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Abstract— Let V ⊂ R
n be a real algebraic set described

by finitely many polynomials equations gj(x) = 0, j ∈ J , and
let f be a real polynomial, nonnegative on V . We show that
for every ε > 0, there exist nonnegative scalars {λj}j∈J such
that, for all r sufficiently large,

fεr +
X

j∈J

λj g2
j , is a sum of squares,

for some polynomial fεr with a simple and explicit form in
terms of f and the parameters ε > 0, r ∈ N, and such that
‖f − fεr‖1 → 0 as ε → 0.

This representation is an obvious certificate of nonnegativity
of fεr on V , and valid with no assumption on V . In addition,
this representation is also useful from a computational point of
view, as we can define semidefinite programming relaxations
to approximate the global minimum of f on a real algebraic
set V , or a basic closed semi-algebraic set K, and again, with
no assumption on V or K.

I. INTRODUCTION

Let R[x](= R[x1, . . . , xn]), and let V ⊂ R
n be the real

algebraic set

V := {x ∈ R
n | gj(x) = 0, j = 1, . . . , m}, (1)

for some family of real polynomials {gj} ⊂ R[x].
The main motivation of this paper is to provide a char-

acterization of polynomials f ∈ R[x], nonnegative on V ,

in terms of a certificate of positivity. In addition, and in

view of the many potential applications (notably in control,

as described in e.g. Henrion and Lasserre [4]), one would

like to obtain a representation that is also useful from a

computational point of view.

In some particular cases, when V is compact, and viewing

the equations gj(x) = 0 as two opposite inequations

gj(x) ≥ 0 and gj(x) ≤ 0, one may obtain Schmüdgen’s

sum of squares (s.o.s.) representation [18] for f +ε (ε > 0),

instead of f . In this equality case, f + ε reads

f + ε = f0 +
m∑

j=1

fj gj , (2)

for some polynomials {fj} ⊂ R[x], with f0 a s.o.s. Hence,

if f is nonnegative on V , every approximation f + ε of f
(with ε > 0) has the representation (2). The interested reader

is referred to Marshall [11], Prestel and Delzell [13], and

Scheiderer [16], [17] for a nice account of such results.

Contribution. We propose the following result: Let

‖f‖1 =
∑

α |fα| whenever x �→ f(x) =
∑

α fαxα. Let
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f ∈ R[x] be nonnegative on V , as defined in (1), and let

F := {fεr}ε,r be the family of polynomials

fεr = f + ε

r∑
k=0

n∑
i=1

x2k
i

k!
, ε ≥ 0, r ∈ N. (3)

(So, for every r ∈ N, ‖f − fεr‖1 → 0 as ε ↓ 0.)

Then, for every ε > 0, there exist nonnegative scalars
{λj}m

j=1, such that for all r sufficiently large (say r ≥ r(ε)),

fεr = qε −
m∑

j=1

λj g2
j , (4)

for some s.o.s. polynomial qε ∈ R[x], that is, fεr +∑m
j=1 λj g2

j is s.o.s.

Thus, with no assumption on the set V , one obtains a

representation of fεr (which is positive on V as fεr > f for

all ε > 0) in the simple and explicit form (4), an obvious

certificate of positivity of fεr on V . In particular, when

V ≡ R
n, one retrieves the result of [9], which states that

every nonnegative real polynomial f can be aproximated

as closely as desired, by a family of s.o.s. polynomials

{fεr(ε)}ε, with fεr as in (3).

Notice that f + nε = fε0. So, on the one hand, the

approximation fεr in (4) is more complicated than f + ε
in (2), valid for the compact case with an additional

assumption, but on the other hand, the coefficients of the

gj’s in (4) are now scalars instead of s.o.s., and (4) is valid

for an arbitrary algebraic set V .

The case of a semi-algebraic set K = {x ∈ R
n|gj(x) ≥

0, j = 1, . . . , m} reduces to the case of an algebraic set

V ∈ R
n+m, by introducing m slack variables {zj}, and

replacing gj(x) ≥ 0 with gj(x) − z2
j = 0, for all j =

1, . . . , m. Let f ∈ R[x] be nonnegative on K. Then, for

every ε > 0, there exist nonnegative scalars {λj}m
j=1 such

that, for all sufficiently large r,

f + ε
r∑

k=0

⎡
⎣ n∑

i=1

x2k
i

k!
+

m∑
j=1

z2k
j

k!

