]( R) = ( R). (e) The smallest centered 
interval vector containing R is called the interval hull (Fig. 
1) of R and denoted R. It can be computed from the 1-
norm of the lines of R ∈ n×p (4). rs stands for “row sum” 
and rs(R) is a diagonal matrix: 

 

R = rs(R),     ∑
=

=
p

j
ijii RRrs

1

)(  
(4) 

R   (aligned box enclosing R)

R   (zonotope)

 
Fig. 1. Interval hull of a zonotope and related notations 

C. A reduction operator for zonotopes 
The purpose of the reduction operator is to enclose a given 

zonotope by a zonotope of reduced complexity [3], [11]. Let 
R be a centered zonotope in n generated by p segments : 

R ∈ n×p. The reduction operator Redd(.) associates to R 
the zonotope Redd( R) satisfying R ⊆ Redd( R) and 
generated by at most nd segments. The parameter d results 
from a tradeoff between a limited complexity (d low) and 
enough precision (d high) to further control the wrapping 
effect. The segments generating R (i.e. the columns of R) 
are first sorted on decreasing Euclidian norm (5). Those of 
lower size are then out-bounded by their interval hull (6): 

 
R = [r1 … ri … rp],   ||ri|| ≥ ||ri+1|| (5) 

If   p≤nd   Then   Redd( R) = R   Else 
Redd( R) = [r1 … rnd-n  N],   N = rs([rnd-n+1 … rp]) 

(6) 

 
Proof that R ⊆ Redd( R): The case p≤nd being trivial, 

let assume p>nd. R = [r1 … rp] = [r1 … rnd-n] +  
[rnd-n+1 … rp]. Moreover, [rnd-n+1 … rp] ⊆ [rnd-n+1 … rp] 

= N where N ∈ n×n (4). Thus, R ⊆ [r1 … rnd-n] + N 
= [r1 … rnd-n N] = Redd( R), what completes the proof. 

D. Image of a zonotope by a non-linear function 
The image of a zonotope by a non-linear function is not, in 

general, a zonotope. The purpose of this paragraph is to find 
an enclosure of the image of a zonotope [z]=c+ R (R ∈ 

n×p) by a non-linear function f. Let f : n → m be a 
function and let {f} be an algorithm used to evaluate f. A box 
inclusion of f([z]) can be computed using direct interval 
extensions of standard operators and functions as: 

 
f(c+ R) ⊂ {f}(c+ R) ∈ m (7) 
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As discussed in the paragraph A, such a box inclusion may 

be too conservative in practice. However, assuming some 
regularity conditions on f, it can be used to bound the 
remainder of a Taylor expansion of f. Moreover, as the linear 
image of a zonotope by a linear application is a zonotope, a 
zonotope inclusion of f([z]) can be computed using a first 
order Taylor expansion of f. Let f: n → m be a C2 function, 

 
f(c+δ) = f(c) + Lf(c).δ + R1f(c,δ) (8) 

 
Lf(c) is the jacobian of f evaluated at point c. L stands for 

“linear” and Lfi,j = ∂fi/∂xj. R1f(c,δ) is the remainder of the 
first order Taylor expansion of f around c at point c+δ. Let fq 
: n →  denote the qth component of f (q=1…m). Then, 

 
∀δ∈ R,   ∃γ∈( δ) ⊂ R, 

fq(c+δ) = fq(c) + Lfq(c).δ + δT.Qfq(c+γ).δ 
(9) 

 
Qfq(c+γ) is an upper triangular matrix representing half the 

Hessian of fq at point c+γ. Q stands for “quadratic”. Let 
Qfq,i,j(c+γ) denote the element at line i and column j of 
Qfq(c+γ): Qfq,i,j = (1/2)∂2fq/∂xi

2 if i=j, Qfq,i,j = ∂2fq/∂xi∂xj if i<j, 
Qfq,i,j = 0 if i>j. Compared to the usual definition of the 
Hessian, the upper triangular form of Qfq avoids the multi-
occurrence of non diagonal terms. 

