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Abstract— This paper investigates the wave-based analysis
and the wave control for ladder electric networks. The results
are a generalized version of our previous work for the cascade
connected damped mass-spring systems. We first clarify the
class of the ladder networks which satisfies the three condition
for the propagation constants to be analyzed by the wave-based
analysis. Secondly, for the class of the networks, we investi-
gate the analyticity of the secondary constants and positive
real property of the characteristic impedances. Properties of
the impedance matching are also investigated. A numerical
example for a mechanical system shows effectiveness of the
impedance matching for vibration control.

I. INTRODUCTION

In recent years, as an alternative approach to the modal
control [1]–[3], the wave control [4]–[6] has received in-
creasing attention in active vibration control of flexible
structures. The wave control is a similar concept to the
impedance matching in the electric circuit theory, and it
is expected to be applicable for vibration control of lightly
damping or large scale structures [5], [6]. The wave control
of flexible structures was originally developed for simple
uniform beam [4], and extended to structural networks
consists of uniform slender structural members connected
each other [5]. Aiming to treat more general structures,
there are some researches which utilize the dereverberated
mobility as a control design model [6]. The dereverberated
mobility can be calculated numerically from input/output
behavior through the cepstrum [6] for uniform members,
however, validity of the method to apply for non-uniform
structures is not clear from theoretical point of view. In this
sense, the wave control so far has been basically developed
based on the wave propagation of the uniform members.
In addition, for practical use, the wave control for lumped
parameter systems will be also needed.

In [7]–[10], aiming to clarify the possible structure of
the systems whose dynamical response can be described
by the traveling waves, we were concerned with the wave
control of (non-uniform) cascade connected damped mass-
spring systems. We considered three conditions for the
propagation constants which play central roles in the wave-
based analysis for the uniform case, and derived a necessary
and sufficient condition for the physical parameters of
the system to satisfy the three conditions [7], [8]. The
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condition for the physical parameters are that the masses,
damping coefficients and spring constants vary with some
constant ratio. The systems which satisfy the condition are
called the uniformly varying damped mass-spring systems.
For the system, we investigated analytical properties of
the secondary constants such as the propagation constants
and the characteristic impedances [9], [10]. Properties of
the impedance matching were also investigated. From the
analogy between mechanical systems and electric circuits,
the cascade connected damped mass-spring system can be
regarded as the RL-C ladder network, i.e., a special class
of the ladder network. So, in this paper, we extend our
previous results for the damped mass-spring systems to
general ladder electric networks. The circuit elements of
the network is only assumed to be linear, time invariant,
finite and passive. We first clarify a class of the networks
which satisfies the three conditions for the propagation
constants. Similar to the damped mass-spring case, the
uniformly varying condition is obtained. For this class of the
networks, we next investigate analyticity of the secondary
constants and positive real property of the characteristic
impedances. Properties of the impedance matching are also
investigated. A numerical example for a mechanical system
shows effectiveness of the impedance matching for vibration
control.

II. SYSTEM CHARACTERIZATION FROM PROPAGATION

CONSTANTS

In this paper, R+ denotes the set of positive real number,
and C+ denotes the set of complex number with positive real
part. The Laplace operator is represented by s.

This paper considers the ladder network shown in Fig. 1.
In the figure, Z�(s) and Y�(s) represent the impedance and
the admittance of electric circuits whose circuit elements are
linear, time invariant, finite and passive. The subscript � (� =
1, 2, · · · , n) represents the position of the circuit elements
from the left end. The voltage and the current of the right
port of the �-th elements are represented by v�(t)[V] and
i�(t)[A], respectively. From the assumption, notice that
Z�(s) and Y�(s) are rational positive real functions.
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Fig. 1. Ladder network
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Let v�(s) and i�(s) be the Laplace transform of v�(t) and
i�(t), respectively. The relation of v�(s) and i�(s) between
� and � − 1 are given by the recurrent formula[

v�(s)
i�(s)

]
= A�(s)

[
v�−1(s)
i�−1(s)