⎤
⎦ = qε −

m∑
j=1

λj (gj − z2
j )2,

for some s.o.s. qε ∈ R[x, z]. Equivalently, everywhere on

K, the polynomial

x �→ f(x) + ε

r∑
k=0

n∑
i=1

x2k
i

k!
+ ε

r∑
k=0

m∑
j=1

gj(x)k

k!

coincides with the polynomial x �→
qε(x1, . . . , xn,

√
g1(x), . . . ,

√
gm(x)), obviously

nonnegative.

The representation (4) is also useful for computational

purposes. Indeed, for instance, using (4) with fixed ε, one
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can approximate the global minimum of f on V , by solving

a sequence of semidefinite programming (SDP) problems.

The same applies to an arbitrary semi-algebraic set K ⊂
R

n, defined by m polynomials inequalities, as explained

above. Again, and in contrast to previous SDP-relaxation

techniques as in e.g. [6], [7], [8], [12], [19], no compacity

assumption on V or K is required.

In a sense, the family F = {fεr} ⊂ R[x] (with

f0r ≡ f ) is a set of regularizations of f , because one

may approximate f by members of F , and those members

always have nice representations when f is nonnegative on

an algebraic set V (including the case V ≡ R
n), whereas

f itself might not have such a nice representation.

Methodology. To prove our main result, we proceed in

three main steps.

1. We first define an infinite dimensional linear program-

ming problem on an appropriate space of measures, whose

optimal value is the global minimum of f on the set V .

2. We then prove a crucial result, namely that there is

no duality gap between this linear programming problem

and its dual. The approach is similar but different from

that taken in [9] when V ≡ R
n. Indeed, the approach

in [9] does not work when V 
≡ R
n. Here, we use the

important fact that the polynomial θr (defined in (11)

below) is a moment function. And so, if a set of probability

measures Π satisfies supµ∈Π

∫
θrdµ < ∞, it is tight, and

therefore, by Prohorov’s theorem, relatively compact. This

latter intermediate result is crucial for our purpose.

3. In the final step, we use our recent result [9] which

states that if a polynomial h ∈ R[x] is nonnegative on R
n,

then h + εθr (ε > 0) is a sum of squares, provided that r
is sufficiently large.

The paper in organized as follows. After introducing the

notation and definitions in §II, some preliminary results

are stated in §III, whereas our main result is stated and

discussed in §IV. The detailed proofs can be found in

Lasserre [10].

II. NOTATION AND DEFINITIONS

Let R+ ⊂ R denote the cone of nonnegative real

numbers. For a real symmetric matrix A, the notation

A � 0 (resp. A 
 0) stands for A positive semidefinite

(resp. positive definite). The sup-norm supj |xj | of a vector

x ∈ R
n, is denoted by ‖x‖∞. Let R[x] be the ring of real

polynomials, and let

vr(x) := (1, x1, . . . , xn, x2
1, x1x2, . . . , x

r
n) (5)

be the canonical basis for the R-vector space Ar of real

polynomials of degree at most r, and let s(r) be its

dimension. Similarly, v∞(x) denotes the canonical basis of

R[x] as a R-vector space, denoted A. So a vector in A has

always finitely many zeros.

Therefore, a polynomial p ∈ Ar is written

x �→ p(x) =
∑
α

pαxα = 〈p, vr(x)〉, x ∈ R
n,

(where xα = xα1
1 xα2

2 . . . xαn
n ) for some vector p = {pα} ∈

R
s(r), the vector of coefficients of p in the basis (5).

Extending p with zeros, we can also consider p as a

vector indexed in the basis v∞(x) (i.e. p ∈ A). If we equip

A with the usual scalar product 〈., .〉 of vectors, then for

every p ∈ A,

p(x) =
∑

α∈Nn

pαxα = 〈p, v∞(x)〉, x ∈ R
n.