 
∀δ∈ R,   fq(c+δ) ∈ fq(c) + Lfq(c).δ + δT.[Qq].δ 

[Qq] = [Qfq(c,R)] = {Qfq}(c+ R) 
(10) 

 
where [Qq] is a simplified notation for [Qfq(c,R)], an 

interval matrix computed using interval arithmetic. The 
matrices [Qq], q=1…m, will be used to compute a zonotope 
enclosing the remainder R1f(c,δ). From the definition of a 
zonotope, ∀δ ∈ R, ∃s∈ p, δ = R.s. From (8) and (10), it 
can be deduced that R1f(c,δ) ∈ [… sT.[Qq].s …]T, q=1…m, 
where [Qq] = RT.[Qq].R is an interval matrix: 

 
[Qq] = RT.[Qq].R = cQq + rQq⊗ p×p (11) 

 
where cQq ∈ p×p (resp. rQq ∈ p×p) contains the centers 

(resp. the radii) of each element of the interval matrix [Qq]. 
⊗ is the Hadamard (i.e. element by element) product and 

p×p is a p×p interval matrix each element of which is 
=[-1;+1]. From (9), (10) and (11), it follows that 

RT.Qfq(c+γ).R ∈ [Qq] and, consequently: 
 

∀δ∈ R, ∃s∈ p, ∃αq∈ p×p, q=1…m, 
δ = R.s,   R1f(c,δ) = [… sT.(cQq + rQq⊗αq).s …]T 

(12) 

 
R1fq(c,δ) = sT.(cQq + rQq⊗αq).s 

= ∑∑
<

+++
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As ∀i, si ∈ , therefore si

2 ∈ [0;+1] = 1/2 + /2 and sisj 
∈ . Moreover, ∀(q,i,j), αq,i,j ∈ , therefore, αq,i,jsisj ∈ . 
Each term αq,i,jsisj appears just one time in the expression of 
R1f(c,δ) (whereas each term si

2 or sisj may influence several 
R1fq(c,δ)). Assuming the terms si

2, sisj, αq,i,jsisj are all 
independent (i.e. losing the information about the non linear 
dependencies that can not be represented by a zonotope), a 
zonotope enclosing R1f(c, R) is: 

 
R1f(c, R) ⊂ cR+ ZR 

cR = trace(cQq)/2 
ZR = [ZQ  ZH] 

ZQ = matrix the qth (q=1…m) line of which is: 
])(2/[

,,,,,,, LLLL

ji
ijqjiq

i
iiqqQ QQQZ

<∀∀

+= ccc  

ZH = diag(vH),      vH =[… vH,q …]T,   q=1…m 

∑
×∈

=
];1[];1[),(

,,,
ppji

jiqqH Qv r  

(14) 

 
where diag(.) transforms a vector into a diagonal matrix 

(or reciprocally), ZQ ∈ m×(p(p+1)/2) (resp. ZH ∈ m×m) defines 
a zonotope enclosing the quadratic (resp. higher order) 
terms. The enclosure of f([z]) = f(c+ R) by a zonotope is 
then directly deduced from (8): 

 
f(c+ R) ⊂ (f(c)+cR) + [Lf(c)R   ZR] (15) 

 
As a zonotope is the linear image of an hypercube, the 

proposed inclusion method makes quadratic and higher order 
terms disappear at the price of an outer approximation of the 
resulting domain. However, the linear dependencies that may 
exist due to the presence of similar quadratic terms in several 
functions fq is still taken into account in the proposed 
inclusion method. It can also be noticed that the method 
could be generalized to take into account the linear 
dependencies between the non linear terms until an arbitrary 
order in the Taylor expansion of f. In this paragraph, a box 
inclusion (7) and a zonotope inclusion (15) of a static non-
linear function f have been studied. This will be used to deal 
with non-linear dynamic systems in the following. 

Remark: (an enclosure of) the image of several zonotopes 
by a non-linear function f can be computed from the image of 
a single zonotope: f(c1+ R1, c2+ R2) = f(c+ R) where 
c=[c1;c2] and R=[R1 0; 0 R2]). 

III. VALIDATED INTEGRATION OF ODE AND ZONOTOPES 
This section deals with the validated integration of 

Ordinary Differential Equations (ODE) having the form of 
the state equation in (1). The aim of this section is to enclose 
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(by a zonotope) the set of possible states which results from 
the one step integration of the continuous state equation with 
an initial state belonging to a given zonotope. Enclosing the 
sampling errors to get a validated one step prediction is thus 
necessary. Notice that the word “validated” must be 
commented: the algorithm that is developed hereafter 
guarantees a true inclusion provided the operations over the 
real numbers are rigorously exact, what is not true in practice 
due to numeric rounding errors. Therefore, the operations 
over the real numbers should be replaced by their interval 
counterpart and the computed domains should be inflated to 
contain the numeric errors in order to get a true “validated” 
method. Validated methods to solve ODE necessitates two 
steps: firstly, proving existence, uniqueness and giving an a 
priori solution (paragraph A), secondly, tightening the a 
priori solution using, for instance, a Taylor expansion 
(paragraph B). This will be used to compute a one step 
prediction based on zonotopes (paragraph 0). 

