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Abstract— The so-called spectral theorem for square irre-
ducible matrices is well-known in the max-plus community.
The theorem is a fundamental result concerning matrix powers
and eigenvalues in the context of max-plus algebra and forms
the basis for many results.

This paper aims at giving a complete proof of the above
spectral property in its full generality. In particular, the
distinction will be highlighted between the graph cyclicity of
a matrix (the cyclicity of the graph of the matrix) and the
cyclicity of the matrix itself.

I. INTRODUCTION

The so-called spectral theorem for square irreducible
matrices is well-known in the max-plus community. The
theorem is a fundamental result concerning matrix powers
and eigenvalues in the context of max-plus algebra and forms
the basis for many results. And although the property is
generally accepted to be true, actual proofs of the property
in its full generality are difficult to find. Most of the proofs
available in literature, c.f. [1], focus on special cases and state
that the general case can obtained by a similar reasoning,
or refer to publications that are difficult to track. Also the
difference between the cyclicity of a matrix and the cyclicity
of its graph is not always treated in a transparent way.

The present paper is based on Chapter 3 in [6]. The
paper aims at giving a complete proof of the above spectral
property in its full generality. In particular, the distinction
will be highlighted between the graph cyclicity of matrix A
(the cyclicity of the graph of matrix A) and the cyclicity of
matrix A itself.

In addition to the above references, more information on
max-plus algebra, the spectral theorem, its (partial) proof(s)
and the two notions of cyclicity of a max-plus matrix can be
found in [3], [4] and [5].

II. MAX-PLUS ALGEBRA

A. Basic definitions

To introduce the max-plus algebra, define Rmax
def
= R∪

{−∞}, where R denotes the set of real numbers. For a,b ∈

Rmax, define a⊕b
def
= max{a,b} and a⊗b

def
= a+b. Introduce

ε def
= −∞ and e

def
= 0, then ε is the neutral element with respect

to ⊕ and e is the unit element with respect ⊗, i.e., a⊕ε = ε⊕
a = ε and a⊗e = e⊗a = a, for all a ∈ Rmax. The quintuple
(Rmax,⊕,⊗,ε,e) forms the max-plus algebra.
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B. Vectors and matrices

The natural numbers are denoted by N = {0,1,2, . . .}, and

for any integer m≥ 1, define m
def
= {1, . . . ,m}. Let R

k×l
max be the

set of k× l matrices with entries in Rmax. If A ∈ R
k×l
max, then

ai j denotes the element of A in row i ∈ k and column j ∈ l.
The element ai j will also be referred to as the (i, j)-th entry
of A. Likewise for matrix B with entries bi j, matrix C with
entries ci j, etc. Given matrices A,B ∈ R

k×l
max, then their sum

A⊕B, when denoted by C, is defined by ci j
def
= ai j ⊕bi j, for

all j ∈ k and j ∈ l. Given matrices A ∈ R
k×m
max and B ∈ R

m×l
max ,

then their product A⊗B, when denoted by D, is defined by
di j

def
=

⊕
s∈m ais ⊗bs j, for all i ∈ k and j ∈ l. If A ∈ R

n×n
max and

k is a non-negative integer, then A⊗k def
= A⊗A⊗ ·· · ⊗A (k

times). Finally, if A ∈ R
n×n
max, then A+ def

=
⊕

s≥1 A⊗s.
The real number λ ∈ R is an eigenvalue of A ∈ R

n×n
max if

there is a vector v ∈ R
n, with real components vi, i ∈ n, such

that A⊗v = λ ⊗v, where the i-th component of A⊗v equals⊕
s∈n ais ⊗ vs and the i-th component of λ ⊗ v is given by

λ ⊗ vi.
The matrix Aλ denotes the matrix obtained from A by

subtracting λ from all (finite) entries of A. Clearly, λ is an
eigenvalue of A ∈ R

n×n
max if and only if e is an eigenvalue of

Aλ ∈R
n×n
max, where for both the same eigenvector can be used!

III. CIRCUITS AND GRAPH CYCLICITY

A. Max-plus and graphs

Let G (A) represent the graph of matrix A ∈ R
n×n
max. This

graph consists of a node set N (A) = {1, . . . ,n} and a di-
rected arc set D(A) = {( j, i)∈ n×n|ai j �= ε}. In the following
N (A) and n will be used interchangeably to denote the set
{1, . . . ,n}. If ( j, i) is an arc of G (A), then it starts in node j,
ends in node i and its weight is ai j (no typo!). In G (A) the
notions of arcs, paths, circuits and their concatenations are
defined as in the usual way. The same holds for the length
and weight of paths and circuits. A path is called elementary
if every node of the path is traversed only once. A circuit
is said to be elementary if in the succession of nodes each
of its nodes occurs only once. Then the circuit has no self
intersections. It can be shown constructively that every circuit
can be seen as the concatenation of elementary circuits.