]
, (1)

where

A�(s) :=
[

1 − Z�(s)
− Y�(s) 1 + Z�(s)Y�(s)

]
. (2)

Remark 1: In the case of the cascade connected damped
mass-spring systems [7]–[10], the structure of the coef-
ficient matrix of the recurrent formula is the same as
(2), while the elements Z�(s) and Y�(s) are specifically
Z�(s) = s/(d�s + k�) and Y�(s) = m�s where m�, d�,
k� ∈ R+. Therefore, the ladder network shown in Fig. 1 is
a generalized version of the damped mass-spring systems
considered in [7]–[10].

Suppose there exists a transformation[
v�(s)
i�(s)

]
= T�(s)

[
i−� (s)
i+� (s)

]
, (3)

which transforms equation (1) into[
i−� (s)
i+� (s)

]
=T�(s)−1A�(s)T�−1(s)

[
i−�−1(s)
i+�−1(s)

]
(4)

=
[

λ1�
(s) 0
0 λ2�

(s)

] [
i−�−1(s)
i+�−1(s)

]
. (5)

As described in [7], [8], i−� (s) and i+� (s) can be regarded as
the traveling waves, if λ1�

(s) and λ2�
(s) has some prefer-

able properties. In that case, this diagonalization ensures
no internal reflection in the structure. In [7], [8], for the
cascade connected damped mass-spring systems, from the
analogy of the wave-based analysis of the uniform case, we
considered the three conditions for λ1�

(s) and λ2�
(s) of the

system to be analyzed by the traveling waves:

(a) λ1(s) �= λ2(s).
(b) λ1(s)λ2(s) = a ∈ R+.
(c) λ1(s), λ2(s) are independent of �.

In the above conditions, the subscript � is omitted owing
to (c). The condition (a) requires that the wave properties
of i+� (s) and i−� (s) are different, and (b) requires that
i+� (s) and i−� (s) travel in the opposite direction at the same
speed. The condition (c) requires that the wave properties
of i+� (s) and i−� (s) are independent of the position �. Notice
that if (c) is not satisfied, the wave forms of the traveling
waves may be distorted, and the waves possibly change
the direction at some locations. Although there are some
possibilities of extension of the wave control to the systems
with some distorted waves (possibly at different speed), the
topic is beyond the scope of this paper.

The next theorem characterizes a condition for the circuit
elements to satisfy the above three conditions.

Theorem 1: Consider the recurrent formula (1). There
exists a transformation (3) which transforms (1) into (5) and

the conditions (a), (b) and (c) are satisfied iff the impedance
and the admittance of the ladder network satisfy

Z�(s) =
1
a
Z�−1(s), Y�(s) = aY�−1(s), � = 2, 3, · · · , n.

(6)
Proof: The proof can be constructed by tracing the

proof of Theorem 1 in [7] (or Theorem 2.1 in [8]) by
replacing Z�(s) = s/(d�s + k�) and Y�(s) = m�s with
Z�(s) and Y�(s).

For the system satisfying (6), λ1(s) and λ2(s) are given
by the roots of a polynomial

λ2 − (a + 1 + Z�(s)Y�(s))λ + a, (7)

and the transformation matrix is given by

T�(s) :=
[

Z−
� (s) Z+

� (s)
−1 1

]
, (8)

where

Z−
� (s) :=

Z�(s)
λ1(s) − a

, Z+
� (s) := − Z�(s)

λ2(s) − a
. (9)

The variables λ1(s), λ2(s) and Z−
� (s), Z+

� (s) are called the
propagation constants and the characteristic impedances, re-
spectively, and referred to the secondary constants. See [7],
[8], for the precise derivation of these secondary constants.

