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Abstract— We present a method for constructing reduced-
order state observers for linear systems with unknown inputs.
Our design provides a characterization of observers with delay,
which eases the established necessary conditions for existence of
unknown input observers with zero-delay. In order to obtain the
observer parameters, we develop a systematic design procedure
that is quite general in that it encompasses the design of full-
order observers via appropriate choices of design matrices.

I. INTRODUCTION

In practice, it is often the case that a dynamic system
can be modeled as having unknown inputs. For example,
in decentralized control, it may not be possible to have
knowledge of the control signals generated by different
controllers [3]. Unknown inputs can also be used to represent
uncertain system dynamics [1] and faults [11].

The problem of constructing an observer for such systems
has received considerable attention over the past few decades
[4], [5], [2], [13]. Various methods of realizing both full
and reduced-order observers have been presented in the
literature. It is known that in order to reconstruct the entire
state vector in the presence of unknown inputs, a fairly
strict condition must be met. In [7], it was shown that this
necessary condition can be relaxed by allowing delays in the
observer. While [7] established necessary and sufficient con-
ditions for the existence of observers with delays, no design
procedure was provided. In [10], the authors handled delayed
observers by constructing a higher dimensional system which
incorporated the delayed states into the new state vector. An
observer was then constructed for this augmented system,
and geometric conditions were given for the existence of
such observers. In this paper, we provide a unified design
procedure for both reduced and full-order observers with
delays. In contrast to the work in [10], the dimension of
our observer is no greater than the dimension of the original
system, and we present algebraic existence conditions. Our
approach generalizes recently published work on full-order
zero-delay observers [13], and allows us to treat the full-order
observer as a special case of a reduced-order observer where
the dynamic portion reconstructs the entire state vector.

This material is based upon work supported in part by the National
Science Foundation under NSF Career Award 0092696 and NSF EPNES
Award 0224729, and in part by the Air Force Office of Scientific Research
under URI Award No F49620-01-1-0365URI. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the NSF or the
AFOSR.

The authors are with the Coordinated Science Laboratory and the
Department of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign, Urbana, IL, 61801, USA. E-mail {ssundarm,
chadjic}@uiuc.edu

II. PRELIMINARIES

Consider a discrete-time linear system S in the form

xk+1 = Axk + Buk

yk = Cxk + Duk , (1)

with state vector x ∈ R
n, unknown input u ∈ R

m, output
y ∈ R

p, and system matrices (A,B,C,D) of appropriate
dimensions. Note that we omit known inputs in the above
equations for clarity of development. We also assume without
loss of generality that the matrix [ B

D ] is of full column rank.
This assumption can always be enforced by an appropriate
transformation and renaming of the unknown input signals.

The response of system (1) over α+1 time units is given
by ⎡

⎢⎢⎢⎣
yk

yk+1

...
yk+α

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Yk:k+α

=

⎡
⎢⎢⎢⎣

C
CA

...
CAα

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Θα

xk

+

⎡
⎢⎢⎢⎣

D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAα−1B CAα−2B · · · D

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Mα

⎡
⎢⎢⎢⎣

uk

uk+1

...
uk+α

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Uk:k+α

. (2)

The matrices Θα and Mα in the above equation can
be expressed in a variety of ways. We will be using the
following identities in our derivations:

Θα =
[

C
Θα−1A

]
=

[
Θα−1

CAα

]
, (3)

Mα =
[

D 0
Θα−1B Mα−1

]
=

[
Mα−1 0
Cζα−1 D

]
, (4)

where

ζα−1 ≡
[
Aα−1B Aα−2B · · · B

]
.

We are now ready to proceed with the construction of an
observer to estimate the states in S.

III. UNKNOWN INPUT OBSERVER

We start by determining the set of states which can be
directly obtained from the output of the system over α + 1
time-steps. The following theorem provides an answer to this
problem.
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Theorem 1: For system (1) with response over α+1 time-
steps given by (2), let

t = rank
[
Θα Mα

]
− rank

[
Mα

]
.

