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Abstract— This paper presents a model reduction technique
for infinite-dimensional systems called LQG-balancing. Theo-
retical results on the existence and uniqueness of LQG-balanced
realizations are given as well as error bounds for truncated
LQG-balanced realizations. We illustrate the theory by studying
model reduction for an Euler-Bernoulli beam.

I. INTRODUCTION

Simple models are normally preferred over complex ones
in control systems design. Sometimes it is obvious how
to construct a simple model for a physical system, but
sometimes it is not obvious what the characteristics essential
to the controller design of a physical system are. One way
of obtaining a simple model in this last case is to first
obtain a sophisticated model that takes every aspect that
could be of interest into account and then perform model
reduction on this sophisticated model. A simple model re-
duction procedure was introduced by Moore [13] and is now
a textbook subject (see e.g. Zhou and Doyle [23], Chapter
7). The method proposed by Moore consists of truncating
a balanced realization. A balanced realization (also called
Lyapunov- or internally balanced) is a realization for which
the controllability and observability gramians are equal and
diagonal. This procedure is only applicable to stable systems.
Alternatively for unstable systems one can use truncations
of a LQG-balanced realization, which for rational transfer
functions always exists. A LQG-balanced realization is a
realization for which the (linear quadratic regulator) optimal
cost operator for a system and its dual system are equal and
diagonal. This method was proposed by Verriest [20], [21]
and further developed by Jonckheere and Silverman [10].
For an alternative treatment see Mustafa and Glover [14].
The discrete-time case was considered in Hoffmann et al.
[9]. There is a relation between LQG-balanced truncation
and Lyapunov-balanced truncation of a normalized coprime
factor that we will comment on later.

In the case that the system is infinite-dimensional, the
model approximation becomes essential. One would like to
use the methods of balanced truncation and LQG-balanced
truncation in this case too. The existence of Lyapunov-
balanced and LQG-balanced realizations for irrational trans-
fer functions is however nontrivial. Necessary and sufficient
conditions for the existence of LQG-balanced realizations
were proven in [16] for the discrete-time case and in
[17] for the continuous-time case. Here we summarize the
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continuous-time result and apply the theory to an example:
model reduction for an Euler-Bernoulli beam.

In the next subsection we review the theory on finite-
dimensional LQG-balancing. In Section II we introduce the
class of systems we study. Section III contains the theoretical
results on LQG-balancing for this class of systems. In
Section IV the example is studied.

A. Theoretical results in the finite-dimensional case

We consider the system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (1)

y(t) = Cx(t) + Du(t), (2)

where A,B,C, D are matrices of compatible dimensions. We
consider the cost functional

J(x0, u) :=
∫ ∞

0

‖u(t)‖2 + ‖y(t)‖2dt. (3)

It is well-known that if the system is minimal, then, for every
x0 ∈ X , there exists a unique uopt such that J(x0, u

opt) <
J(x0, u) for all u �= uopt. It is also well-known that there
exists a nonnegative matrix Q such that∫ ∞

0

‖uopt(t)‖2 + ‖yopt(t)‖2dt = 〈Qx0, x0〉.

This Q is called the optimal cost operator of the system. The
matrix Q is the unique nonnegative solution of the following
control algebraic Riccati equation

A∗Q + QA + C∗C
= (QB + C∗D)(I + D∗D)−1(D∗C + B∗Q).

The dual Riccati equation, i.e.,

AP + PA∗ + BB∗

= (PC∗ + BD∗)(I + DD∗)−1(DB∗ + CP ),

which is called the filter algebraic Riccati equation also
has a unique nonnegative solution. It is easily seen that the
eigenvalues of the product PQ are similarity invariants and
they thus only depend on the transfer function G of the
system and not on the particular realization. The square roots
of these eigenvalues are called the LQG-singular values of
the transfer function. It is proven in [10], [20], [21] that there
exists a minimal realization of the transfer function G such
that the solution of the control algebraic Riccati equation and
the solution of the filter algebraic Riccati equation are equal
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and diagonal. Thus, there exist matrices Ã, B̃, C̃, D̃ and a
diagonal matrix X with nonnegative eigenvalues such that

C(sI − A)−1B + D = C̃(sI − Ã)−1B̃ + D̃,

A∗X + XA + C∗C
= (XB + C∗D)(I + D∗D)−1(D∗C + B∗X),

and

AX + XA∗ + BB∗

= (XC∗ + BD∗)(I + DD∗)−1(DB∗ + CX).