From the definitions (7)–(9), some algebraic relationships
hold for the secondary constants. From the relations be-
tween the roots and the coefficients for (7), we get

λ1(s)λ2(s)=a, (10)

λ1(s) + λ2(s)=a + 1 + Z�(s)Y�(s). (11)

In addition, from (6) and (9), since

Z−
� (s) =

1
a
Z−

�−1(s), Z+
� (s) =

1
a
Z+

�−1(s), (12)

we get

T�−1(s)T−1
� (s) = Q, Q :=

[
a 0
0 1

]
. (13)

Finally, from (4) and (5), since T−1
� (s) = T−1

�−1(s)Q from
(13), we get

T−1
�−1QA�T�−1 = diag(λ1, λ2). (14)

On the other hand, from (13), since T�−1(s) = QT�(s) also
holds, we get

T−1
� A�QT� = diag(λ1, λ2). (15)

Wave-based interpretation can be constructed as follows.
Suppose the system is subjected to a harmonic excitation
and is in the steady state. Notice that arg[λ1(jω)] =
− arg[λ2(jω)] from (b). From (5) and (c), i+� (t) and i−� (t)
can be represented by i+� (t) = α(jω)λ2(jω)�ejωt and
i−� (t) = β(jω)λ1(jω)�ejωt, where α(jω) and β(jω) are
some complex-valued functions of s = jω. From the above
equations, by tracing the position where the argument of
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i+� (t) and i−� (t) are constant, i+� (t) and i−� (t) can be re-
garded as the traveling waves towards the opposite direction
of �. From (3) and (8), since i�(t) and v�(t) are represented
by the sum of these traveling waves, i�(t) and v�(t) can be
evaluated by these traveling waves.

To make the above wave-based analysis valid, however,
we need some investigation of the secondary constants as
analytic functions of s.

III. ANALYTICAL PROPERTIES OF SECONDARY

CONSTANTS

From the knowledge of the complex analysis, roots of a
polynomial can be regarded as the branches of an algebraic
function [11]. In this section, we investigate analytical
properties of the secondary constantans as the branches of
the algebraic function. In the following, the variable s is
omitted for notational simplicity.

A. Propagation constants

From (7), λ1 and λ2 can be regarded as the branches of
the algebraic function λ defined by

λ2 − (a + 1 + Z�Y�)λ + a = 0. (16)

As the branches of the algebraic function, we can show that
λ1 and λ2 are analytic in C+.

Theorem 2: Consider λ1 and λ2, the branches of the
algebraic function defined by (16). λ1 and λ2 are analytic
in C+.

Proof: From the results of the complex analysis, in the
polynomial coefficient form, the algebraic functions have
at most the algebraic singularities at the zeros of the first
coefficient, the zeros of the discriminant and infinity [11].

First, in the polynomial coefficient form, since the zeros
of the first coefficient are at most the poles of the positive
real functions Z� and Y�, we immediately know that the
zeros are not in C+. Next, notice that the discriminant of
(16) are given by

Dλ := (a + 1 + Z�Y�)
2 − 4a

=
{
(1 −√

a)2 + Z�Y�

}{
(1 +

√
a)2 + Z�Y�

}
. (17)

From the maximum modulus theorem [11], recall that the
analytic function in a region where the function is analytic
has its minimum of the real part only on its boundary.
Therefore, since Re[Z�] > and Re[Y�] > 0 in C+, we get
Dλ �= 0 in C+.

The next lemma is concerned with the loci of λ1 and λ2

in C+.
Lemma 1: Consider λ1 and λ2, the branches of the

algebraic function defined by (16). Suppose |λ1(s0)| >
√

a
at some s0 ∈ C+. Then the following inequality holds.

0 < |λ2| <
√

a < |λ1| < ∞, s ∈ C+ (18)
Proof: From (10) and analyticity, the lower and the

upper bounds of (18) are obvious. In addition, since λ1λ2 =
a from (10), for the proof of the lemma, we only need to
show that λ1 can not across the circle with radius

√
a.

Suppose |λ1| =
√

a at some s ∈ C+. Then, from (10), λ1

and λ2 are conjugate roots of (16). From (11), this requires
that the coefficient a+1+Z�Y� is real, and thus Z�Y� is real.
Noticing that Re[Z�] > and Re[Y�] > 0 in C+, we conclude
that Z�Y� ∈ R+. However, from (17), this requires that the
discriminant of (16) to be Dλ > 0. This is a contradiction.