A. Inclusion of the trajectories on one integration step 
A result about the validated integration of ODE is first 

recalled. It is based on the Picard-Lindelöf operator and the 
fixed point theorem [19] and has already been used in [17], 
[9], for instance. 

 
Theorem 1. Given the initial value problem )(tx& = 

fuv(x(t),t), x(t0) ∈ [x(t0)] where fuv is C1 with respect to x and 
continuous on [t0;t1]. Let T=t1-t0 be the step size. Let [w] be a 
set such that: [x(t0)]+[0;T]fuv([w],[t0;t1]) ⊂ [w]. Then, x(t) 
exists on [t0;t1] and ∀t∈[t0;t1], x(t) ∈ [w]. 

 
Corollary 1. Let us consider a system modeled by the 

following uncertain non-linear continuous time state 
equation: )(tx& =f(x(t),u(t),v(t)), x(t0) ∈ [x(t0)], v(t)∈ r where 
f is C1 with respect to x and continuous. Let T be the 
sampling time and t1=t0+T. u(t) is assumed to be held by a 
zero order hold (∀t∈[t0;t1], u(t)=u(t0)) and v(t) is assumed to 
be continuous on [t0;t1]. Let [w] and W be two sets such that: 
[x(t0)]+[0;T][f]([w]) ⊂ [w] ⊂ W, where [f](.) is an inclusion 
function of f(.,u(t0), r) valid on W (i.e. f([w],u(t0), r) ⊂ 
[f]([w]) provided [w] ⊂ W). Then, x(t) exists on [t0;t1] and 
∀t∈[t0;t1], x(t) ∈ [w]. 

 
Proof: Let [w] be a set satisfying the conditions in the 

corollary 1. As [w] ⊂ W, the inclusion function [f](.) is valid. 
Therefore, [x(t0)]+[0;T]f([w],u(t0), r) ⊂ [w]. Let v be the 
true realization of the state uncertainty (which is assumed to 
be continuous and bounded). Let fuv(x,t) = f(x,u(t0),v(t)). As 
v([t0;t1]) ⊂ r, then [x(t0)]+[0;T]fuv([w],[t0;t1]) ⊂ [w] and the 
corollary 1 results from the theorem 1. 

 
A usual way to obtain a set [w] consists in inflating [x(t0)] 

by iterations until it satisfies the conditions of the theorem 1. 
A solution exists provided the step size T is sufficiently small 
[19]. In the following, the sampling time T is assumed to be 
constant and sufficiently small. However, it will be possible 

to detect if T is too large. The following of this paragraph is 
dedicated to the direct computation (with no iteration) of a 
zonotope [w] satisfying the corollary 1 for a particular class 
of inclusion functions [f](.). 

 
Theorem 2. Let [x(t0)] = c+ R, R∈ n×p (p>n). Let W = 

c+αmax R where αmax∈  is a given constant. Let [f](x) = 
A.x+b+E r be an inclusion function of f(x,u(t0), r) valid for 
any [x]=c+α R, 0≤α≤αmax. A∈ n×n, b∈ n, E∈ n×r. R+ is the 
pseudo-inverse of R and I is an identity matrix of appropriate 
dimensions. δ, M0 and M1 being defined as follows: 

δ = (c+(T/2)b)-(I-(T/2)A)c (16) 
M0 = R+AR (17) 
M1 = [ R+δ   I   (T/2)R+(Ac+b)   TR+E ] (18) 

if ∃α∈  such that ( M1)/α+T( M0) ⊂ p and 0≤α≤αmax, 
then [w] = c+α R satisfies the conditions in Corollary 1: 
[x(t0)]+[0;T][f]([w]) ⊂ [w] ⊂ W. 