Such a realization is called LQG-balanced. We obtain a k-
dimensional LQG-balanced truncation of the LQG-balanced
realization by truncating the matrices Ã, B̃, C̃, D̃ in such a
way that the truncations correspond to the largest k LQG-
singular values. In [10], [20], [21] it is proposed that this is
a good approximation technique, which can be understood
from the following error-bound (see [14]). We have

δg(Σ, Σk) ≤ 2
n∑

i=k+1

µi√
1 + µ2

i

, (4)

where the µi’s are the LQG-singular values and δg(Σ, Σk)
is the distance in the gap metric between the system Σ
and its k-dimensional LQG-balanced truncation Σk. See [23,
Chapter 17] for a definition of the gap metric.

Define εmax := (1 + µ2
1)

−1/2. In Chapter 9 of [5] it is
shown that for a system Σ and any ε < εmax there exists a
controller that stabilizes all systems Σ′ with δ(Σ, Σ′) < ε.

This shows that if

2
n∑

i=k+1

µi√
1 + µ2

i

< (1 + µ2
1)

−1/2,

then there exists a k dimensional controller that stabilizes
the system Σ.

We note that there is a connection between LQG-balanced
truncations and Lyapunov-balanced truncations. Let [M ; N ]
be a normalized coprime factor of G and let [Mk; Nk]
be the transfer function of the k-dimensional truncation of
a Lyapunov-balanced realization of [M ; N ]. Then Gk :=
NkM−1

k is the transfer function of a k-dimensional trun-
cation of a LQG-balanced realization of G. This implies
that LQG-balanced approximation boils down to Lyapunov-
balanced approximation of the normalized coprime factors.

II. THE CLASS OF SYSTEMS

The class of systems we consider was introduced in [15].
It contains basically all systems described by linear partial
differential equations whose coefficients do not depend on
time and all delay equations.

We start with the intuition behind the definition. A finite-
dimensional linear system is usually described by specifying
four matrices A,B, C, D and defining for a given initial state
x0 and an input function u ∈ L2

loc(0,∞; Cu) the state x ∈

C(0,∞; Cx) and the output y ∈ L2
loc(0,∞; Cy) as the unique

solutions of

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, y(t) = Cx(t)+Du(t).
(5)

As is well-known, these unique solutions are given explicitly
by

x(t) = eAtx0 +
∫ t

0

eA(t−s)Bu(s) ds, (6)

y(t) = CeAtx0 +
∫ t

0

CeA(t−s)Bu(s) ds + Du(t).

If we Laplace transform the equations (5) and solve for x
and y we obtain

x̂(s) = (sI − A)−1x0 + (sI − A)−1Bû(s) (7)

ŷ(s) = C(sI − A)−1x0 +
(
C(sI − A)−1B + D

)
û(s).

Our approach to infinite-dimensional systems will be to
generalize the situation (7) rather than the situation (5) or
(6).

We first study the generalizations of the matrix-valued
functions (sI − A)−1, (sI − A)−1B, C(sI − A)−1 and
C(sI − A)−1B + D.

Definition 2.1: A resolvent linear system on a triple of
Hilbert spaces (U ,X ,Y) consists of a nonempty connected
open subset Λ of the complex plane and four operator valued
functions a, b, c, d satisfying
a : Λ → L(X ) satisfies

a(β) − a(α) = (α − β)a(β)a(α) for all α, β ∈ Λ. (8)

b : Λ → L(U ,X ) satisfies

b(β) − b(α) = (α − β)a(β)b(α) for all α, β ∈ Λ. (9)

c : Λ → L(X ,Y) satisfies

c(β) − c(α) = (α − β)c(α)a(β) for all α, β ∈ Λ. (10)

d : Λ → L(U ,Y) satisfies

d(β) − d(α) = (α − β)c(β)b(α) for all α, β ∈ Λ. (11)

The function a is called the pseudoresolvent, b the incoming
wave function, c the outgoing wave function and d the
characteristic function of the resolvent linear system.

It is not possible to make sense out of the equations (7)
without some additional assumption. One possible assump-
tion is the following.

Definition 2.2: An integrated resolvent linear system is a
resolvent linear system with the additional property that there
exist constants γ, C > 0 and n ∈ N such that

ΛH := {s ∈ C : Re s ≥ γ} ⊂ Λ (12)

and
‖a(s)‖ ≤ C(1 + |s|)n ∀ s ∈ ΛH . (13)

The above definition in words is: an integrated resolvent
linear system is a resolvent linear system whose pseudoresol-
vent is polynomially bounded on some right half-plane. The
term “integrated” stems from the connection with integrated

2470



semigroups. Note that due to the above functional equations
the wavefunctions and characteristic function of an integrated
resolvent linear system are also polynomially bounded on
ΛH . To define the state and output we will need the follow-
ing well-known characterization of Laplace transformable
Banach space valued distributions by Schwartz. The image
of the Schwartz-Laplace transformable Banach space valued
distributions is exactly the set of polynomially bounded
analytic functions defined on some right half-plane. For
details see [18].