B. Characteristic Impedances

From (9) and (7), notice that

aY�Z
+
�

2 − (−a + 1 + Z�Y�)Z+
� − Z�=0,

aY�(−Z−
� )2 − (−a + 1 + Z�Y�)(−Z−

� ) − Z�=0.

Observing the same structure of the above equations, we
see that Z+

� and −Z−
� are also regarded as the branches

the algebraic function Z� defined by

aY�Z�
2 − (−a + 1 + Z�Y�)Z� − Z� = 0. (19)

As the branches of the algebraic function, we can show that
Z+

� and Z−
� are analytic in C+.

Theorem 3: Consider Z+
� and −Z−

� , the branches of the
algebraic function defined by (19). Z+

� and Z−
� are analytic

in C+.
Proof: The proof is similar to the proof of Theorem 2.

In the polynomial coefficient form, it is clear that the zeros
of the first coefficient of (19) are not in C+. In addition, the
discriminant DZ is given by

DZ := (−a + 1 + Z�Y�)2 + 4aZ�Y�

=(a + 1 + Z�Y�)
2 − 4a = Dλ (20)

Therefore, from similar argument in the proof of Theorem
2, the zeros of the discriminant are not in C+.

Next, the loci of Z+
� and Z−

� are investigated. For the
purpose, from (6), notice that (19) is equivalent to

Y�+1Z�
2 − (−a + 1 + Z�+1Y�+1)Z� − aZ�+1 = 0.(21)

In addition, if we define

Y� := − 1
Z�

, (22)

from (19), −1/Z+
� and 1/Z−

� are represented by the
branches of the the algebraic function Y� defined by

Z�Y�
2 − (−a + 1 + Z�Y�)Y� − aY� = 0. (23)

From (21) and (23), we get

Z�=Z�+1 +
1

Y�+1 +
a

Z �

(24)

=
(1 + Z�+1Y�+1)Z�/a + Z�+1

Y�+1Z�/a + 1
, (25)

Y�=Y� +
1

Z� +
a

Y�

(26)

=−−aY� + (1 + Z�Y�)(−Y�)
a − Z�(−Y�)

. (27)
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Solutions of the equations (25) and (27) can be evaluated
by the fixed-pint iteration [12]. Corresponding to (25) and
(27), consider the iterative sequences Z(k)

� and Y(k)
� (with

respect to k) defined by

Z(k)
� =

(1 + Z�+1Y�+1)Z
(k−1)
� /a + Z�+1

Y�+1Z
(k−1)
� /a + 1

, (28)

Y(k)
� =−−aY� + (1 + Z�Y�)(−Y(k−1)

� )

a − Z�(−Y(k−1)
� )

. (29)

The next lemma relates the limits of these continued frac-
tions with Z+

� and Z−
� .

Lemma 2: Consider Z(k)
� and Y(k)

� defined by (28) and
(29), and Z+

� and Z−
� defined by (9). Suppose |Z+

� | < ∞
and |Z−

� | < ∞. The following equations hold:
(i) |λ2/λ1| < 1 : lim

k→∞
Z(k)

� = Z+
� , lim

k→∞
Y(k)

� = 1/Z−
� .

(ii) |λ2/λ1| > 1 : lim
k→∞

Z(k)
� = −Z−

� , lim
k→∞

Y(k)
� = −1/Z+

� .