Given a sequence y = {yα} indexed in the basis v∞(x),
let Ly : A → R be the linear functional

p �→ Ly(p) :=
∑

α∈Nn

pαyα = 〈p,y〉. (6)

Given a sequence y = {yα} indexed in the basis v∞(x),
define the moment matrix Mr(y) ∈ R

s(r)×s(r) with rows

and columns indexed in the basis vr(x) in (5), by

Mr(y)(α, β) = yα+β , |α|, |β| ≤ r. (7)

For instance, with n = 2,

M2(y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

⎤
⎥⎥⎥⎥⎥⎥⎦

.

A sequence y = {yα} has a representing measure µy if

yα =
∫

Rn

xα dµy, ∀α ∈ N
n. (8)

In this case one also says that y is a moment sequence. In

addition, if µy is unique then y is said to be a determinate
moment sequence.

The matrix Mr(y) defines a bilinear form 〈., .〉y on Ar,

by

〈q, p〉y := 〈q, Mr(y)p〉 = Ly(qp), q, p ∈ Ar,

and if y has a representing measure µy, then

Ly(q2) = 〈q, Mr(y)q〉 =
∫

Rn

q2 dµy ≥ 0, ∀ q ∈ Ar,

(9)

so that Mr(y) is positive semidefinite, i.e., Mr(y) � 0.

III. PRELIMINARIES

Let V ⊂ R
n be the real algebraic set defined in (1), and

let BM be the closed ball

BM = {x ∈ R
n | ‖x‖∞ ≤ M}. (10)

Proposition 3.1: Let f ∈ R[x] be such that −∞ < f∗ :=
infx∈V f(x). Then, for every ε > 0, there is some Mε ∈ N

such that

f∗
M := inf{f(x)|x ∈ BM∩V } < f∗+ε, ∀M ≥ Mε.

Equivalently, f∗
M ↓ f∗ as M → ∞.
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The proof is rather elementary and left to the reader.

For every r ∈ N, let θr ∈ R[x] be the polynomial

x �→ θr(x) :=
r∑

k=0

n∑
i=1

x2k
i

k!
, x ∈ R

n, (11)

and notice that n ≤ θr(x) ≤ ∑n
i=1 ex2

i =: θ∞(x), for all

x ∈ R
n. Moreover, θr satisfies

lim
M→∞

inf
x∈Bc

M

θr(x) = +∞, (12)

where Bc
M denotes the complement of BM in R

n; this

property is very useful because in particular, a set Π of

probability measures satisfying supµ∈Π

∫
θr dµ < ∞, is

relatively compact (see e.g. Hernandez-Lerma and Lasserre

[5, p. 10]).

Next, with V as in (1), introduce the following optimiza-

tion problems.

P : f∗ := inf
x∈V

f(x), (13)

and for 0 < M ∈ N, r ∈ N ∪ {∞},

Pr
M :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
µ

∫
f dµ

s.t.
∫

g2
j dµ ≤ 0, j = 1, . . . , m∫
θr dµ ≤ neM2

µ ∈ P(Rn),

(14)

where P(Rn) is the space of probability measures on R
n

(with B its associated Borel σ-algebra). The respective

optimal values of P and Pr
M are denoted inf P = f∗ and

inf Pr
M , or minP and minPr

M if the minimum is attained

(in which case, the problem is said to be solvable).

Proposition 3.2: Let f ∈ R[x], and let P and Pr
M be as

in (13) and (14) respectively. Assume that f∗ > −∞. Then,

for every r ∈ N∪ {∞}, inf Pr
M ↓ f∗ as M → ∞. If f has

a global minimizer x∗ ∈ V , then minPr
M = f∗ whenever

M ≥ ‖x∗‖∞.

Proof: When M is sufficiently large, BM∩V 
= ∅, and

so, Pr
M is consistent, and inf Pr

M < ∞. Let µ ∈ P(Rn) be

admissible for Pr
M . From

∫
g2

j dµ ≤ 0 for all j = 1, . . . , m,

it follows that gj(x)2 = 0 for µ-almost all x ∈ R
n, j =

1, . . . , m, That is, for every j = 1, . . . , m, there exists a set

Aj ∈ B such that µ(Ac
j) = 0 and gj(x) = 0 for all x ∈ Aj .