If A,B∈R
n×n
max, then matrices A and B are said to be similar,

denoted as A ∼ B, if G (A) can be obtained from G (B) by a
mere relabelling of its nodes. Hence, matrices A,B ∈ R

n×n
max

are similar, if B can be obtained from A by a permutation
applied to the rows and the columns of A simultaneously.

In this paper the (i, j)-th entry of A⊗k and A+ will be
denoted by [A⊗k]i j and [A+]i j, respectively, for i, j ∈ n. It
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is easy to prove, see [1] or [6], that [A⊗k]i j is equal to the
maximal weight of a path in G (A) of length k from node j
to node i. Similarly, [A+]i j is equal to the maximal weight of
a path in G (A) of any positive length from node j to node
i. From these interpretations it follows that

[A⊗(k+l)]i j ≥ [A⊗k]is ⊗ [A⊗l ]s j,

for all integers k, l ≥ 1 and all i, j,s ∈ n. Further, it follows
that [A⊗k]i j ≤ [A+]i j, for all i, j ∈ n, implying that

[A⊗k]i j ≤
⊕
s∈n

[A+]is ⊗ [A+]s j, (1)

for all integers k ≥ 1, and i, j ∈ n.

B. Connectedness and irreducibility

The graph G (A) is called strongly connected if every two
nodes in N (A) are connected to each other by means of a
path. If G (A) is not strongly connected, there exist ‘largest’
subsets of nodes that are connected to each other by means of
a path. The associated subgraphs are referred to as maximally
strongly connected subgraphs (m.s.c.s.).

The matrix A is called irreducible if the graph G (A) is
strongly connected. The matrix A is called reducible if it is
not irreducible, in which case the graph G (A) is not strongly
connected.

If the graph G (A) contains no circuits at all, then the
matrix A is called acyclic. Clearly, if A is not acyclic, then
G (A) contains at least one circuit. Obviously, any irreducible
matrix is not acyclic.

C. Graph cyclicity

If A ∈ R
n×n
max is irreducible, and consequently not acyclic,

the graph cyclicity of A is defined to be equal to the g.c.d.
of the lengths of all circuits in G (A), where g.c.d. stands
for ‘greatest common divisor’. Since every circuit is the
concatenation of elementary circuits, it follows that the graph
cyclicity of an irreducible A is also given by the g.c.d. of
the lengths of all elementary circuits in G (A).

(
To justify

this alternative definition, the next observation is useful: If
ai, i ∈ q, are q positive integers, and βi ∈N, i ∈ q, are natural
numbers of which at least one is positive, then the g.c.d. of
{a1, . . . ,aq} is equal to the g.c.d. of {a1, . . . ,aq,∑i∈q βiai}.
In the present context, the ai, i ∈ q, can be seen as lengths of
elementary circuits, whereas ∑i∈q βiai represents the length
of a non-elementary circuit.

)
If A is not irreducible, but at least not acyclic, the graph

cyclicity of A is defined to be equal to the l.c.m. of the graph
cyclicities of all m.s.c.s.’s in G (A), where l.c.m. stands for
‘least common multiple’.

The graph cyclicity of a matrix A that is not acyclic is
denoted by σG (A). For acyclic matrices the graph cyclicity
has no meaning and therefore is not defined!

IV. CRITICAL CIRCUITS AND MATRIX
CYCLICITY

A. Critical circuits and critical graphs

If A ∈ R
n×n
max is irreducible then it has a unique eigenvalue,

see [1], [6]. In terms of the associated graph G (A), the

eigenvalue of an irreducible matrix A is equal to the maximal
circuit mean in G (A), where circuit mean is defined as circuit
weight divided by circuit length.

Assume that A is not acyclic. Circuits in G (A) of which
the mean is maximal are called critical circuits. The critical
graph G (A) of such a matrix A, denoted by G c(A), is given
by the node set n (also denoted by N (A)) and the set of
arcs that are contained in any of the critical circuits. Note
that the node set of the graph and the critical graph is the
same. This is merely done to make that matrix A and the
matrix that can be associated with the critical graph have the
same dimensions. The latter matrix is called critical matrix.
More specifically, if A is not acyclic, the critical matrix of
A, denoted by Ac, is the restriction of A to those entries that
correspond to arcs contained in any of the critical circuits,
while all other entries of Ac have value ε . Clearly, Ac ∈
R

n×n
max and the graph of Ac is equal to the critical graph of A,

i.e., G c(A) = G (Ac). It can be shown easily, see [1] or [6],
that any circuit in G (Ac) is critical, so that G c(Ac) = G (Ac).
Hence, G c(A) = G (Ac) = G c(Ac) for any matrix A which is
not acyclic.