Proof: See Appendix.
Owing to this lemma, we see that loci of Z−

� and Z+
� have

positive real part in C+.
Lemma 3: Consider Z+

� and −Z−
� , the branches of the

algebraic function defined by (19). Let λ1 be the branch of
the algebraic function defined by (16) satisfying |λ1(s0)| >√

a at some s0 ∈ C+, and Z+
� be the corresponding branch

satisfying (9). Then, Re[Z+
� ] ≥ 0 and Re[Z−

� ] ≥ 0 in C+.
Proof: From Lemma 1, Lemma 2 and |Z+

� | < ∞,
|Z−

� | < ∞ from the analyticity, notice that lim
k→∞

Z(k)
� = Z+

� ,

lim
k→∞

Y(k)
� = 1/Z−

� . On the other hand, observing (24)

and (26), we see that Z(k)
� and Y(k)

� can be recurrently
calculated with the calculations: inverse, multiplication with
positive real number, and sum with complex number with
positive real part. Let Z(0)

� and Y(0)
� be some complex

number with positive real part. From the property of the
calculations in (24) and (26) described the above, we
see that Re[Z(k)

� ] > 0 and Re[Y(k)
� ] > 0 in C+ for

all positive integer k. Taking the limit of both sides, we
get lim

k→∞
Re[Z(k)

� ] = Re[Z+
� ] ≥ 0 and lim

k→∞
Re[Y(k)

� ] =

Re[1/Z−
� ] ≥ 0.

Combining Theorem 3 and Lemma 3, we see that Z−
�

and Z+
� are positive real functions.

Theorem 4: Under the assumptions of Lemma 3, Z−
� and

Z+
� are positive real functions.

Proof: From the definition of the positive real function
[13], we need to show:
(i) Z+

� and Z−
� are analytic in C+.

(ii) Z+
� and Z+

� are real for s ∈ R+.
(iii) Re[Z+

� ] ≥ 0 and Re[Z−
� ] ≥ 0 for s ∈ C+.

Owing to Theorem 3 and Lemma 3, the remainder of
the proof is to show the condition (ii). Notice that the
discriminant of (19) is given by (20). For s ∈ R+, we
get

DZ = (a + 1 + Z�Y�)2 − 4a > (a − 1)2 ≥ 0.

This proves (ii).
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Fig. 2. Damped mass-spring system with auxiliary masses

IV. IMPEDANCE MATCHING

In this section, we investigate properties of the network
terminated by the characteristic impedances. This termina-
tion is referred to the impedance matching. For the purpose,
define Z−

0 := Z0
λ1−a = aZ1

λ1−a and Z+
0 := − Z0

λ2−a = − aZ1
λ2−a

by extending the definition (9). The next theorem show that
these termination can eliminate one of the traveling waves.

Theorem 5: Consider the ladder network shown in Fig.
1. Under the assumptions of Lemma 3, the following
statements hold.
(i) Consider terminating the right end of the network by
Z+

n , i.e., vn = Z+
n in. Then the right reflection coefficient

ρR
� := i−� /i+� renders ρR

� = 0 in C+ for all � = 0, 1, · · · , n.
(ii) Consider terminating the left end of the network by
Z−

0 , i.e., v0 = −Z−
0 i0. Then the left reflection coefficient

ρL
� := i+� /i−� renders ρL

� = 0 in C+ for all � = 0, 1, · · · , n.
Proof: Notice that i−� = (v� −Z+

� i�)/(Z+
� +Z−

� ) and
i+� = (v� + Z−

� i�)/(Z+
� + Z−

� ) from (3) and (8), and that
i−� = λ1i

−
�−1 and i+� = λ2i

+
�−1 from (5) and (c). Notice also

that 0 < |λ1| < ∞, 0 < |λ2| < ∞ in C+ from Lemma 1,
and that Z+

� �= −Z−
� in C+ since Z� has no branch point

in C+ from Theorem 3.
For (i), from vn = Z+

n in, we get i−n = 0 and i+n �= 0.
Moreover, since i−�−1 = 1/λ1i

−
� and i+�−1 = 1/λ2i

+
� , we

get i−� = 0 and i+� �= 0 for all � = 0, 1, · · · , n. Therefore,
ρR

� = 0 in C+ for all � = 1, 2, · · · , n. On the other hand,
for (ii), from v0 = −Z−

