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Abstract— In this paper we describe the geometric approach
for computing the joint spectral radius of a finite family of
linear operators acting in finite-dimensional Eucledian space.
The main idea is to use the invariant sets of of these operators.
It is shown that any irreducible family of operators possesses
a centrally-symmetric invariant compact set, not necessarily
unique. The Minkowski norm generated by the convex hull
of an invariant set (invariant body) possesses special extremal
properties that can be put to good use in exploring the joint
spectral radius. In particular, approximation of the invariant
bodies by polytopes gives an algorithm for computing the joint
spectral radius with a prescribed relative deviation ε. This
algorithm is polynomial with respect to 1

ε
if the dimension

is fixed.
Another direction of our research is the asymptotic behavior

of the orbit of an arbitrary point under the action of all products
of given operators. We observe some relations between the
constants of the asymptotic estimations and the sizes of the
invariant bodies.

In the last section we give a short overview on the extension
of geometric approach to the Lp-spectral radius.

I. INTRODUCTION

The notion of the joint spectral radius (JSR) of linear
operators appeared more than 40 years ago is intensively
studied due to many applications in matrix theory, spectral
theory, curve and surface design, ergodic theory, etc. For the
sake of simplicity we restrict ourselves to the case of two
operators A0, A1, although all the results are extended for
an arbitrary finite number of operators without any change.
The notion of JSR can roughly by explained as follows: for a
given point x ∈ R

d it is required to estimate the asymptotic
behavior of the value

max
d1,...,dm

‖Ad1 · · ·Adm
(x)‖, m ∈ N, (1)

where dj = 0 or 1 for every j. In other words, we are
interested in how large can the image of the point x under
the action of a composition of m operators A0 or A1 be.
It turns out that under some general assumptions on these
operators the value (1) have the same exponent of growth for
all points x �= 0. It has a polynomial asymptotic growth λm.
The exponent of growth λ is the JSR of operators A0, A1.

Definition 1: Let A0, A1 be a pair of linear operators
acting in d-dimensional Euclidean space R

d. The following
value

ρ̂(A0, A1) = lim
m→∞ max

d1,...,dm∈{0,1}
‖Ad1 · · ·Adm

‖1/m
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is the joint spectral radius (JSR) of A0, A1.
Denote by Sd−1 the unit sphere in the space R

d:

Sd−1 = {x ∈ R
d, ‖x‖ = 1}.

A pair of operators is called irreducible iff they have no
common nontrivial real invariant subspace. The problem
of computing or estimating of the JSR can actually be
considered only for irreducible pairs of operators. Indeed,
if the operators A0, A1 have a common invariant subspace
of dimension k (0 < k < d), then their matrices in a suitable
basis have the form

Ai =
(

Bi Di

0 Ci

)
, i = 0, 1, (2)

where Bi are k × k-matrices and Ci are (d − k) × (d − k)-
matrices. Then it is easily shown that

ρ̂(A0, A1) = max
{

ρ̂(B0, B1) , ρ̂(C0, C1)
}

(see [1], [2]). Therefore, if the operators have common invari-
ant subspaces, then the problem of computing of their JSR
is reduced to analogous problems for smaller dimensions.
Hence we can restrict ourselves to the case of irreducible
operators. Everywhere in the sequel we assume that a pair
of operators A0, A1 is irreducible.

We begin with the study of the growth of the value (1). In
section II we show that in case of irreducible operators this
value for any x �= 0 is between C1 ρ̂m and C2ρ̂

m, where
C1, C2 are some positive constants. Using this result we
prove the existence of invariant sets for irreducible operators
(section III). Invariant sets have some relation with the
notion of affine fractals and self-similar sets and generate the
invariant convex bodies and extremal norms (section IV, V).
In section VI we give estimations for the constants C1, C2 for
a given pair of operators, after that we describe an algorithm
for computing JSR.

II. THE ASYMPTOTICS OF THE ORBIT

Lemma 1: For an irreducible pair of operators A0, A1 one
has ρ̂ > 0.

Proof: Consider a function f(x) =
max

{‖A0x‖, ‖A1x‖
}

defined on the unit sphere Sd−1 and
let a = min

x∈Sd−1
f(x). This minimum is attained, since f is

continuous and the sphere is compact. If a = 0, then the
operators have a nontrivial common kernel and hence they
are reducible. Whence a > 0. This yields that for every m
one can choose a sequence d1, . . . , dm such that

‖Ad1 · · ·Adm
x‖ ≥ am‖x‖,
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hence ρ̂ ≥ a, which completes the proof.