 
Proof: Assuming ( M1)/α+T( M0) ⊂ p, it can be 

deduced that: (R+δ  + [s0] + (T/2)R+(Ac+b)[σ] + 
TR+E[v])/α + TR+AR[s1] ⊂ [s2], where [s0]=[s1]=[s2]= p, 
[σ]= , [v]= r. Considering the image by the linear 
application αR on both sides of the operator ⊂, it comes 
(RR+=I, T is scalar and 1∈ ): δ + R[s0] + (T/2)(Ac+b)[σ] + 
T(A(αR)[s1] + E[v]) ⊂ αR[s2]. As (1+[σ])/2 ⊂  and as any 
centered zonotope satisfies ( Z) = ( Z), δ + R[s0] + 
(T/2)(Ac+b)[σ] + (T/2)(1+[σ])(A(αR)[s1] + E[v]) ⊂ αR[s2]. 
Substituting (16) for δ in the previous expression and after 
simple re-arrangements, it comes: R[s0] + (T/2)(1+[σ]) 
(A(c+αR[s1]) + b + E[v]) ⊂ αR[s2]. As (T/2)(1+[σ]) = [0;T] 
and after a translation of vector c, we have: 
[x(t0)]+[0;T][f]([w]) ⊂ [w] where [x(t0)] = c+ R and 
[w]=c+α R. Moreover, 0≤α≤αmax guarantees that [w] ⊂ W. 

 
Theorem 3. Let b0 = diag(rs(M0)) ∈ p and b1 = 

diag(rs(M1)) ∈ p. b0,i (resp. b1,i) is thus a scalar representing 
half the size of the box M0 (resp. M1) along the ith 
dimension. Let a ∈ p be such that ai = b1,i/(1-T.b0,i), i=1…p. 

If max(b0)T<1 Then ∀ε>0, α=max(a).(1+ε) satisfies 
( M1)/α+T( M0) ⊂ p. 

 
Proof. ( M1)/α+T( M0) ⊂ p implies ( M1)/α+T( M0) 

⊂ p. The condition max(b0)T<1 guarantees that T( M0) ⊂ 
p. It is then possible to find a α≥0 sufficiently large so that 

( M1)/α+T( M0) ⊂ p is verified. A projection along the ith 
dimension leads to b1,i/α+T.b0,i<1 i.e. α>ai. As the sets are 
aligned boxes, α>max(a) suffices to guarantee that ( M1)/α 
+ T( M0) ⊂ p. In practice, the tolerance ε is chosen small 
(it could be chosen null if numeric rounding errors were 
rigorously taken into account). 

 
In conjunction with the theorem 2, the theorem 3 provides 

a constructive way to compute a set [w] satisfying the 
conditions of corollary 1 and consequently enclosing all the 
possible trajectories between t0 and t1. It is to be underlined 
that two easily computable conditions have to be fulfilled. 

7231



The first one, max(b0)T<1, checks whether the sampling time 
is sufficiently small. The second one, α≤αmax, checks 
whether the function [f](.) enclosing the non-linear vector 
field f(.) is used in its domain of validity. It is also interesting 
to notice that the tradeoff between the step size T and the 
integration errors (quantified by the inflation ratio α) is put 
into evidence by the condition ( M1)/α+T( M0) ⊂ p 
(The smaller T is, the smaller α can be). In the following, T 
will be constant and the two above mentioned conditions are 
computed on-line to check the validity of the results. 

B. A Taylor expansion to tighten the a priori solution 
Let us consider again a system modeled by the following 

state equation: )(tx& =f(x(t),u(t),v(t)), x(t0) ∈ [x(t0)], v(t)∈ r 
where f is at least C1 with respect to x and continuous. T is 
the sampling time, t1=t0+T and u(t) is held by a zero order 
hold as in Corollary 1. The set [w] computed in paragraph A 
is an often too conservative enclosure of [x(t1)]. However, as 
[w] encloses the trajectory between t0 and t1, a Taylor 
expansion can be used to compute a tighter domain [x(t1)]. 
[w] is then used to enclose the remainder term. f is now 
assumed to be C(d+2) where d is the order of the Taylor 
expansion used to compute [x(t1)]. Two cases are studied: 

 
Case 1: f does not depend on v. A Taylor expansion of 

x(t) with an arbitrary order d gives: 
 

∃τ∈[t0;t1],   x(t1) = Fd(x(t0),u(t0),x(τ)) 

{ } { } 1
0

1
1

0
000 )).(),((.))(),(()( ++

−

=

++= ∑ ddi
d

i

i TtuxfTtutxftx τ

where     f{0} = f     and     f{i} = (1/i).(∂f{i-1}/∂x).f 

(19) 