B. Matrix cyclicity

The matrix cyclicity of a matrix A that is not acyclic is
defined to be equal to the graph cyclicity of the associated
critical matrix Ac. The matrix cyclicity of a ‘non-acyclic’
matrix A is denoted by σM (A). Hence, σM (A) = σG (Ac).

If A = Ac, then obviously G (A) = G (Ac) = G c(A) =
G c(Ac), implying σG (A) = σG (Ac) = σM (A) = σM (Ac).
Hence, for matrices that themselves are critical, the graph
and matrix cyclicity coincide!

If A �= Ac, the graph and matrix cyclicity may be different:

Example 4.1: Consider

A =

(
e 1
1 ε

)
with Ac =

(
ε 1
1 ε

)
.

The graph G (A) of matrix A consists of two circuits. One
circuit, indicated by 1 → 1, has length one and mean e. The
other circuit, indicated by 1 → 2 → 1, has length two and
mean one. The critical graph G c(A) of matrix A consists
of one circuit, indicated by 1 → 2 → 1, with length two. It
follows that the graph cyclicity of A is one, whereas the
matrix cyclicity of A is two.

Above it is stated that G c(A) = G (Ac) = G c(Ac) for any
matrix A which is not acyclic. This implies that σM (A) =
σG (Ac) = σM (Ac) for any matrix A which is not acyclic.
Hence, the matrix cyclicity of a matrix and its critical matrix
coincide, whereas the graph cyclicity of a matrix and its
critical matrix are generally different.

C. Some properties of circuits and critical circuits

1) Let a circuit of length l be given. Choose a node on
the circuit and traverse the circuit with steps of length
k, possibly going around the circuit more than once.
Then after a certain number of these steps of length
k the chosen node is reached again. If the number of
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steps of length k to reach the chosen node is denoted
by γ , then the product k γ equals the l.c.m. of {k, l}.

2) Let ξ be a path contained in a critical circuit β of
G (A). Assume that ξ is a path of length k from node
j to node i. Then the weight of ξ must be equal to
the maximal weight of any path of length k from node
j to node i., i.e., the weight of ξ must be equal to
[A⊗k]i j. Indeed, if the previous is not the case, then ξ
can be replaced by another path of length k from node
j to node i, with a weight larger than the weight of
ξ . The new circuit obtained in this way has a circuit
mean larger than the circuit mean of β . However,
this is contradicted by the fact that β is critical and,
consequently, has maximal circuit mean.

D. Critical graphs and powers of matrices

Recall that σM (A) = σG (Ac) = σM (Ac) for any matrix A
that is not acyclic. In this subsection this observation will
be generalized. For that purpose, denote the maximal circuit
mean in the graph of a matrix A that is not acyclic by µ(A).
Clearly, if A is irreducible, then µ(A) equals the eigenvalue
of A. Now the following generalization can be stated.

Lemma 4.2: Let A ∈ R
n×n
max be not acyclic with critical

matrix Ac. Then for all integers k ≥ 1:
(1) G c((Ac)⊗k) = G c(A⊗k),
(2) G c((Ac)⊗k) = G ((Ac)⊗k),

so that σM (A⊗k) = σG ((Ac)⊗k) = σM ((Ac)⊗k), for all inte-
gers k ≥ 1.

Proof: Note that if A is not acyclic, then Ac is not
acyclic, and also A⊗k and (Ac)⊗k are not acyclic, for any
integer k ≥ 1. Indeed, if G (A) contains at least one circuit,
it also contains a critical circuit, which must be contained
in G (Ac). Hence, Ac is not acyclic. Next consider a critical
circuit in G (A), choose an arbitrary node on the circuit and
traverse the circuit with steps of length k until the chosen
node is reached again. If l such steps of length k are needed,
then there exists a circuit in G (A⊗k) of length l. Hence, if
A is not acyclic, then A⊗k is not acyclic. In a similar way it
follows that then also (Ac)⊗k is not acyclic.