Then it is possible to perform a similarity transform on the
system S to obtain a new system S̄ such that exactly t of
the states in S̄ are directly obtainable from the output of the
system.

Proof: Assume rank
[
Θα Mα

]
−rank

[
Mα

]
= t. This

implies that there are t linearly independent vectors in the
matrix Θα that cannot be written as a linear combination of
vectors in Mα. Thus there exists a matrix P of dimension
t×(α+1)p such that PΘα has full row-rank, and PMα = 0.
Define the similarity transformation matrix

T ≡
[
PΘα

H

]
(5)

where the matrix H is chosen so that T has full rank. If
desired, P and H can be chosen so that T is orthogonal.

Consider the system S̄ with state-vector x̄k =
[
x̄1,k

x̄2,k

]
=

T xk. The system matrices in S̄ are given by

Ā ≡ T AT −1 =
[
A11 A12

A21 A22

]
,

B̄ ≡ T B =
[
PΘαB
HB

]
,

C̄ ≡ CT −1, D̄ ≡ D . (6)

Now it is readily seen from (2) that

PYk:k+α = PΘαT −1x̄k

=
[
It 0

]
x̄k ,

and thus the first t states of x̄k are immediately obtained.
Remark 1: The problem of determining a particular set of

states from the (delayed) output was studied in [15], and the
special case of perfect observability (i.e., t = n) was studied
in [3], [9]. The result in Theorem 1 appears to be new in
that it deals with reconstructing a maximal subset of states
from the output.

To estimate the remaining (n− t) states of x̄k (i.e., x̄2,k),
we construct a reduced-order observer of the form

zk+1 = Ezk + FYk:k+α

ψk = zk + GYk:k+α , (7)

where matrices E, F and G are chosen such that ψk → x̄2,k

as k → ∞. Using (2), the observer error is given by

ek+1 ≡ ψk+1 − x̄2,k+1

= Ezk + FYk:k+α + GYk+1:k+α+1

−
[
A21 A22

]
x̄k −HBuk

= Eek + (F − EG) Θαxk + GΘαAxk

+ EHxk −
[
A21 A22

]
T xk

+ (F − EG) MαUk:k+α + GΘαBuk

+ GMαUk+1:k+α+1 −HBuk .

Using the identities (3) and (4), the expression for the error
can be written as

ek+1 = Eek +
[
F − EG 0

]
Θα+1xk +

[
0 G

]
Θα+1xk

+ EHxk −
[
A21 A22

]
T xk

+
[
F − EG 0

]
Mα+1Uk:k+α+1

+
[
0 G

]
Mα+1Uk:k+α+1 −HBuk .

Partition the matrices F and G as

F =
[
F0 F1 · · · Fα

]
,

G =
[
G0 G1 · · · Gα

]
where each Fi and Gi are of dimension (n − t) × p, and
define

K ≡
[
F0 − EG0 F1 − EG1 + G0 · · ·

· · · Fα − EGα + Gα−1 Gα

]
. (8)

Note that since we are free to choose F and G, the matrix
K can be chosen to have any value we require. The error
can then be expressed as

ek+1 = Eek +
(
EH−

[
A21 A22

]
T + KΘα+1

)
xk

+ KMα+1Uk:k+α+1 −HBuk .

In order to force the error to go to zero, regardless of the
values of xk and the inputs, the following two conditions
must hold:

1) E must be a stable matrix,
2) The matrix K must satisfy

KMα+1 =
[
HB 0 · · · 0

]
, (9)

EH =
[
A21 A22

]
T − KΘα+1 . (10)

The solvability of condition (9) is given by the following
theorem.