For an arbitrary point x ∈ R
d and for any m ≥ 1 let

Om(x) =
{

Ad1 · · ·Adm
x , d1, . . . , dm ∈ {0, 1}

}

be the orbit of the point x under the action of all possible
products of the operators A0, A1 consisting of m multipliers.
Let

O(x) = ∪∞
m=1Om(x)

be the orbit of the point x. Also for a set M ⊂ R
d denote

‖M‖ = max
y∈M

‖y‖.

In particular,

‖Om(x)‖ = max
y∈Om(x)

‖y‖.

Proposition 1: For any irreducible pair of operators
A0, A1 there exist positive constants C1, C2, depending only
on these operators, such that for every x ∈ Sd−1, m ≥ 1 one
has

C1ρ̂
m ≤ ‖Om(x)‖ ≤ C2ρ̂

m . (3)

Proof: Lemma 1 allows us to assume, with possible
normalization, that ρ̂ = 1. First let us show that there is a
point x ∈ Sd−1, for which ‖Om(x)‖ ≤ 2 for all m. If this
is not the case, then the union of the sets

Um =
{
x ∈ Sd−1, ‖Om(x)‖ > 2

}
over all m ∈ N covers the unit sphere. Since each of these
sets is open, from the compactness of the sphere we conclude
that Sd−1 = ∪N

m=1Um for a suitable N . Therefore, for every
point x �= 0 there exists a product

Π = Ad1 . . . Adj
, j ≤ N

such that ‖Π(x)‖ > 2‖x‖. Now we take an arbitrary point
x1 �= 0 and consequently find the corresponding products
Π1,Π2, . . ., for which

‖Πk · · ·Π1x1‖ ≥ 2k‖x1‖, k ∈ N.

Since each of these products Πj consists of at most N
operators, it follows that

ρ̂(A0, A1) ≥ 21/N ,

which contradicts the assumption. Let now L be the set of
points x ∈ R

d that have bounded orbits O(x). Clearly, L is
a linear subspace of R

d invariant with respect to (w.r.t.) the
both operators A0, A1. Moreover, as we have just shown, L
contains at least one nonzero element, i.e., L is nontrivial.
Therefore, since the pair A0, A1 is irreducible, it follows that
L = R

d. Thus, the set of operators{
Ad1 · · ·Adm

, dj ∈ {0, 1},m ≥ 1
}

is bounded at any point x, hence, by the Banach-Steinhaus
theorem, it is bounded uniformly. This proves the upper

bound ‖Om(x)‖ ≤ C2 for all x ∈ Sd−1. To prove the lower
bound we apply the same trick. Let us denote

L0 =
{
x ∈ R

d, lim
m→∞ ‖Om(x)‖ = 0

}
.

Again we see that L0 is a common invariant subspace
for A0, A1. Therefore, either it is trivial, or L0 = R

d.
The last case is impossible. Indeed, applying the relation
lim

m→∞ ‖Om(ei)‖ = 0 to the elements of some orthonormal

basis {ei}d
i=1, one can find an integer N such that

‖ON (ei)‖ <
1

2
√

d
for all i = 1, . . . , d.

Therefore ‖ON (x)‖ < 1
2 for all x ∈ Sd−1. Arguing as

above we conclude that ρ̂ ≤ 2−1/N . Thus, L0 is trivial.
Now assume that there is no positive constant C1 such that
‖Om(x)‖ ≥ C1 for all m ≥ 1, x ∈ Sd−1. This means
that there exists a sequence of points {xk} ⊂ Sd−1 and
that of numbers {mk} such that ‖Omk

(xk)‖ ≤ 1
k . By the

compactness argument it can be assumed that xk converges
to some point x ∈ Sd−1. We have

‖Omk
(x)‖ ≤ ‖Omk

(xk)‖ + ‖Omk
(x − xk)‖

≤ 1
k

+ C2‖x − xk‖,
Therefore

‖Omk
(x)‖ → 0 as k → ∞.

It remains to note that for all m ≥ mk we have

‖Om(x)‖ ≤ C2‖Omk
(x)‖,

hence ‖Om(x)‖ → 0 as m → ∞, which contradicts the
triviality of L0. Therefore the proposition follows.