0 i0, we get i+0 = 0 and i−0 �= 0.
Since i+� = λ2i

+
�−1 and i−� = λ1i

−
�−1, we get i+� = 0 and

i−� �= 0 for all � = 0, 1, · · · , n. Therefore, ρL
� = 0 in C+ for

� = 0, 1, · · · , n.
Remark 2: Notice that the termination considered in

Theorem 5 is realized by the positive real functions Z+
� and

Z−
� . As described in [9], [10] for the cascade connected

damped mass-spring systems case, by defining the inputs
and the outputs of the network and regarding the termina-
tions as a controller, we may construct the condition for
the internal stability based on the Nyquist criterion. On the
other hand, although the termination of the right end by
−Z−

n or the termination of the left end by −Z+
0 realizes

ρL
� = 0 or ρR

� = 0, these terminations may violate the
stability of the network.

V. NUMERICAL EXAMPLE

In this section, we consider vibration control of a me-
chanical system shown in Fig. 2 by the impedance match-
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Fig. 3. Electric circuit analogy

ing. The system is composed of cascade connected damped
mass-spring systems with auxiliary damped mass-spring
systems installed on each mass. Mass, damping coefficient
and spring constant of the �-th stage are represented by
m�[Kg], d�[Ns/m] and k�[N/m], respectively, and the aux-
iliary mass, damping coefficient and spring coefficient are
represented by ma�

[Kg], da�
[Ns/m] and ka�

[N/m]. ẋ�[m/s]
and ẋa�

[m/s] are the velocity of the masses m� and ma�
,

and f�[N] and fa�
[N] are the reaction force produced by

the corresponding springs and dampers. The left end is fixed
on the ground (ẋn = 0) and a control force fn is acting on
the right end. With the measurement ẋn, the control force
is given by fn = K(s)ẋn.

An electric circuit analogy for the mechanical system by
using mobility analogy (velocity-voltage and force-current
correspondence) is shown in Fig. 3. Circuit elements of the
�-th network is composed of the inductor 1/k�[H], resistor
1/d�[Ω] and capacitance m�[F] with parallel connection of
the auxiliary inductor 1/ka�

[H], resistance 1/da�
[Ω] and

capacitance ma�
[F]. ẋ�[V] and ẋa�

[V] are the voltage of
the capacitances m� and ma�

, and f�[A] and fa�
[A] are the

current through the corresponding inductors and resisters.
The circuit can be regarded as the ladder network shown

in Fig. 1, and the corresponding impedance and admittance
are given by

Z� =
s

d�s + k�
, Y� = m�s +

1
s

da�
s + ka�

+
1

ma�
s

(See Fig. 3). In this case, the uniformly varying condition
(6) is reduced to m�/m�−1 = d�/d�−1 = k�/k�−1 = a and
ma�

/ma�−1 = da�
/da�−1 = ka�

/ka�−1 = a. From Theorem
5, notice that the impedance matching at the right end is
achieved by fn = 1/Z+

n ẋn.
In the numerical example, we consider the case, n =

20, m1 = 1, d1 = 2 × 0.001, k1 = 1, ma1 = 0.1,
da1 = 2 × 0.005, ka1 = 0.1 with a = 0.9. Frequency
response of the characteristic impedance Z+

n is evaluated
by the solution of (19) with positive real part, and can be
approximated by a rational positive real function through
the complex curve fitting. Fig. 4 shows the Bode plots of
the impedance matching controller K+

n := 1/Z+
n (dashed

line) and an approximation K̂+
n (s) (solid line) with degree

12. K+
n and K̂+

n coincide in this figure.
Fig. 5 shows the gain plots of the transfer functions from
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Fig. 4. K+
n (dashed) and K̂+

n (solid)
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Fig. 5. Open (dashed) and closed loop (solid)

the disturbance at m1 to x1 (the displacement of m1). The
dashed line represents the gain without control and the solid
line represents the gain with control by K̂+

n . From the
figure, the impedance matching controller well suppresses
the peak of the vibration modes.