Take A = ∩jAj ∈ B so that µ(Ac) = 0, and for all x ∈ A,

gj(x) = 0 for all j = 1, . . . , m. Therefore, A ⊂ V , and as

µ(Ac) = 0,∫
Rn

f dµ =
∫

A

f dµ ≥ f∗ because f ≥ f∗ on A ⊂ V ,

which proves inf Pr
M ≥ f∗.

As V is closed and BM is closed and bounded, the set

BM ∩V is compact and so, with f∗
M as in Proposition 3.1,

there is some x̂ ∈ BM∩V such that f(x̂) = f∗
M . In addition

let µ ∈ P(Rn) be the Dirac probability measure at the point

x̂. As ‖x̂‖∞ ≤ M ,∫
θr dµ = θr(x̂) ≤ neM2

.

Moreover, as x̂ ∈ V , gj(x̂) = 0, for all j = 1, . . . , m, and

so ∫
g2

j dµ = gj(x̂)2 = 0, j = 1, . . . , m,

so that µ is an admissible solution of Pr
M with value∫

f dµ = f(x̂) = f∗
M , which proves that inf Pr

M ≤ f∗
M .

This latter fact, combined with Proposition 3.1 and with

f∗ ≤ inf Pr
M , implies inf Pr

M ↓ f∗ as M → ∞, the desired

result. The final statement is immediate by taking as feasible

solution for Pr
M , the Dirac probability measure at the point

x∗ ∈ BM ∩ V (with M ≥ ‖x∗‖∞). As its value is now

f∗, it is also optimal, and so, Pr
M is solvable with optimal

value minPr
M = f∗.

Consider now, the following optimization problem Qr
M ,

the dual problem of Pr
M , i.e.,

Qr
M :

max
λ,δ,γ

γ − nδeM2

s.t. f + δθr +
∑m

j=1 λjg
2
j ≥ γ

γ ∈ R, δ ∈ R+, λ ∈ R
m
+ ,

(15)

with optimal value denoted by supQr
M . Indeed, Qr

M is

a dual of Pr
M because weak duality holds. To see this,

consider any two feasible solutions µ ∈ P(Rn) and

(λ, δ, γ) ∈ R
m
+ × R+ × R, of Pr

M and Qr
M , respectively.

Then, integrating both sides of the inequality in Qr
M with

respect to µ, yields

∫
fdµ + δ

∫
θr dµ +

m∑
j=1

λj

∫
g2

j dµ ≥ γ,

and so, using that µ is feasible for Pr
M ,∫

fdµ ≥ γ − δneM2
.

Hence, the value of any feasible solution of Qr
M is always

smaller than the value of any feasible solution of Pr
M , i.e.,

weak duality holds. In fact, we have the more important

and crucial following result.

Theorem 3.3: Let M be large enough so that BM ∩V 
=
∅. Let f ∈ R[x], and let r0 > max[deg f,deg gj ]. Then, for

every r ≥ r0, Pr
M is solvable, and there is no duality gap

between Pr
M and its dual Qr

M . That is, supQr
M = minPr

M .

For a proof see Lasserre [10].

We finally end up this section by re-stating a result proved

in [9], which, together with Theorem 3.3, will be crucial to

prove our main result.

Theorem 3.4 ([9]): Let f ∈ R[x] be nonnegative. Then

for every ε > 0, there is some r(f, ε) ∈ N such that,

fεr(f,ε) (= f + εθr(f,ε)) is a sum of squares, (16)

and so is fεr, for all r ≥ r(f, ε).

IV. MAIN RESULT

Recall that for given (ε, r) ∈ R×N, fεr = f + εθr, with

θr ∈ R[x] being the polynomial defined in (11). We now

state our main result:
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Theorem 4.1: Let V ⊂ R
n be as in (1), and let f ∈ R[x]

be nonnegative on V . Then, for every ε > 0, there exists

r ∈ N and nonnegative scalars {λj}m
j=1, such that, for all

r ≥ r,

fεr = q −
m∑

j=1

λj g2
j , (17)

for some s.o.s. polynomial q ∈ R[x]. In addition, ‖f −
fεr‖1 → 0, as ε ↓ 0.