Corollary 1: If a pair of operators A0, A1 is irreducible,
then

C1ρ̂
m ≤ max

d1,...,dm∈{0,1}
‖Ad1 · · ·Adm

‖ ≤ C2ρ̂
m

for every m ≥ 1.

III. INVARIANT SETS

Our next aim will be to construct invariant sets of linear
operators. A compact set K ⊂ R

d is invariant with respect
to a pair of linear operators A0, A1 if

A0K ∪ A1K = K.

If K �= {0}, then K is called nontrivial.

Proposition 2: An irreducible pair of operators A0, A1

possesses a nontrivial invariant set if and only if ρ̂ = 1.

Proof: Necessity. Assume the operators A0, A1

possess a nontrivial invariant set K. Applying Proposition 1
to an arbitrary point x ∈ K \ {0} we get

‖Om(x)‖ ≥ C1‖x‖ ρ̂m , m ∈ N.

On the other hand, Om(x) ⊂ K and hence
‖Om(x)‖ ≤ ‖K‖. This yields ρ̂ ≤ 1. Furthermore, the
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definition of invariant sets implies that for any x ∈ K,
there is y ∈ K, for which either A0y = x or A1y = x.
Consequently, for every m ≥ 1 there exists ym ∈ K and a
product of our operators

Πm = Ad1 · · ·Adm
, dj ∈ {0, 1}, j = 1, . . . , m

such that Πmym = x. Applying Proposition 1 to the points
ym we have

‖x‖ = ‖Πm(yn)‖ ≤ C2‖yn‖ρ̂m ≤ C2‖K‖ρ̂m

for every m ∈ N. This means ρ̂ ≥ 1 and therefore ρ̂ = 1.
Sufficiency. We assume ρ̂(A0, A1) = 1 and prove the

existence of a nontrivial invariant set. For an arbitrary point
x �= 0 denote by V(x) the set of points y ∈ R

d possessing
the following property: there exists a sequence {mk}∞k=1

such that the distances from y to the sets Omk
(x) tend

to 0 as k → ∞. Let us show that for any x the set V(x)
is invariant. Proposition 1 guarantees that the set V(x) is
compact and possesses at least one nonzero element. It
remains to check that

A0V(x) ∪ A1V(x) = V(x).

Indeed, if y ∈ V(x), then dist(y,Omk
(x)) → 0 as k → ∞,

consequently dist(Aiy,AiOmk
(x)) → 0 for every i = 0, 1.

Since

dist(Aiy,Omk+1(x)) ≤ dist(Aiy,AiOmk
(x)),

it follows that

dist(Aiy,Omk+1(x)) → 0 as k → ∞
and therefore Aiy ∈ V(x) for each i = 0, 1. Thus,

A0V(x) ∪ A1V(x) ⊂ V(x).

To prove the inverse inclusion we take an arbitrary
y ∈ V(x) and consider the operator products Πmk

, for which
Πmk

(x) → y as k → ∞. Without loss of generality it can
be assumed that infinitely many of these products begin with
the operator A0. Passing, if necessary, to a subsequence we
suppose that all the products Πmk

begin with A0, i.e.,

Πmk
= A0Πmk−1, k ≥ 2.

The sequence of points Πmk−1(x) is bounded, therefore it
has a subsequence that converges to some point y0. Passing
to this subsequence we can assume

Πmk−1(x) → y0 as k → ∞.

Whence y0 ∈ V(x) and A0y0 = y. Thus, for any point
y ∈ V(x) there exists either a point y0 or y1 from the set
V(x) such that Aiyi = y (i = 0, 1). This proves the inverse
inclusion

V(x) ⊂ A0V(x) ∪ A1V(x).

Thus, for any x �= 0 the set V(x) is invariant for the operators
A0, A1.

Remark 1: The definition of invariant sets coincides with
the definition of fractals given by J.E.Hutchinson in [3].

According to the classical results of that work every finite
set of contraction affine operators possesses a unique fractal
(self-similar set). In contrast to that, in our situation the
operators are neither affine nor contraction but linear with
the condition ρ̂ = 1. The other distinction is that in our
case the invariant sets are not unique. If K is an invariant
set, then for any λ > 0 the set λK also is. However, the
invariant set may not be unique even up to multiplication to
a scalar. Moreover, for contraction affine operators one has
the convergence

ÃmX → K , k → ∞
in the Hausdorff metric for an arbitrary compact set X ⊂
R

d, where ÃX = A0X∪A1X [3]. For linear operators with
ρ̂ = 1 and for their invariant set K this is not necessarily
the case. This is seen already from the following simplest
examples:

Example 1: Both A0, A1 are rotations of the plane R
2

on rational angles (πq, where q is rational). Then both the
unit ball and a suitable regular polygon are invariant sets
for A0, A0.