Theorem 2: There exists a matrix K such that

KMα+1 =
[
HB 0 · · · 0

]
if and only if

rank [Mα+1] − rank [Mα] = m . (11)

Proof: There exists a K satisfying (9) if and only if
the matrix

R ≡
[
HB 0 · · · 0

]
is in the space spanned by the rows of Mα+1. This is
equivalent to the condition

rank

[
Mα+1

R

]
= rank [Mα+1] .
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Using (4), we get

rank

[
Mα+1

R

]
= rank

⎡
⎣ D 0

ΘαB Mα

HB 0

⎤
⎦

= rank

⎛
⎜⎜⎝

⎡
⎢⎢⎣

I 0 0
0 P 0
0 0 I
0 I 0

⎤
⎥⎥⎦

⎡
⎣ D 0

ΘαB Mα

HB 0

⎤
⎦

⎞
⎟⎟⎠

= rank

⎛
⎝

⎡
⎣I 0 0

0 T 0
0 Θα I

⎤
⎦

⎡
⎣D 0

B 0
0 Mα

⎤
⎦

⎞
⎠ .

By our assumption that the matrix [ B
D ] has full column rank,

we get

rank

[
Mα+1

R

]
= m + rank [Mα] ,

thereby completing the proof.
Note that (11) is the condition for inversion of the inputs

with known initial state, as given in [12]. If we set α = 0,
condition (11) becomes

rank

[
D 0

CB D

]
= m + rank [D] ,

which is the well known necessary condition for unknown-
input observers with zero delay [4]. This is a fairly strict
condition, and demonstrates the utility of a delayed observer.
When designing such an observer, one can start with α = 0
and increase α until a value is found that satisfies (11). An
upper bound on α is provided by the following theorem from
[14], which considered the problem of system invertibility.

Theorem 3: Let q be the dimension of the nullspace of
D. Then there exists an α satisfying (11) if and only if

rank [Mn−q+1] − rank [Mn−q] = m .

Thus the largest delay that will be required by our observer
is n−q time-steps. If (11) is not satisfied even for α = n−q,
it is not possible to estimate all the states in the system.

Remark 2: Condition (11) was also obtained in [7]
through a different method. The approach in that paper was
to define a new output equation for the system, with Θα

and Mα taking the place of the ‘C’ and ‘D’ matrices,
respectively. These matrices were then substituted into the
necessary conditions for zero-delay observers, and reduced to
produce equation (11). While this approach is quite intuitive,
it may result in unnecessarily large and redundant matrices
when designing the observer parameters. Furthermore, the
upper bound on the observer delay provided in [7] is α =
n − 1, which can be tightened by applying the results of
Theorem 3.

We now turn our attention to condition (10). Right-
multiplying by T −1, we get the equivalent condition[

0 E
]

=
[
A21 A22

]
− KΘα+1T −1 . (12)

From the above equation it is apparent that there is an
additional constraint on K; namely, K times the first t

columns of Θα+1T −1 must produce A21. To satisfy this
constraint, we define

Ty ≡
[
P
Q

]
, J ≡

[
Ty 0
0 Ip

]
, (13)

where the matrix Q is chosen so that Ty is square and
invertible. Using (3) and (4), we get

M̂ ≡ JMα+1 =

⎡
⎣ 0 0
QMα 0
Cζα D

⎤
⎦ , (14)

Θ̂ ≡ JΘα+1T −1 =

⎡
⎣ It 0

L1 L2

L3 L4

⎤
⎦ , (15)

where [
L1 L2

L3 L4

]
=

[
QΘαT −1

CAα+1T −1

]
.

Since J is invertible, we can define a matrix K̄ such that
K = K̄J . Partitioning K̄ as

K̄ =
[
K̄1 K̄2

]
,

where K̄1 has t columns, equations (9) and (12) become

[
K̄1 K̄2

] ⎡
⎣ 0 0
QMα 0
Cζα D

⎤
⎦ =

[
HB 0 · · · 0

]
, (16)

[
0 E

]
=

[
A21 A22

]
−

[
K̄1 K̄2

] ⎡
⎣ It 0

L1 L2

L3 L4

⎤
⎦ . (17)