 
As x(t0)∈[x(t0)] and x(τ)∈[w], it comes: 
 

x(t1) ∈ Fd([x(t0)], u(t0), [w]) (20) 
 
According to (20) and provided [x(t0)] is a zonotope, a 

domain [x(t1)] enclosing x(t1) can be computed as the 
(enclosure of) the image of a zonotope by the non-linear 
application Fd, the expression of which is known (19). The 
results of the paragraph II.D can be used to do this. When 
computing [x(t1)], [w] only appears in the remainder term of 
(19) in which a factor (1/d!) is present. This would plead in 
favor of high order Taylor expansions if the computations 
would not become tedious as the order d increases. 

 
Case 2: f depends on v. A zero order expansion of x(t) is: 
 

∃t∈[t0;t1], x(t1) = x(t0) + T.f(x(t),u(t0),v(t)) (21) 
 
A higher order expansion of x(t) is not directly possible in 

this case because the unknown time derivative of v would 
appear. However, f(x(t),u(t0),v(t)) can be expanded with 
respect to x: 

 

∃τ∈[t0;t],   f(x(t),u(t0),v(t)) = f{0}(x(t0),u(t0),v(t)) + … 
f{1}(x(τ),u(t0),v(t),v(τ)).(t-t0) 

(22) 

f{0}(…) = f(x(t0),u(t0),v(t)) (23) 
f{1}(…) = (∂f/∂x)(x(τ),u(t0),v(t)).f(x(τ),u(t0),v(τ)) (24) 
 
As t∈[t0;t1], (t-t0)∈[0;T]. Moreover, as x(t0)∈[x(t0)], 

v(t)∈ r, v(τ)∈ r, and x(τ)∈[w], a domain enclosing x(t1) is 
deduced from the equations (21) to (24) : 

 
x(t1) ∈ [x(t0)] + T.f([x(t0)],u(t0), r) + 

[0;T2].f{1}([w],u(t0), r, r) 
(25) 

 
Considering zonotopes as domains, [x(t0)]=c+ R, R∈ n×p 

and [w]=c+α R. Moreover, let denote c0+ R0 a zonotope 
enclosing ([x(t0)],u(t0), r) and cw+ Rw a zonotope 
enclosing ([w],u(t0), r, r) (see the last remark in II.D). 
Then, x(t1) ∈ [I  0](c0+ R0) + Tf(c0+ R0) + [0;T2]f{1}(cw+ 

Rw) and the results of paragraph II.D can be applied to 
obtain a zonotope enclosure of [x(t1)]. f(c0+ R0) ⊂ 
(f(c0)+cR0) + [Lf(c0)R0  ZR0] (15) where R1f(c0, R0) ⊂ 
cR0+ ZR0 (14). Similarly, f{1}(cw+ Rw) ⊂ (f{1}(cw)+cRw) + 

[Lf{1}(cw)Rw  ZRw] (15) where R1f{1}(cw, Rw) ⊂ cRw+ ZRw 
(14). The resulting enclosure of [x(t1)] is: 

 
x(t1) ∈ [x(t1)] = c1 + R1 where: 

c1 = [I  0]c0 + T(f(c0)+cR0) + T2(f{1}(cw)+cRw)/2 
R1 = [ ([I  0]+TLf(c0))R0   TZR0   T2(f{1}(cw)+cRw)/2 

   T2Lf{1}(cw)Rw   T2ZRw ] 

(26) 

 
Remark: In (26), the relation [0;1](c+ Z) ⊂ c/2 + [c/2  

Z] has been applied to [0;T2]f{1}(cw+ Rw). Proof: [0;1]c = 
c/2 + (c/2) . [0;1] Z ⊂ Z. [0;1](c+ Z) ⊂ [0;1]c + 
[0;1] Z ⊂ c/2 + (c/2)  + Z = c/2 + [c/2  Z]. 

C. Practical computation of the one step prediction 
The aim of this paragraph is to describe a one step 

prediction algorithm based on the previous results. The 
function f is assumed to be C3 with respect to x and 
continuous. Provided numeric rounding errors can be 
neglected, the computation of a zonotope [x(t1)] such that 
x(t1) ∈ [x(t1)], t1=t0+T, from the zonotope [x(t0)]=c+ R such 
that x(t0) ∈ [x(t0)] can be summarized as follows: 

Step 1: Choose αmax>0 (The choice is validated a 
posteriori) and set W = c+ (αmaxR). 