Note that any arc in G (A⊗k) from node j to node i
corresponds to at least one path in G (A) of length k from
node j to node i with maximal weight [A⊗k]i j. Then, if a
number of arcs in G (A⊗k) form a critical circuit, say of
length l, the corresponding paths in G (A) form a circuit of
length k l. Since the weight of the path is not altered by
the change of interpretation, it follows that µ(A⊗k) ≤ µ(A).
Conversely, consider a critical circuit in G (A). Next, choose
an arbitrary node on the circuit and traverse the circuit with
steps of length k until the chosen node is reached again.
Because the circuit is critical the weight each step of length
k, say from node j to node i, must be equal to the maximal
weight of any path of length k from node j to node i (see also
the previous subsection). If l steps of length k are needed,
then there exists a circuit in G (A⊗k) of length l. It now
follows that µ(A) ≤ µ(A⊗k), so that µ(A⊗k) = µ(A).

The above implies that any critical circuit in G (A⊗k) of
length l can be ‘expanded’ to at least one critical circuit

in G (A) of length k l and, conversely, any critical circuit in
G (A) of length k l can be ‘contracted’ to a critical circuit in
G (A⊗k) of length l. More explicitly, if α is a critical circuit
in G (A⊗k) of length l, there is at least one critical circuit α ′

in G (A) of length k l, that can be contracted to α . Because
any critical circuit in G (A) is also a critical circuit in G c(A),
it follows that α ′ is a critical circuit in G (Ac) of length k l.
The latter implies that α is a critical circuit in G ((Ac)⊗k) of
length l. Hence, any critical circuit in G (A⊗k) is a critical
circuit of G ((Ac)⊗k). By the same reasoning it follows that
any critical circuit in G ((Ac)⊗k) is also a critical circuit of
G (A⊗k). Since critical graphs are completely determined by
their circuits, this concludes part (1) of the lemma.

Part (2) can be proved in a similar way as part (1).
Hence, G c(A⊗k) = G ((Ac)⊗k) = G c((Ac)⊗k), implying that

σM (A⊗k) = σG ((Ac)⊗k) = σM ((Ac)⊗k), for all k ≥ 1.

V. FUNDAMENTAL SPECTRAL THEOREM

With the concepts introduced above the celebrated spectral
theorem for irreducible max-plus matrices can be stated now.

A. General formulation of spectral theorem

Theorem 5.1: Let A ∈ R
n×n
max be an irreducible matrix

with eigenvalue λ and matrix cyclicity σ , i.e., σM (A) =
σ . Then there is an integer N ∈ N such that

A⊗(k+σ) = λ⊗σ ⊗A⊗k
,

for all integers k ≥ N.

The purpose of this paper is to present a complete proof
of this fundamental result and to emphasize the distinction
between the graph and matrix cyclicity of matrix A. To that
end, in this section, first a special case of Theorem 5.1 will
be treated. The special case deals with the situation that the
eigenvalue of A equals e and the matrix cyclicity of A is one.

In Section VI the graph cyclicity is studied and it is shown
that if the graph cyclicity of an irreducible matrix A is σ ,
then the graph cyclicity of A⊗σ is one. In the same spirit, in
Section VII the matrix cyclicity is studied and it is shown
that if the matrix cyclicity of an irreducible matrix A is σ ,
then the matrix cyclicity of A⊗σ is one. It is furthermore
shown that in that case the matrix cyclicity corresponding to
each associated m.c.s.c. is one too. Then for each m.s.c.s.
the special case formulated below can be applied and the
proof of Theorem 5.1 can be completed. This is done in
Section VIII.

The proof of the special case is inspired by [5]. In the
proof the next lemma, see [2], plays an important role.

Lemma 5.2: Let a1,a2, . . . ,aq be positive integers such
that their g.c.d. is one i.e., g.c.d.{a1,a2, . . . ,aq} = 1. Then
there exists an integer N ∈N such that for all integers k ≥ N
there are n1,n2 . . . ,nq ∈ N such that

k = n1a1 +n2a2 + · · ·+nqaq.
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B. Special case of spectral theorem

As already indicated the following special case of Theo-
rem 5.1 will be treated first.

Special case 5.3: Let A ∈ R
n×n
max be an irreducible matrix

with eigenvalue e and matrix cyclicity one, i.e., σM (A) = 1.
Then there exists an integer N ∈ N such that

A⊗(k+1) = A⊗k
,

for all integers k ≥ N.

Proof: Let G c(A) be the critical graph of A and let
N c ⊆ n be the set of nodes contained in any of the critical
circuits. Note that N c and n are not necessarily the same!

It will subsequently be shown below that there exists an
integer N ∈ N such that for all integers k ≥ N:

(1) [A⊗k]ii = [A+]ii = e for all i ∈ N c,
(2) [A⊗k]i j = [A+]i j for all i ∈ N c and j ∈ n ,
(3) [A⊗k]i j =

⊕
l∈N c

[A+]il ⊗ [A+]l j for all i, j ∈ n.