For a proof see Lasserre [10].

Remark 4.2: (i) Observe that (17) is an obvious certifi-

cate of positivity of fεr on the algebraic set V , because

everywhere on V , fεr coincides with the s.o.s. polynomial

q. Also, as (17) is true for arbitrary ε > 0, it follows easily

from (17) that f is nonnegative on V . Therefore, when

f is nonnegative on V , one obtains with no assumption

on the algebraic set V , a certificate of positivity for any

approximation fεr of f (with r ≥ r), whereas f itself might

not have such a representation. In other words, the (ε, r)–
perturbation fεr of f , has a regularization effect on f as it

permits to derive nice representations.

(ii) From the proof of Theorem 4.1, instead of the

representation (17), one may also provide the alternative

representation

fεr = q − λ

m∑
j=1

g2
j ,

for some s.o.s. polynomial q, and some (single) nonnegative

scalar λ (instead of m nonnegative scalars in (17)).

A. The case of a semi-algebraic set

We now consider the representation of polynomials,

nonnegative on a semi algebraic set K ⊂ R
n, defined as,

K := {x ∈ R
n | gj(x) ≥ 0, j = 1, . . . , m}, (18)

for some family {gj}m
j=1 ⊂ R[x].

One may apply the machinery developed previously for

algebraic sets, because the semi-algebraic set K may be

viewed as the projection on R
n, of an algebraic set in

R
n+m. Indeed, let V ⊂ R

n+m be the algebraic set defined

by

V = {(x, z) ∈ R
n × R

m | gj(x)− z2
j = 0, j = 1, . . . , m}.

(19)

Then every x ∈ K is associated with the point

(x,
√

g1(x), . . . ,
√

gm(x)) ∈ V .

Let R[z] := R[z1, . . . , zm], and R[x, z] :=
R[x1, . . . xn, z1, . . . , zm], and for every r ∈ N, let

ϕr ∈ R[z] be the polynomial

z �→ ϕr(z) =
r∑

k=0

m∑
j=1

z2k
j

k!
. (20)

We then get :

Corollary 4.3: Let K be as in (18), and θr, ϕr be as in

(11) and (20). Let f ∈ R[x] be nonnegative on K. Then,

for every ε > 0, there exist nonnegative scalars {λj}m
j=1

such that, for all r sufficiently large,

f + εθr + εϕr = qε −
m∑

j=1

λj(gj − z2
j )2, (21)

for some s.o.s. polynomial qε ∈ R[x, z].
Equivalently, everywhere on K, the polynomial

x �→ f(x) + ε

r∑
k=0

n∑
i=1

x2k
i

k!
+ ε

r∑
k=0

m∑
j=1

gj(x)k

k!
(22)

coincides with the nonnegative polynomial x �→
qε(x,

√
g1(x), . . . ,

√
gm(x)).

So, as for the case of an algebraic set V ⊂ R
n, (21) is

an obvious certificate of positivity on the semi-algebraic set

K, for the polynomial fεr ∈ R[x, z]

fεr := f + εθr + εϕr,

and in addition, viewing f as an element of R[x, z], one

has ‖f − fεr‖1 → 0 as ε ↓ 0. Notice that no assumption on

K or on the gj’s that define K, is needed.

B. Computational implications

The results of the previous section can be applied to com-

pute (or at least approximate) the global minimum of f on

V . Indeed, with ε > 0 fixed, and 2r ≥ max[deg f,deg g2
j ],

consider the convex optimization problem

Qεr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
y

Ly(fεr),

Mr(y) � 0
Ly(g2

j ) ≤ 0, j = 1, . . . , m
y0 = 1,

(23)

where θr is as in (11), Ly and Mr(y) are the linear func-

tional and the moment matrix associated with a sequence

y indexed in the basis (5); see (6) and (7) in §II.

Qεr is called a semidefinite programming (SDP) prob-

lem, and its associated dual SDP problem reads

Q∗
εr

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
λ,γ,q

γ

fεr − γ = q −
m∑

j=1

λjg
2
j

λ ∈ R
m, λ ≥ 0,

q ∈ R[x], q s.o.s. of degree ≤ 2r.