Step 2: Compute a zonotope enclosure of f(W,u(t0), r): 
(15): f(W,u(t0), r) ⊂ (f(c)+cW) + [Lf(c)αmaxR   ZW] 
(14): R1f(c, αmax R) ⊂ cW+ ZW 

Step 3: Choose A=Lf(c), b=(f(c)-A.c+cW), E=ZW. 
[f](x) = A.x+b+E r is a valid inclusion function of 
f(x,u(t0), r) for any [x]=c+α R, 0≤α≤αmax. Proof: As 
(α R) ⊂ (αmax R), R1f(c, α R) ⊂ R1f(c, αmax R) ⊂ 
cW+ ZW. From (8), ∀δ∈α R, f(c+δ) ∈ f(c) + Lf(c).δ + 
cW+ ZW = (f(c)-Lf(c).c+cW) + Lf(c).(c+δ) + ZW = 
[f](c+δ). Therefore, f(c+α R) ⊂ [f](c+α R), 0≤α≤αmax. 

Step 4: Compute M0 with (17) and M1 with (18) and (16). 
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Step 5: Application of theorem 3: Compute b0, b1. If 
max(b0)T<1 Then the sampling time T is not sufficiently 
small: stop and display an error message Else compute α 
with a small ε (for instance, ε = 10-5). 

Step 6: Application of theorem 2 and corollary 1. If 
α≤αmax Then [w]=c+α R is such that ∀t∈[t0;t1], x(t) ∈ [w] 
Else stop and display an error message (it would also be 
possible to choose αmax>α and loop to Step 1…). 

Step 7: Compute two zonotope enclosures: f(c+ R, u(t0), 
r) ⊂ (f(c0)+cR0) + [Lf(c0)R0  ZR0] and f{1}(c+α R, u(t0), 
r) ⊂ (f{1}(cw)+cRw) + [Lf{1}(cw)Rw  ZRw] using (15). Notice 

that a formal calculus software may be very helpful to 
implement the following functions: Lf(.), {Qfq}(.), Lf{1}(.), 
{Qf{1}

q}(.), q=1…n. 
Step 8: Compute [x(t1)] = c1+ R1 according to (26). 
Step 9: Compute [x(t1)] = c1+ Red•(R1) in order to 

control the domain complexity (5), (6). The zonotope 
resulting from the step 8 is generated by more segments than 
[x(t0)] (R1 has more columns than R). Therefore, the 
complexity of zonotopes would increase at each sample time 
if no reduction step was applied to limit the number of 
generator segments. 

IV. FROM PREDICTION TO OBSERVATION 

A. The principle of bounded error state observation 
In order to detail the algorithm steps, some notations are 

first introduced. Due to sampling (with period T), a discrete 
time scale k is introduced. It is related to the continuous time 
scale by t = kT. [xk/k’] denotes an outer approximation of the 
domain of possible states at time k resulting from the state 
space model of the system and the measurements until time 
k’ (time k’ included). When k=k’, the notation is simplified 
as [xk]=[xk/k]. [xk|yk] denotes the domain of possible states at 
time k resulting from the measurements at time k, yk, and the 
measurement equation only. The principle of bounded error 
state estimation is based on the following recurrence: After 
initialization, assuming [xk-1] is known, a one step prediction 
is used to compute [xk/k-1] from the state equation. Then, the 
correction step consists in computing [xk] as an outer 
approximation of the intersection between [xk/k-1] and [xk|yk]. 

 
TABLE I 

ALGORITHM: MAIN LOOP OF THE STATE BOUNDING OBSERVER 

Initialization ([x0] ← domain such that x(t=0) ∈ [x0]) 
For k=1 to kmax 
  [xk/k-1] ← Prediction([xk-1]) 
  [xk]     ← Correction([xk/k-1], yk) 

 

B. Correction using measurements 
The correction step aims at taking into account the 

information provided by the measurements at time k. Ideally, 
it would consist in computing the exact intersection between 
[xk/k-1] = ck/k-1+ Rk/k-1 and [xk|yk]. As rapidly computing the 
exact intersection of two zonotopes is not trivial (moreover, 

it is not a zonotope), a zonotope only including the searched 
intersection will be computed. One of the specifications of 
the approach detailed in [3] was to reduce the correction step 
to standard and rather simple vector or matrix operations. 
The correction algorithm can be summarized as follows: 

 
kkkkk uDcCy .. 1/1/ += −−  

( )1/
1

−
− −= kkk yyFη ,   1/

1
−

−= kkCRFM  

(27) 
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1
TTTinterinter VUSUSRc ∩−=+ −− η  (29) 