We see from the above equations that K̄1 must be chosen
such that

K̄1 = A21 − K̄2

[
L1

L3

]
,

and so the problem is reduced to finding the matrix K̄2

satisfying equations (16) and (17).
Recall that the first m columns of Mα+1 must be linearly

independent of each other and of the remaining (α + 1)m
columns (by Theorem 2), and so the rank of[

QMα 0
Cζα D

]
(18)

is m + rank[Mα]. Let N be a matrix whose rows form a
basis for the left nullspace of the last (α + 1)m columns of
(18). In particular, we can assume without loss of generality
that N satisfies

N
[
QMα 0
Cζα D

]
=

[
0 0

Im 0

]
. (19)

From (16), we see that K̄2 must be of the form

K̄2 = K̂N

for some K̂ =
[
K̂1 K̂2

]
, where K̂2 has m columns.

Equation (16) then becomes[
K̂1 K̂2

] [
0 0

Im 0

]
=

[
HB 0

]
, (20)
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from which it is obvious that K̂2 = HB and K̂1 is a free
matrix.

Returning to equation (17), we have

E = A22 − K̄2

[
L2

L4

]

= A22 −
[
K̂1 HB

]
N

[
L2

L4

]
.

Defining [
ν1

ν2

]
≡ N

[
L2

L4

]
, (21)

where ν2 has m rows, we come to the final equation

E = (A22 −HBν2) − K̂1ν1 . (22)

Recall that we require E to be a stable matrix, and this
is only possible if the pair (A22 −HBν2, ν1) is detectable.
This detectability condition can be stated in terms of the
original system matrices as follows.

Theorem 4: The rank condition

rank

[
zI − A22 + HBν2

ν1

]
= n − t, ∀z ∈ C, |z| ≥ 1

is satisfied if and only if

rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1 .

To prove the theorem, we make use of the following
lemma, which is obtained by a simple modification of a
lemma from [7].

Lemma 1: The rank condition

rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1

is satisfied if and only if

rank

⎡
⎣zI − A −B 0

C D 0
ΘαA ΘαB Mα

⎤
⎦ = n + m + rank[Mα],

∀z ∈ C, |z| ≥ 1 .

We are now in place to prove Theorem 4.
Proof: We start by noting from (14) and (19) that[

It 0
0 N

]
J

[
D 0

ΘαB Mα

]
=

[
0 0

Im 0

]
.

Let N̄ be a matrix whose rows form a basis for the left
nullspace of Mα. We can then write[

It 0
0 N

]
J = W

[
Ip 0
0 N̄

]
(23)

for some invertible matrix W . Through a series of nonsin-
gular transformations, we obtain

rank

2
4zI − A −B 0

C D 0
ΘαA ΘαB Mα

3
5 = rank

2
64

zI − A −B 0
C D 0

N̄ΘαA N̄ΘαB 0
ΘαA ΘαB Mα

3
75

= rank

2
6664

zI − A −B 0 0
C D 0 0

N̄ΘαA N̄ΘαB 0 0
zC 0 D 0

zΘα−1A 0 Θα−1B Mα−1

3
7775

= rank

2
6664

zI − A −B 0 0
C D 0 0

N̄ΘαA N̄ΘαB 0 0
0 0 D 0

zΘα−1A zΘα−1B Θα−1B Mα−1

3
7775 .

Continuing in the above manner, we get

rank

2
4zI − A −B 0

C D 0
ΘαA ΘαB Mα

3
5 = rank

2
64

zI − A −B 0
C D 0

N̄ΘαA N̄ΘαB 0
0 0 Mα

3
75

and the rank of the top left submatrix in the above expression
is given by

rank

2
4zI − A −B

C D
N̄ΘαA N̄ΘαB

3
5 = rank

2
4zI − T AT −1 −T B

CT −1 D
N̄ΘαAT −1 N̄ΘαB

3
5

= rank

2
64

zI − A11 −A12 −PΘαB
−A21 zI − A22 −HB

CT −1(:, 1) CT −1(:, 2) D
N̄ΘαAT −1(:, 1) N̄ΘαAT −1(:, 2) N̄ΘαB

3
75 ,

where T −1(:, 1) represents the first t columns of T −1, and
T −1(:, 2) represents the last n−t columns. By the definition
of P , there exists a matrix V such that P = VN̄ . Using the
fact that VN̄ΘαAT −1 =