Definition 2.3: The state x and output y of an integrated
resolvent linear system corresponding to the initial state
x0 ∈ X and the input u (a U-valued Laplace transformable
distribution) are defined through their Laplace transforms as

x̂(s) := a(s)x0+b(s)û(s), ŷ(s) := c(s)x0+d(s)û(s). (14)
We now consider the linear quadratic regulator problem for
integrated resolvent linear systems. The finite cost condition
is: for every x0 ∈ X there exists a u ∈ L2(0,∞;U)
such that y ∈ L2(0,∞;Y). It is shown in [15] that if the
finite cost condition is satisfied, then for every x0 ∈ X
there exists a unique minimizing input uopt for the quadratic
cost functional (3) and a bounded operator Q such that the
optimal cost is given by 〈Qx0, x0〉. This operator Q is called
the optimal cost operator. The dual of a resolvent linear
system is given by

ad(s) := a(s̄)∗, bd(s) := c(s̄)∗,

cd(s) := b(s̄)∗, dd(s) := d(s̄)∗.

If the finite cost condition for this dual system is satisfied,
then its optimal cost operator P exists which is called
the dual optimal cost operator of the original integrated
resolvent linear system.

III. LQG-BALANCING: THEORETICAL RESULTS

In this section we state theoretical results on LQG-
balancing for infinite-dimensional systems. Proofs can be
found in [17].

As in the finite-dimensional case, it can be shown that
the square roots µi of the eigenvalues of the product PQ
(with the possible exception of zero) do not depend on the
particular realization, but only on the characteristic function.

Definition 3.1: An integrated resolvent linear system for
which the finite cost condition and the dual finite cost
condition are satisfied is called LQG-balanced if its optimal
cost operator Q and dual optimal cost operator P are equal.
It is called daigonally LQG-balanced if in addition P = Q
has a set of eigenvectors that form a basis for the state space.
The following theorem gives necessary and sufficient condi-
tions for the existence of a LQG-balanced realization.

Theorem 3.2: The characteristic function of any integrated
resolvent linear system for which the finite cost condition
and the dual finite cost condition are satisfied has a LQG-
balanced realization.

This existence theorem is complemented by a uniqueness
theorem: minimal LQG-balanced realizations are unique up
to a unitary transformation in the state space.

It is interesting to note that under the conditions of Theo-
rem 3.2 the characteristic function has a normalized coprime
factorization. The proof of Theorem 3.2 is based on the
relation between LQG-balanced realizations and Lyapunov-
balanced realizations of the normalized coprime factor.

Let Σ be a diagonally LQG-balanced integrated resolvent
linear system. Define Σk to be the projection of Σ on the
space generated by the eigenvectors corresponding to the k
largest LQG-singular values. Σk is called the k-dimensional
truncated LQG-balanced realization.

The following theorem gives sufficient conditions for the
existence of a diagonally LQG-balanced realization and an
error bound in the gap metric. We note that an operator T
is called nuclear if it is compact and its singular values (the
eigenvalues of T ∗T ) form a l1 sequence.

Theorem 3.3: If an integrated resolvent linear system and
its dual both satisfy the finite cost condition, the product
of the optimal cost operator Q and the dual optimal cost
operator P is nuclear, and the input and output spaces
are finite-dimensional, then the characteristic function has
a diagonally LQG-balanced realization and

δg(G, Gk) ≤ 2
∞∑

i=k+1

µi√
1 + µ2

i

, (15)

(the right-hand side being finite) where Gk is the charac-
teristic function of a k-dimensional truncated LQG-balanced
realization of G.

Define εmax := (1 + µ2
1)

−1/2. In [7] it is shown that for
a system Σ that satisfies the assumptions of Theorem 3.3
and any ε < εmax there exists a controller that stabilizes
all systems Σ′ with δg(Σ, Σ′) < ε. The result in [7] is an
extension of the results in Chapter 9 of [5] and of [6].

The above shows that if

2
∞∑

i=k+1

µi√
1 + µ2

i

< (1 + µ2
1)

−1/2,

then there exists a k-dimensional controller that stabilizes
the system Σ.

IV. LQG-BALANCING: AN EXAMPLE

In this section we present a simple but nontrivial example.