(24)

The optimal values are denoted inf Qεr and supQ∗
εr, re-

spectively (or minQεr, maxQ∗
εr if the optimum is attained,

in which case the problems are said to be solvable). Both

problems Qεr and its dual Q∗
εr are nice convex optimiza-

tion problems that, in principle, can be solved efficiently

by standard software packages. For more details on SDP

theory, the interested reader is referred to the survey paper

[20].

That weak duality holds between Qεr and Q∗
εr is straight-

forward. Let y = {yα} and (λ, γ, q) ∈ R
m
+ × R × R[x] be
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feasible solutions of Qεr and Q∗
εr, respectively. Then, by

linearity of Ly,

Ly(fεr) − γ = Ly(fεr − γ)

= Ly(q −
m∑

j=1

λjg
2
j )

= Ly(q) −
m∑

j=1

λjLy(g2
j )

≥ Ly(q) [because Ly(g2
j ) ≤ 0 for all j]

≥ 0,

where the latter inequality follows from because q is s.o.s.

and Mr(y) � 0 ; see (9). Therefore, Ly(fεr) ≥ γ, the

desired conclusion. Moreover, Qεr is an obvious relaxation

of the perturbed problem

Pεr : f∗
εr := min

x
{fεr | x ∈ V }.

Indeed, let x ∈ V and let y := v2r(x) (see (5)), i.e., y
is the vector of moments (up to order 2r) of the Dirac

measure at x ∈ V . Then, y is feasible for Qεr because

y0 = 1, Mr(y) � 0, and Ly(g2
j ) = gj(x)2 = 0, for

all j = 1, . . . , m. Similarly, Ly(fεr) = fεr(x). Therefore,

inf Qεr ≤ f∗
εr.

It is not known whether strong duality holds between Qεr

and its dual Q∗
εr.

Theorem 4.4: Let V ⊂ R
n be as in (1), and θr as in

(11). Assume that f has a global minimizer x∗ ∈ V with

f(x∗) = f∗. Let ε > 0 be fixed. Then

f∗ ≤ supQ∗
εr ≤ inf Qεr

≤ f∗ + εθr(x∗) ≤ f∗ + ε

n∑
i=1

e(x∗
i )2 , (25)

provided that r is sufficiently large.

Proof: Observe that the polynomial f −f∗ is nonneg-

ative on V . Therefore, by Theorem 4.1, for every ε there

exists r(ε) ∈ N and λ(ε) ∈ R
m
+ , such that

f − f∗ + εθr +
m∑

j=1

λj(ε)g2
j = qε,

for some s.o.s. polynomial qε ∈ R[x]. But this shows that

(λ(ε), f∗, qε) ∈ R
m
+ × R × R[x] is a feasible solution of

Q∗
εr as soon as r ≥ r(ε), in which case, supQ∗

εr ≥ f∗.

Moreover, we have seen that inf Qεr ≤ fεr(x) for any

feasible solution x ∈ V . In particular, inf Qεr ≤ f∗ +
εθr(x∗), from which (25) follows.

Theorem 4.4 has a nice feature. Suppose that one knows

some bound ρ on the norm ‖x∗‖∞ of a global minimizer

of f on V . Then, one may fix à priori the error bound η

on | inf Qεr − f∗|. Indeed, let η be fixed, and fix ε > 0
such that ε ≤ η(neρ2

)−1. By Theorem 4.4, one has f∗ ≤
inf Qεr ≤ f∗ + η, provided that r is large enough.

The same approach works to approximate the global

minimum of a polynomial f on a semi-algebraic set K, as

defined in (18). In view of Corollary 4.3, and via a lifting

in R
n+m, one is reduced to the case of a real algebraic

set V ⊂ R
n+m, so that Theorem 4.4 still applies. It is

important to emphasize that one requires no assumption on

K, or on the gj’s that define K. This is to be compared

with previous SDP-relaxation techniques developed in e.g.

[6], [7], [8], [12], [19], where the set K is supposed to be

compact, and with an additional assumption on the gj’s to

ensure that Putinar’s representation [14] holds.
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