From the above three statements it follows that A⊗(k+1) =
A⊗k for all integers k ≥ N. Clearly, only Case (3) is required
to complete the proof. However, Case (2) will be used in
proving Case (3), while Case (1) plays a role in the proof
of Case (2). The reason for considering the three statements
is that they give the proof a nice structure. Therefore, to
complete the proof, the above three statements will be proved
successively.

Case (1). Consider node i ∈ N c, then there is a strongly
connected component of G c(A), say G1, with node set N1,
such that i∈N1. Note that G1 is a critical (sub)graph, imply-
ing that all its circuits are critical. Since the matrix cyclicity
of A is one, it follows that the graph (and matrix) cyclicity of
the matrix corresponding to G1 is one too. Hence, there exist
(elementary) circuits in G1, say β1, . . . ,βq, whose lengths
have a g.c.d. equal to one, i.e., g.c.d. {|β1|l, . . . , |βq|l} = 1,
where |βi|l stands for the length of circuit β j, for j ∈ q. Since
G1 is strongly connected, there is a circuit α in G1 such that
i is a node in α and α ∩ β j �= /0, for j ∈ q, i.e., α passes
through i and through all circuits β1, . . . ,βq. By Lemma 5.2,
it follows that there is an integer N ∈ N such that for each
integer k ≥ N, there exist n1, . . . ,nq ∈ N, such that

k−|α|l = n1 |β1|l + · · ·+nq |βq|l.

For these n1, . . . ,nq, construct a circuit passing through i,
built from circuit α , n1 copies of circuit β1, n2 copies of
circuit β2, etc., up to nq copies of circuit βq. It is clear that
the circuit is a circuit in G1. Therefore, it is itself also a
critical circuit with weight e. Recall that A is irreducible
with eigenvalue e. Hence, the maximal circuit mean in G (A)
is e, implying that [A⊗k]ii = e, for all integers k ≥ N, by the
definition of [A+]ii, also implying that [A+]ii = e.

Case (2). By the definition of [A+]i j there exists an l such
that [A⊗l ]i j = [A+]i j. In fact, since the eigenvalue of A is
e, it can be shown by contradiction that even l ≤ n.

(
To

that end, the interpretation of the eigenvalue as the maximal

circuit mean is useful.
)

Then it follows for k large enough,
for i ∈ N c and j ∈ n, that

[A⊗(k+l)]i j ≥ [A⊗k]ii ⊗ [A⊗l ]i j = [A⊗l ]i j = [A+]i j ,

see Case (1). Clearly,

[A+]i j =
⊕
s≥1

[A⊗s]i j ≥ [A⊗(k+l)]i j ≥ [A+]i j.

If k + l is replaced by k, it therefore follows that [A⊗k]i j =
[A+]i j, for all i ∈ N c, j ∈ n, with k large enough. Dually, it
follows, of course, that [A⊗m]i j = [A+]i j, for all i ∈ n, j ∈N c

and m large enough.
Case (3). Take k and m large enough such that [A⊗k]il =

[A+]il and [A⊗m]l j = [A+]l j, for l ∈ N c, see Case (2). Then

[A⊗(k+m)]i j ≥ [A⊗k]il ⊗ [A⊗m]l j = [A+]il ⊗ [A+]l j,

for all l ∈N c. If k+m is replaced by k, it therefore follows
for k large enough that

[A⊗k]i j ≥
⊕

l∈N c

[A+]il ⊗ [A+]l j. (2)

Now consider a path from j to i not passing through N c.
Such a path consists of an elementary path, and a number of
circuits all having negative weight, i.e., a weight less than e.
Let the circuit mean of a non-critical circuit be maximally
δ , then the weight of any path from j to i of length k not
passing through a node in N c can be bounded from above
by [A+]i j +k δ = [A+]i j ⊗δ⊗k, where [A+]i j is a fixed upper
bound for the weight of the elementary path and k δ is an
upper bound for the total weight of the circuits. Since δ < e,
i.e., δ < 0 in conventional notation, it follows that for k large
enough

[A+]i j ⊗δ⊗k ≤
⊕

l∈N c

[A+]il ⊗ [A+]l j . (3)

Indeed, the right-hand side of the inequality is fixed, while
the left-hand side tends to −∞ for k going to infinity. Hence,
for k large enough it follows that⊕

l∈n

[A+]il ⊗ [A+]l j =
⊕

l∈N c

[A+]il ⊗ [A+]l j ,

for all i, j ∈ n, because for k large the weights of the paths
that do not pass through N c are dominated by the weights of
the paths that do pass through N c. Combining the obtained
results in (1), (2) and (3) it follows that

[A⊗k]i j =
⊕

l∈N c

[A+]il ⊗ [A+]l j ,

for all i, j ∈ n, and k large enough.