]   [)(][ 0011
Tinterinter VVRVcVs +=  (30) 

][][ 1/1/ sRcx kkkkk −− +=  (31) 
 
By analogy with Kalman filtering, η corresponds to an 

innovation term (27). A singular value decomposition of the 
matrix M is computed (28). The aim is to decompose the 
space generating [xk/k-1] into two orthogonal subspaces: the 
first one, generated by V0, is not influenced by η (i.e. by the 
measurement at time k), contrary to the second one, 
generated by V1. The intersection takes place in this second 
subspace using interval hulls as set approximations (29). The 
zonotope [xk] resulting from the intersection is finally 
computed using (30) and (31). Its center does not only 
depend on the innovation but also on the dynamic evolution 
of the computed domains. 

V. APPLICATION 

A. The Lotka-Volterra predator-prey model 
The observation algorithm has been applied to an 

extended Lotka-Volterra predator-prey model: 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=

+−=
−=

0

0
2122

2111

d

b

xdxcxx
xbxaxx

&

&

&

&

,      exy += 1  

(32) 

 
x2 (resp. x1) represents the predator (resp. prey) population 

size. a and c are the relative birth rates and are assumed to be 
known (a=1, c=1). The parameters b and d represent the 
interaction between the two populations. As they are not 
always exactly known, a state extension is used (32). The 
initial state set then allows to represent both the uncertainty 
about the initial populations and their interactions. The 
estimation of the population sizes will be studied in two 
cases: with no measurement or when the prey population is 
measured with some uncertainty (e=1.5). 

The measurements used to feed the observation algorithm 
are obtained by simulating the model with x1(0)=x2(0)=50, 
b=0.01, d=0.02, and by adding a uniform random noise on x1 
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to obtain y. 

B. Simulation results with correction (Observer) 
The observation algorithm in Table I has been 

implemented using the one step prediction algorithm 
described in paragraph III.C and the correction algorithm 
described in paragraph IV.B. The one step prediction is 
called with t0=(k-1)T and [x(t0)]=[xk-1] and the return value is 
[xk/k-1]=[x(t1)]. All the simulation results have been obtained 
with αmax=3 (and no iterative adaptation), ε = 10-5 and 
Red5(.) as reduction operator. 

The state bounding observer has been applied to large 
initial uncertainties on the population sizes. Two cases have 
been studied depending on whether the parameters b and d 
are almost known (Fig. 2a) or not (Fig. 2b). The differences 
in the size of the domains thus illustrate the impact of the 
parametric uncertainties. Whereas the large initial 
uncertainties would make the domains diverge very quickly 
if no correction was applied, the measurement of the prey 
population, even if uncertain, allows to estimate the predator 
population with reasonable precision, especially when the 
parameters b and d are well known. 

 

  
(x1, x2) (x1, x2) 

 
x1(t)                       x2(t) x1(t)                       x2(t) 
T = 0.01,     kmax = 2000 

[x1(0)]×[x2(0)]=[10; 60]×[30; 120] 
[b(0)]=0.01±10-8 
[d(0)]=0.02±10-8 

(a) almost no uncertainty on b and d 

T = 0.01,     kmax = 2000 
[x1(0)]×[x2(0)]=[10; 60]×[30; 120] 

[b(0)]=[0.01-2%; 0.01+1%] 
[d(0)]=[0.02-1%; 0.02+2%] 
(b) uncertainty on b and d 

Fig. 2. Simulation results for the state bounding observer. 

VI. CONCLUSION 
The main contribution of this paper is to combine 

zonotopes with results from the validated integration of 
ODE. Combining the resulting one step prediction with a 
correction step provides a state bounding observer for a large 
class of uncertain non-linear continuous-time systems 
(bounded error context). The resulting observation algorithm 
has a polynomial complexity which is an advantage other 
previous results in the literature for an application to high 
dimensional systems. However, the correction step may be 
improved as it still relies on interval hulls as set 

approximation (after a suitable change of coordinates). 
Further work should thus primarily focus on that step of the 
zonotope based state bounding observer. 
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