A. The model

The system we consider is a one-dimensional Euler-
Bernoulli beam with Voight-damping and with free ends. The
measurements are the displacement and the angle of rotation
of the middle of the beam. As actuators we choose a force
and a moment at the middle of the beam.

We obtain the partial differential equation

∂2w

∂t2
+ β

∂5w

∂x4∂t
+ α

∂4w

∂x4
=

u1δ − u2δ
′

ρa

∂3w

∂x3
(−1, t) = 0,

∂3w

∂x3
(1, t) = 0

∂2w

∂x2
(−1, t) = 0,

∂2w

∂x2
(1, t) = 0
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y(t) =
[

w(0, t)
∂w
∂x (0, t)

]
,

where w(t, x) is the displacement of the beam at position
x ∈ (−1, 1) at time t, u1(t) is the force applied and u2(t)
the moment applied to the middle (x = 0) of the beam,
y(t) holds the measurements, ρ, a, α and β are physical
parameters and δ is the Dirac delta distribution and δ′ is
its distributional derivative. A derivation of this model from
physical considerations is given in Bontsema [1].

B. Theoretical results

The next proposition shows that our beam system has a
diagonally LQG-balanced realization and the error bound
(15) holds.

Proposition 4.1: The system considered satisfies all the
assumptions of 3.3.

Proof: If follows from [1, Lemma 2.13] that the system
under consideration is a well-posed linear system, which
implies that it is an integrated resolvent linear system. The
input and output space are both two-dimensional. It remains
to show that the finite cost condition and the dual finite cost
condition are satisfied, and that PQ is nuclear.

A spectral decomposition of the main operator A as
performed in [1] shows that A has α/β in its continuous
spectrum, the other spectral points are eigenvalues and these
are either located on a circle with center α/β or on the real
line (see figure 1). All spectral points are in the open left

−1400 −1200 −1000 −800 −600 −400 −200 0
−300

−200

−100

0

100

200

300

Fig. 1. Eigenvalues of the A operator of the beam

half-plane, except for a quadruple eigenvalue at zero. From
the above spectral decomposition one can conclude that the
operator A generates an analytic semigroup (this follows as
in the appendix of [3]). It is shown in [1] that the control
operator B is unbounded, but not maximally unbounded
and that the observation operator C is bounded. Using the
spectral decomposition of A we can split the system into
a stable part and an unstable part as in [5, Section 5.2].
Since the unstable part is controllable we conclude that the
system is exponentially stabilizable, which implies that it

satisfies the finite cost condition. That the system satisfies
the dual finite cost condition follows similarly. From the fact
that the semigroup is analytic and the control operator not
maximally unbounded we conclude that the optimal state
feedback is bounded (see [11]). From this it follows that
the optimal closed-loop system as considered in [15] has an
analytic semigroup, a control operator that is not maximally
unbounded and a bounded observation operator. We invoke
[4, Theorem 6] to show that the Hankel operator of this
closed-loop system is nuclear. This shows that PQ is nuclear.

Proposition 4.1 shows that the controller design method
mentioned in Section III performed on a high enough LQG-
balanced truncation results in a finite-dimensional stabilizing
controller for the beam.

C. Numerical results

For the numerical part of this article we choose the
physical parameters in accordance with De Silva [19], see
also Bontsema et. al. [2]. We analyze different approximation
techniques using LQG-singular values and Bode diagrams.
Due to lack of space we only show the Bode diagrams
from the first input to the first output, the response from the
second input to the second output is similar and the other two
responses are zero. Also, we only show the Bode magnitude
diagram.

1) Modal approximation: It is relatively easy to obtain a
modal approximation of our model based on the eigenvectors
of the fourth derivative operator with boundary conditions as
above. For more complicated models of physical systems it
will not be easy (or even possible) to obtain a modal approx-
imation. In figure 2 the solid line is a Bode-diagram of the 30
dimensional modal approximation. Table I shows the largest
ten LQG-characteristic values for modal approximations.

TABLE I

LARGEST 10 LQG-CHARACTERISTIC VALUES FOR MODAL

APPROXIMATIONS

6 modes 10 modes 14 modes 22 modes 30 modes
2.4142 2.4134 2.4134 2.4134 2.4134
2.4135 2.4123 2.4116 2.4111 2.4109
0.4143 0.4146 0.4147 0.4147 0.4148
0.4142 0.4144 0.4144 0.4144 0.4144
0.1071 0.1071 0.1071 0.1071 0.1071
0.1068 0.1068 0.1068 0.1068 0.1068

- 0.1010 0.1010 0.1010 0.1010
- 0.1004 0.1004 0.1004 0.1004
- 0.0009 0.0104 0.0104 0.0104
- 0.0009 0.0102 0.0102 0.0102

If we construct the controller mentioned in Section III
based on a 4 mode approximation it stabilizes the 30
mode approximation, for a lower order approximation this
is no longer the case. Since the unstable subspace is four-
dimensional this is of course not very surprizing.