VI. GRAPH CYCLICITY FOR MATRIX POWERS

To complete the proof of Theorem 5.1 the graph and
matrix cyclicity of powers of A will be investigated. For the
graph cyclicity the next lemma follows.

Lemma 6.1: Let A ∈R
n×n
max be irreducible with eigenvalue

e and graph cyclicity σ , i.e., σG (A) = σ . Then A⊗σ is similar
to a block diagonal matrix with σ square diagonal blocks
that are irreducible with eigenvalue e and graph cyclicity
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one, i.e., A⊗σ ∼ diag(B1,B2, . . . ,Bσ ), where Bi is irreducible
with eigenvalue e and σG (Bi) = 1, for all i ∈ σ .

Proof: The proof is inspired by [5]. In G (A), consider
the following relation between nodes i, j ∈ N (A):

iR j ⇐⇒

{
the length of every path from node i
to node j is a multiple of σ .

(4)

It can easily be shown that this relation is an equivalence
relation on N (A). Further, let m ∈ N (A) be an arbitrarily
chosen, but fixed, node. Then, given this node, equivalence
classes C0,C1, . . . ,Cσ−1 associated with the equivalence re-
lation (4) can be introduced as follows:

i ∈ Cl ⇐⇒

{
every path from node m to node i
has length (mod σ ) equal to l,

(5)

for l = 0,1, . . . ,σ −1. It is not difficult to show for any i, j ∈
N (A) that iR j ⇐⇒ i, j ∈ Cl for some l = 0,1, . . . ,σ −1.

Assume that there is a path from i to j of length σ . Then
it follows that every path from i to j has a length that is
a multiple of σ . Indeed, concatenation of the previously
mentioned paths with one and the same path from j to i
yields circuits whose lengths must be multiples of σ . It then
follows that every path from i to j must have a length that
is a multiple of σ . Hence, every path of length σ must end
in the same class as the class from which it starts. Because
A⊗σ can be computed by considering all paths of length
σ , it follows that A⊗σ is block diagonal, possibly after an
appropriate relabelling of the nodes according to the classes
C0,C1, . . . ,Cσ−1. For instance, by first labelling all nodes in
C0, next all nodes in C1, and so on.

Further, since for all i, j ∈ Cl there is a path from i to j
whose length is a multiple of σ , it follows that the block
in A⊗σ corresponding to class Cl is irreducible. Indeed, the
previous path from i to j can be seen as a concatenation of
a number of subpaths, all of length σ , and each going from
one node in Cl to another node in Cl . Now considering all
such subpaths of maximal weight, it follows that the graph
of the block in A⊗σ corresponding to class Cl is strongly
connected, and that the block itself is irreducible.

Because e is the eigenvalue of A, e is also the eigenvalue
of A⊗σ and also the eigenvalue of the block associated with
Cl , for all l ∈ σ . Indeed, if A⊗σ ∼ diag(B1,B2, . . . ,Bσ ) and
v is a real vector such that A⊗v = e⊗v = v, then A⊗σ ⊗v =
e⊗v = v and Bl ⊗vl = e⊗vl = vl , for some appropriate real
sub-vector vl of v, for l ∈ σ .

Finally, every circuit in G (A) must go through each of the
equivalence classes C0,C1, . . . ,Cσ−1. Indeed, suppose there
is a circuit going through just τ of the classes, where τ < σ .
Then there must be a class Cl and nodes i, j ∈ Cl such that
there is a path from i to j of length less than or equal to
τ . However, this is in contradiction with the fact that any
path between nodes of the same class must be a multiple
of σ . Hence, it follows that all circuits in G (A) must go
through class Cl , for any l ∈ σ . Observe that circuits in G (A)
of length κ σ can be associated with circuits in G (A⊗σ ) of
length κ . Since the greatest common divisor of all circuit
lengths in G (A) is σ , it follows that the graph of the block

in A⊗σ corresponding to class Cl , for any l ∈ σ , has cyclicity
one.

The following result is relevant in relation to the extension
of Lemma 6.1 to powers of A that are multiples of its graph
cyclicity.

Proposition 6.2: Let A ∈ R
n×n
max be irreducible with with

eigenvalue e and graph cyclicity one, i.e., σG (A) = 1. Then
A⊗k is irreducible with eigenvalue e and graph cyclicity one,
for all integers k ≥ 1.