[
A11 A12

]
, we get

rank

2
4zI − A −B

C D
N̄ΘαA N̄ΘαB

3
5

= rank

2
64

zIt 0 0
−A21 zI − A22 −HB

CT −1(:, 1) CT −1(:, 2) D
N̄ΘαAT −1(:, 1) N̄ΘαAT −1(:, 2) N̄ΘαB

3
75 .

Using (14), (15), (21) and (23), we left-multiply the last two
block rows in the above matrix by W to obtain

rank

2
4zI − A −B

C D
N̄ΘαA N̄ΘαB

3
5 = rank

2
6664

zIt 0 0
−A21 zI − A22 −HB

It 0 0
∗ ν1 0
∗ ν2 Im

3
7775

= t + rank

2
4zI − A22 −HB

ν1 0
ν2 Im

3
5

= t + m + rank

»
zI − A22 + HBν2

ν1

–
,
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where ∗ represents unimportant matrices. This gives

rank

2
4zI − A −B 0

C D 0
ΘαA ΘαB Mα

3
5 = t + m + rank[Mα]

+ rank

»
zI − A22 + HBν2

ν1

–
.

Using Lemma 1, we get the desired result.
We can now state the following theorem, whose proof is

immediately given by the discussion so far.
Theorem 5: The system S in (1) has an observer with

delay α if and only if
1) rank [Mα+1] − rank [Mα] = m,

2) rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1 .

Recall that the first condition in the above theorem means
that the system is invertible with delay α + 1. In fact, it
has been shown in [8] that condition 2 is sufficient for the
existence of a stable inverse for system S. This fact leads to
the following theorem.

Theorem 6: The system S in (1) has an observer (possibly
with delay) if and only if

rank

[
zI − A −B

C D

]
= n + m, ∀z ∈ C, |z| ≥ 1 .

Remark 3: The result in the above theorem has also been
noted in [6], which studied the problem of reconstructing
the unknown inputs. The difference between Theorem 5 and
Theorem 6 is that the latter does not provide a characteri-
zation of the delay in the observer. Note that the conditions
in Theorem 5 (and the equivalent condition in Theorem 4)
are a generalization of those given in [13], [5], [4] for the
existence of zero-delay observers, and verify the conditions
in [7]. It is of interest to note that while we have pursued the
development of a reduced-order observer, the above approach
and conditions immediately apply to full-order observers as
well. This is because a full-order observer can be viewed
as a special case of a reduced-order observer, where the
dynamic portion reconstructs the entire state. This can be
accomplished by setting P to be an empty matrix (i.e., by
choosing t = 0, T = H = In, Ty = I(α+1)p).

IV. DESIGN PROCEDURE

We now summarize the design steps that can be used in
designing a delayed observer for the system given in (1).

1) Find the smallest α such that rank[Mα+1] −
rank [Mα] = m. If the condition is not satisfied for
α = n − nullity [D], it is not possible to reconstruct
the entire state of the system.

2) Find the matrix P such that PΘα is full row rank
and PMα is zero. Use Theorem 1 for a reduced-order
observer, or set P to be the empty matrix for a full-
order observer. Choose H and form the matrix T in
(5) to obtain the transformed system given by (6). Also
choose Q and form the matrix Ty given in (13).

3) Find the matrix N satisfying (19).

4) Form the matrices Θ̂ and [ ν1
ν2 ] from (15) and (21).

5) If the detectability condition in Theorem 4 is satisfied,
choose the matrix K̂1 such that the eigenvalues of E =
(A22 −HBν2) − K̂1ν1 are stable.