2) Finite-difference approximation: We have obtained
finite-difference approximations of our model. In figure 2
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the dashed line is a 30 dimensional finite-difference approx-
imation and in figure 3 the dashed line is a 6 dimensional
finite-difference approximation.
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Fig. 2. 30 mode approximation (-) and 30 dimensional finite difference
approximation (:)
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Fig. 3. 30 mode approximation (-) and 6 dimensional finite difference
approximation (:)

From this and the ‘intermediate’ Bode diagrams not shown
it can be seen that the resonance peaks are at too low
a frequency and this error converges slowly to zero. The
6 dimensional finite-difference approximation also has an
incorrect slope for low frequencies. In table II the LQG-
characteristic values for finite difference approximations are
given.

We can see here also that the 6 dimensional finite-
difference approximation is not good and that convergence is
slower then in the modal approximation. However, from the
10 dimensional finite-difference approximation on the first
four LQG-characteristic values are fairly accurate and the
other LQG-characteristic values seem to converge to their

TABLE II

LARGEST 10 LQG-CHARACTERISTIC VALUES FOR FINITE DIFFERENCE

APPROXIMATIONS

6 dim f-d 10 dim f-d 14 dim f-d 22 dim f-d 30 dim f-d
2.4142 2.4129 2.4129 2.4131 2.4132
0.9964 2.4125 2.4122 2.4116 2.4113
0.9799 0.4146 0.4146 0.4147 0.4147
0.6408 0.4144 0.4145 0.4144 0.4144
0.6394 0.3189 0.2286 0.1711 0.1503
0.4142 0.3183 0.2282 0.1708 0.1500

- 0.1133 0.1255 0.1225 0.1183
- 0.1129 0.1250 0.1219 0.1177
- 0.0089 0.0073 0.0109 0.0114
- 0.0088 0.0072 0.0108 0.0112

correct values. It turns out that the controller mentioned in
Section III when based on a 6 dimensional finite difference
approximation is not stabilizing and that the one based on
a 10 dimensional finite difference approximation is. We
conclude that controller-design using finite-difference ap-
proximations leads to a controller of more then 6 dimensions.

3) LQG-balanced approximation: We have shown that
our model has a diagonally LQG-balanced realization. Com-
puting this realization exactly is however impossible. The
method of LQG-balancing can however be used to obtain
good low-order approximations of good high-order approx-
imations. We compute a LQG-balanced realization for the
30 dimensional finite-difference approximation of the beam
(this is finite-dimensional LQG-balancing, so it can be done
using an algorithm from finite-dimensional theory). The
Bode diagram of a 14 dimensional LQG-balanced truncation
of the 30 dimensional finite-difference approximation of the
beam is shown in figure 4 and that of a 4 dimensional LQG-
balanced truncation of the 30 dimensional finite-difference
approximation of the beam is shown in figure 5.
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Fig. 4. 30 dimensional finite difference approximation (-) and its 14
dimensional LQG-balanced truncation

As can be seen the approximation is about as good as
can be expected given the order of the approximation. The
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Fig. 5. 30 dimensional finite difference approximation (-) and its 4
dimensional LQG-balanced truncation

controller mentioned in Section III when based on a 4
dimensional LQG-balanced truncation of a 30 dimensional
finite difference approximation stabilizes the 30 dimensional
modal approximation. Thus it can be expected that it will
stabilize the beam.

4) Conclusions for the example: We showed that the beam
has a diagonally LQG-balanced realization and we obtained
an error bound that showed that there is a finite-dimensional
stabilizing controller. To explicitly compute such a controller
we had to resort to numerical approximations (as is usual). It
was shown that a finite difference approximation followed by
a LQG-balanced truncation gives a stabilizing 4 dimensional
controller. This is as good as can be obtained using a
modal approximation. A stabilizing controller based only
on a finite difference approximation must have more then 6
states. This shows that the combination of a finite difference
approximation and LQG-balancing is better than a finite
difference approximation alone.

V. CONCLUDING REMARKS

We have shown that a very large class of infinite dimen-
sional systems have a LQG-balanced realization. Systems
in a large subclass of this class have a diagonally LQG-
balanced realization. For these systems we do not only have
an existence result, but also an error-bound. We studied the
example of a beam which shows an application of these
theoretical results.
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