Proof: Take an integer k ≥ 1 and i, j ∈ n. Because
G (A) is strongly connected there exists a path from j to
i, say α , that passes through all nodes of G (A). Further,
because σG (A) = 1, there are (elementary) circuits in G (A),
say β1, . . . ,βq, whose lengths have a g.c.d. equal to one. By
Lemma 5.2 it follows that for kγ large enough, with γ a
positive integer, there exist n1, . . . ,nq ∈ N, such that

kγ −|α|l = n1|β |l + · · ·+nq|β |q.

For these n1, . . . ,nq, construct a path from node j to node i
by combining, i.e., concatenating, the path α with n1 copies
of circuit β1, n2 copies of circuit β2, etc., up to nq copies of
circuit βq. Then a path in G (A) is obtained from node j to
node i of length kγ . The path implies the existence of a path
of length γ in G (A⊗k) from node j to node i. Since i, j ∈ n
were chosen arbitrarily, it follows that G (A⊗k) is strongly
connected and that A⊗k is irreducible.

Since e is eigenvalue of A, e is also eigenvalue of A⊗k.
Indeed, if v∈R

n is such that A⊗v = v, then also A⊗k⊗v = v.
Let S1 be the set of all circuits in G (A) whose lengths

are a multiple of k. Then S1 contains S2, with S2 being the
set of circuits obtained by going around k times in each of
the elementary circuits β1, . . . ,βq. Clearly, the lengths of the
circuits in S2 have a g.c.d. equal to k. From this it follows
that the lengths of circuits in S1 have a g.c.d. equal to k too.
Hence, the g.c.d. of the lengths of all circuits in G (A) whose
length is a multiple of k is actually k itself, implying that
the g.c.d. of the lengths of all circuits in G (A⊗k) is equal to
one. So, it follows that A⊗k has graph cyclicity one.

The following corollary now follows immediately by ap-
plying Proposition 6.2 to each of the blocks in Lemma 6.1.

Corollary 6.3: Let A ∈ R
n×n
max be irreducible with eigen-

value e and graph cyclicity σ , i.e., σG (A) = σ . Then, for
all integers k ≥ 1, A⊗(k σ) ∼ diag(C1,C2, . . . ,Cσ ), where Ci

is irreducible with eigenvalue e and σG (Ci) = 1, for i ∈ σ ,
implying that the graph cyclicity of A⊗(k σ) is also one, for
all integers k ≥ 1.

VII. MATRIX CYCLICITY FOR MATRIX POWERS

The previous result dealt with the graph cyclicity in
relation to powers of a matrix. In the following a similar
result will be established with respect the matrix cyclicity.
But first a relation between the two types of cyclcity is
presented.

Proposition 7.1: Let A ∈ R
n×n
max be irreducible. Then the

matrix cyclicity of A is a multiple of the graph cyclicity of
A, i.e., σM (A) is a multiple of σG (A).
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Proof: Let G1 be a m.s.c.s. of G c(A) with graph (and
matrix) cyclicity σ1. Because G1 and G (A) are both strongly
connected and every circuit in G1 is also a circuit in G (A),
it follows that σ1 is a multiple of σG (A). Then the l.c.m.
of the cyclicities of all m.s.c.s.’s of G c(A) is a multiple of
σG (A). Hence, σM (A) is a multiple of σG (A).

The following corollary is an immediate consequence of
Lemma 4.2, Lemma 6.1 and Proposition 6.2.

Lemma 7.2: Let A∈R
n×n
max be irreducible with with eigen-

value e, graph cyclicity one and matrix cyclicity σ , i.e.,
σG (A) = 1 and σM (A) = σ . Then A⊗σ is irreducible with
eigenvalue e and graph and matrix cyclicity one.

Proof: According to Proposition 6.2, A⊗σ is irreducible
with eigenvalue e and graph cyclicity one.

The matrix cyclicity of A is equal to the graph cyclicity
of Ac. Hence, σG (Ac) = σ .

If Ac is irreducible, it follows, according to Lemma 6.1,
that (Ac)⊗σ is similar to a block diagonal matrix with
square diagonal blocks that are irreducible with eigenvalue e
and graph cyclicity one, i.e., (Ac)⊗σ ∼ diag

(
B1,B2, . . . ,Bσ

)
,

where Bi is irreducible with eigenvalue e and σG (Bi) = 1,
i ∈ σ . Hence, the graph cyclicity of (Ac)⊗σ is one too.