Example 2: Both A0, A1 are orthogonal projectors of the
plane R

2 on two straight lines a0, a1 (these lines are not
orthogonal). Then any parallelogram, having its diagonals
on these lines and such that its sides form acute angles with
the diagonals, is an invariant set for A0, A1.

Example 3: Let A0 be a rotation of the plane R
2 on the

angle π
2 , A1 be the reflection with respect to a line b passing

trough the origin, I0, I1 be two equal segments forming the
angles π

4 with the line b and having their common midpoint
at the origin. Since

AiI0 = I1, AiI1 = I0,

for i = 0, 1 it follows that the sequence ÃmI0 does not
converge at all.

IV. INVARIANT BODIES AND EXTREMAL NORMS

We call a set M ⊂ R
d convex body if it is convex,

compact, and possesses a nonempty interior. Everywhere
below we consider only convex bodies centrally symmetric
with respect to the origin.

Let us consider the following binary operation on the set
of (centrally symmetric) convex bodies:

Ā M = Conv (A0M, A1M),

where Conv is the convex hull. Since our pair of operators is
irreducible, it follows that Ā takes convex bodies to convex
bodies. An invariant body is a convex body M such that
Ā = λM for some positive λ.

Theorem 1: a) An irreducible pair of operators always
possesses an invariant body.

b) For any invariant body we have λ = ρ̂(A0, A1).
Proof: With possible normalization it can be assumed

that ρ̂ = 1. By Proposition 2 the operators A0, A1 possess
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an invariant set K. It follows that M = Conv (K,−K) is
their invariant body with λ = 1. This set has a nonempty
interior, otherwise it is contained in some subspace L ⊂ R

d

of smaller dimension, which is a common invariant subspace
for A0, A1. This proves part (a). Now let us establish (b). If
M is an invariant body of our pair of operators, then in the
Minkowski norm ‖ · ‖M defined by this body one has

‖Ai‖M ≤ λ , i = 0, 1,

therefore ρ̂ ≤ λ, and so λ ≥ 1. On the other hand, by
Proposition 1, for any k ≥ 1 we have

C2 · ‖M‖ ≥ ‖ĀkM‖ = λk · ‖M‖ ,

and hence λ ≤ 1.

Example 4: If the operators coincide, i.e., A0 = A1 = A,
then they possess an invariant body if and only if the modules
of all eigenvalues of A are equal and its Jordan form has
only diagonal elements [2]. Observe that Theorem 1 is not
extended to this case, whenever d ≥ 3, since A possesses an
invariant subspace of dimension 1

Remark 2: In some sense an invariant body M gives the
smallest invariant norm in R

d for the operators A0, A1.
In general an invariant body of a given pair of operators
is not unique, even up to normalization. Examples 1, 2,
4 treat very simple cases of invariant bodies. For general
pairs of operators the structure of invariant bodies must be
complicated, their boundaries possess fractal-like properties.

V. THE STRUCTURE OF INVARIANT BODIES

Proposition 2 suggests a method of approximation of
invariant bodies. It was shown in [2] that that for an arbitrary
point x �= 0 the set

∪+∞
k=mOk(x)

converges to V(x) in the Hausdorff metric as m → ∞. This
implies, in particular, that for large m the set ∪2m

k=mOk(x)
gives a good approximation for the invariant set V(x).
Consequently, taking a convex hull of this set with its
symmetric w.r.t. the origin, we get an approximation for the
invariant body. This approach was put to good use in the
works of I.Sheipak, where concrete examples and pictures
were provided (see [4] and references therein).

To clarify the structure of invariant sets and of invariant
bodies one can use the notion of returning points. Assume
again ρ̂ = 1. A point x �= 0 is called returning if x ∈ V(x).
In other words, suitable compositions of the operators A0, A1

take the point x close to itself. The following result was
established in [2].

Proposition 3: An irreducible pair of operators normal-
ized by the condition ρ̂ = 1 has at least one returning point.
For any set of returning points W the set ∪x∈WO(x) is
invariant. Moreover, every invariant set of our operators have
this form. In particular, every invariant body is represented
as

M = Conv
{
O(x), −O(x)

∣∣∣ x ∈ W
}

for a suitable set of returning points W .