Fig. 6 shows the impulse response disturbed at m1. Solid
lines represent the response with control and dashed lines
represent the response without control. x1, x10, x20 and
xa20 are the displacement of the corresponding masses, and
fn is the control force. From the response with control,
reflection is suppressed at position 20 where controller ex-
ists and vibration vanishes rapidly compare to the response
without control. Vibration of the auxiliary mass is also
suppressed. To evaluate the robustness of the controller
against parameter variations, Fig. 7 shows the impulse
response for the system whose physical parameters vary
at random within 25[%] from its nominal values. From the
figure, the impedance matching controller is still effective
even for the system with relatively large perturbations.
Although the class of the system considered in this paper
is still somewhat restricted, this motivates to apply our
impedance matching controller to some perturbed systems.

VI. CONCLUSION

In this paper, we extended our previous results for the
damped mass-spring systems to the ladder electric networks,
whose circuit elements are linear, time invariant, finite and
passive. We first clarified a class of the network that satisfies
the three conditions for the propagation constants. For the
class of the ladder networks, we next investigated analyticity
of the secondary constants and positive real property of

5302



0 20 40 60 80 100 120
-1

0

1

x
1

Open(--) & Closed loop(-)

0 20 40 60 80 100 120
-1

0

1

x
1
0

0 20 40 60 80 100 120
-2

0

2

x
2
0

0 20 40 60 80 100 120
-2

0

2

x
a
2
0

0 20 40 60 80 100 120
-0.1

0

0.1

f
n

time[s]

Fig. 6. Impulse response with control (solid) and without control (dashed)
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Fig. 7. Impulse response with ±25[%] parameter variation

the characteristic impedances. Properties of the impedance
matching were also investigated. A numerical example for a
mechanical system showed effectiveness of the impedance
matching for vibration control.

One of our future researches is a straightforward ex-
tension of the results to other more general networks.
Investigation of the possibility to relax the conditions (a)-
(c), and the robust analysis and design of the wave control
are also interesting.
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APPENDIX

Proof of Lemma 2: From (2) and (13), notice that (28)
and (29) are equivalent to

Z(k)
� =

ξ
(k)
1

ξ
(k)
2

where

[
ξ
(k)
1

ξ
(k)
2

]
= A−1

�+1Q
−1

[
ξ
(k−1)
1

ξ
(k−1)
2

]
, (30)

and

Y(k)
� = −ζ

(k)
2

ζ
(k)
1

where

[
ζ
(k)
1

ζ
(k)
2

]
= A�Q

[
ζ
(k−1)
1

ζ
(k−1)
2

]
. (31)

From (14) and (15), since (30) and (31) are transformed
to[
ξ
(k)
1

ξ
(k)
2

]
=(QA�+1)−k

[
ξ
(0)
1

ξ
(0)
2

]
=

(
T�

[
λ1 0
0 λ2

]
T−1

�
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[
ξ
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ξ
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2

]

=T�
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1
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0
0 1

λk
2

]
T−1

�

[
ξ
(0)
1

ξ
(0)
2

]
,[

ζ
(k)
1

ζ
(k)
2

]
=(A�Q)k

[
ζ
(0)
1

ζ
(0)
2

]
= T�

[
λk

1 0
0 λk

2

]
T−1

�

[
ζ
(0)
1

ζ
(0)
2

]
,

we get

Z(k)
� =

(Z+
� λk

1 + Z−
� λk

2)ξ(0)
1 + Z−

� Z+
� (λk

1 − λk
2)ξ(0)

2

(λk
1 − λk

2)ξ(0)
1 + (Z−

� λk
1 + Z+

� λk
2)ξ(0)

2

,

Y(k)
� =− (λk

2 − λk
1)ζ(0)

1 + (Z−
� λk

2 + Z+
� λk

1)ζ(0)
2

(Z+
� λk

2 + Z−
� λk

1)ζ(0)
1 + Z−

� Z+
� (λk

2 − λk
1)ζ(0)

2

.

From the above equations, with the assumptions |Z+
� | <

∞, |Z−
� | < ∞ and limk→∞ |λ2/λ1|k → 0 for (i) or

limk→∞ |λ1/λ2|k → 0 for (ii), we get (i) and (ii).
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