If Ac is not irreducible, the graph G (Ac) contains a
number of m.s.c.s.’s, say q, that are completely isolated
from each other (the graph G (Ac) contains only (critical)
circuits!). By relabelling the nodes in G (Ac) matrix Ac can
be made block diagonal. Hence, Ac is similar to a block
diagonal matrix diag(D1, . . . ,Dq,Dq+1), where matrix Di is
irreducible with eigenvalue e, for i ∈ q, and where Dq+1 is
a square matrix consisting of ε only. Matrix Dq+1 appears
when there are nodes that are not contained in any m.c.s.c.
If the graph cyclicity of matrix Di is denoted by σi, for
i ∈ q, then σ = l.c.d.{σ1, . . . ,σq}. Like in the above part
of this proof, it follows from Lemma 6.1 and Proposi-
tion 6.2, applied to matrix Di, that (Di)

⊗σ is irreducible
with eigenvalue e and graph cyclicity one, for i ∈ q. Since
(Ac)⊗σ ∼ diag

(
(D1)

⊗σ , . . . ,(Dq)
⊗σ ,(Dq+1)

⊗σ)
, with Dq+1

containing ε only, this implies that the graph cyclicity of
(Ac)⊗σ is one too.

Hence, σG ((Ac)⊗σ ) = 1, for Ac irreducible and not irre-
ducible. By Lemma 4.2, it follows that the matrix cyclicity
of A⊗σ is also one, i.e., σM (A⊗σ ) = 1.

Now the next lemma can be proved.

Lemma 7.3: Let A∈R
n×n
max be irreducible with with eigen-

value e, graph cyclicity ρ and matrix cyclicity σ , i.e.,
σG (A) = ρ and σM (A) = σ . Then A⊗σ is similar to a block
diagonal matrix with ρ square diagonal block matrices that
are irreducible and have eigenvalue e and graph and matrix
cyclicity one.

Proof: According to Lemma 6.1, it follows that A⊗ρ

is similar to a block diagonal matrix with ρ square diagonal
block matrices that are irreducible and have eigenvalue e and
graph cyclicity one, i.e., A⊗σ ∼ diag(B1,B2, . . . ,Bρ), where
Bi is irreducible with eigenvalue e and σG (Bi) = 1, i ∈ ρ .
If the matrix cyclicity of Bi is denoted by τi, i ∈ ρ , then,

as in the proof of Proposition 7.1, the l.c.m. of {τ1, . . . ,τρ},
when denoted as τ , is such that σ = τ ρ . According to the
proof of Lemma 7.2, (B c

i )⊗τi has a graph cyclicity equal to
one, for i ∈ ρ , where B c

i denotes the critical matrix of Bi.
By Proposition 6.2, the same applies to (B c

i )⊗τ , for i ∈ ρ .
According to Lemma 4.2 it follows that the matrix cyclicity
of (Bi)

⊗τ is one, for i ∈ ρ . Hence, the τth power of A⊗ρ ,
being equal to A⊗(τ ρ) = A⊗σ , has matrix cyclicity one.

VIII. PROOF OF THEOREM 5.1

Proof: Observe that Aλ is irreducible with eigenvalue
e and matrix cyclicity σ . Then, according to Lemma 7.3, the
matrix B

def
= (Aλ )⊗σ is similar to a block diagonal matrix with

square diagonal block matrices that are irreducible and have
eigenvalue e and matrix cyclicity one. Hence, by applying
Special case 5.3 to each diagonal block, it ultimately follows
that an M exists such that B⊗(l+1) = B⊗l , for all integers
l ≥ M. The latter implies that(

(Aλ )⊗σ)⊗(l+1)
=

(
(Aλ )⊗σ)⊗l

,

which can be further written as (Aλ )⊗(l σ+σ) = (Aλ )⊗(l σ), or

A⊗(l σ+σ) = λ⊗σ ⊗A⊗(l σ)
,

for all integers l ≥M. Finally, note that A⊗(l σ+ j+σ) = λ⊗σ ⊗
A⊗(l σ+ j), for any integer j, 0 ≤ j ≤ σ −1, implying that for
all integers k ≥ N

def
= M σ it follows that

A⊗(k+σ) = λ⊗σ ⊗A⊗k
.

This completes the proof of Theorem 5.1.

IX. EXTENSIONS AND CONCLUSIONS

In this paper a proof is given for the well-known spectral
theorem in max-plus algebra, see Theorem 5.1. In the proof
the distinction between the graph and matrix cyclicity of an
irreducible matrix is highlighted.

For reasons of space limitation the observation that the
matrix cyclicity of an irreducible matrix A with eigenvalue λ
coincides with the minimal integer τ ≥ 1 such that A⊗(k+τ) =
λ⊗τ ⊗A⊗k for all integers k ≥ N for some large N ∈ N, is
not treated.
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