6) Set

K̄2 =
[
K̂1 HB

]
N

K̄1 = A21 − K̄2

[
L1

L3

]

K =
[
K̄1 K̄2

] [
Ty 0
0 Ip

]
. (24)

7) Use (8) to map this K matrix to F and G. Note that this
mapping is not unique. In particular, one can choose
G0 = G1 = · · · = Gα−1 = 0, thereby getting

K =
[
F0 F1 · · · Fα − EGα Gα

]
.

This choice corresponds to using only the most delayed
measurement in the output of the observer. Similarly,
one can choose F1 = F2 = · · · = Fα = 0, which cor-
responds to using only the earliest measurement in the
dynamic portion of the observer. Other combinations
are also possible. Note that this freedom does not exist
when designing a zero-delay observer.

8) The final observer is given by equation (7). The
estimate of the original system states is obtained as

x̂k = T −1

[
PYk:k+α

ψk

]
. (25)

V. EXAMPLE

Consider the system given by the matrices

A =

2
41 0 0

0 1 1
0 0 1

3
5 , B =

2
40 1

1 1
1 0

3
5 ,

C =

»
0 1 −1
1 0 0

–
, D =

»
0 1
0 1

–
.

It is found that condition (11) holds for α = 1, so our
observer must have a minimum delay of one time-step. Using
Theorem 1, we find t = 2 and choose

P =

»
−1 1 0 0

0 0 −1 1

–
,

H =
ˆ
0 1 1

˜
,

Q =

»
0 1 0 0
0 0 0 1

–
.

Performing the similarity transformation, we get[
A21 A22

]
=

[
1 −1 1

]
.

The matrices M̂ and Θ̂ from equations (14) and (15) are
found to be

cM =

2
666664

0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 1 0 0
1 1 0 1 0 1
0 1 0 1 0 1

3
777775 , bΘ =

2
666664

1 0 0
0 1 0

−1 2 1
−1 2 1

0 0 1
−1 2 1

3
777775 .
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In this example, the last (α + 1)m = 4 columns of M̂ have
a rank of two, and thus the matrix N in (19) will only have
two rows:

N =

»
0 0 1 −1
1 0 0 0

–
.

Thus, equation (20) becomes[
K̂1 K̂2

] [
I2 0

]
=

[
HB 0

]
,

and since K̂2 has m = 2 columns, K̂1 is the empty matrix.
This implies that we will have no freedom in choosing the
eigenvalues of our observer.

Next, we use equation (21) to obtain[
ν1

ν2

]
=

[
0
1

]
.

Again, since ν2 has m = 2 rows, ν1 is the empty matrix.
We now check the detectability of our system by computing

E = A22 −HBν2 = 0 ,

which implies that we are able to design a stable observer.
Using (24), we get

K̄2 =
ˆ
1 0 2 −2

˜
,

K̄1 =
ˆ
0 1

˜
,

K =
ˆ
0 1 −1 1 2 −2

˜
.

Finally, we obtain the F and G matrices by choosing G0 = 0.
Since E = 0, we have

F =
ˆ
F0 F1

˜
=

ˆ
0 1 −1 1

˜
G =

ˆ
G0 G1

˜
=

ˆ
0 0 2 −2

˜
.

The final observer is given by

zk+1 = FYk:k+1

ψk = zk + GYk:k+1 ,

and an estimate of the original system states can be obtained
via (25).

To test this observer, the system is simulated with an initial
non-zero state, and driven by a sinusoidal input. The observer
is initialized with an initial state of zero, and as seen from
the plots in Figure 1, catches up with the system state to
produce a perfect estimate that is delayed by one time-step.
Note that the observer starts operation at k = 1, to account
for the one-step delay.

VI. CONCLUSIONS

We have provided a characterization of unknown input
observers with delays, and have developed a streamlined
design procedure to obtain the observer parameters. Our
approach is quite general in that it treats both reduced
and full-order observers by selecting the design matrices
appropriately. While we have only considered discrete-time
systems, it is worth noting that our development transfers
readily to continuous-time systems simply by replacing de-
lays with integrators (or equivalently, by replacing advances
with differentiators).
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Fig. 1. Simulation of system and one-step delayed observer.
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