As a corollary of Proposition 3 we have

Theorem 2: For any pair of operators A0, A1 one has

ρ̂−m max
d1,...,dk, k≤m

ρ
(
Ad1 · · ·Adk

) → 1 , m → ∞,

where ρ(A) is the (usual) spectral radius of the operator A.
Proof: It suffices to establish this theorem for irre-

ducible pairs of operators (the general case is easily reduced
to this one by using decomposition (2)). With possible
normalization it can be assumed that ρ̂(A0, A1) = 1. For
any product Πk = Ad1 . . . Adk

one has ρ(Πk) ≤ 1 (see, for
instance, [1]). Let x �= 0 be a returning point. There is a
sequence of operator products {Πk}k∈N such that

Πk(x) → x, k → ∞.

On the other hand, the norms of all the operators ‖Πk‖ are
uniformly bounded by the constant C2 (Corollary 1). It now
follows that each operator Πk possesses an eigenvector xk

such that xk → x and the corresponding eigenvalue λk tends
to 1 as k → ∞. Therefore ρ(Πk) → 1, which concludes the
proof.

Remark 3: Theorem 2 slightly sharpens the well-known
relation

max
d1,...,dm

[ρ(Ad1 · · ·Adm
]1/m → ρ̂ , m → ∞. (4)

(see [1] for the proof). This relation is used in most of prac-
tical algorithms of computing JSR. Therefore, it is important
to estimate the rate of convergence. Theorem 2 implies the
following asymptotics:∣∣∣ ρ̂ − max

d1,...,dk, k≤m
[ρ(Ad1 · · ·Adk

]1/k
∣∣∣ = o

( 1
m

)
, m → ∞

VI. ESTIMATIONS FOR C1 AND C2

Let ∂X denote the boundary of a set X . For any convex
body M set

l(M) =
maxx∈∂M ‖x‖
minx∈∂M ‖x‖ .

For an irreducible pair of operators A0, A1 its invariant body
M is not unique, nevertheless the value l(M) is bounded
uniformly for all invariant bodies. In fact, there is an effective
constant H depending only on operators A0, A1 such that
for any invariant body we have l(M) ≤ H . In some sense,
the constant H measures the “irreducibility” of this pair of
operators. In [2] it was shown how to compute H effec-
tively in terms of real eigenspaces of the operators A0, A1.
This constant is expressed in terms of angles between real
eigenspaces of these operators.

Theorem 3: For an irreducible pair of operators A0, A1

one has

ρ̂m ≤ max
d1,...,dm

‖Ad1 · · ·Adm
‖ ≤ Hρ̂m , m ∈ N.

Proof: The left-hand side inequality is well known.
To prove the second inequality we take an arbitrary point
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x ∈ R
d \ {0} and an invariant body M of the operators

A0, A1. With possible normalization it can be assumed that
x ∈ ∂M . Since for any Πm = Ad1 · · ·Adm

we have

Πmx ∈ ρ̂m M,

it follows that ‖Πmx‖ ≤ l(M) ρ̂m.
Clearly, H provides also an upper bound for the constant C2

in inequality (3). In [2] a lower bound for the constant C1

was given.

VII. THE ALGORITHM OF COMPUTING JSR

One of the most intriguing problem concerning the JSR
is the complexity of its computation or estimation. Most of
algorithms used in practical problems compute JSR using
relation (4), by exhaustion of all matrix products of a
given length m. Several modifications of this algorithm were
elaborated in [5], [6], [7]. However, all the estimations for the
rate of convergence of (4) available by now give exponential
upper bounds of its complexity. In fact, the problem of
computing JSR is NP-hard, and there is no algorithm that
would be polynomial with respect to both the dimension d
and the relative error ε [8], [9].

Theorems 1 and 3 make it possible to construct the
geometric algorithm of computing JSR. The idea of the
algorithm is simple and consists of iterative approximation
of the invariant body by polytopes. If the dimension d is
fixed, then the algorithm is polynomial w.r.t. the 1

ε , where ε
is a given accuracy.

The Algorithm. Let us have an irreducible pair of oper-
ators A0, A1 and an accuracy ε > 0. It is required to find a
number ρ̂∗ such that ∣∣ρ̂∗ − ρ̂

∣∣
ρ̂

< ε.

Zero step. Take a cross-polytope

T0 =
{

(x1, . . . , xd) ∈ R
d,

∑
|xi| ≤ 1

}
.

We apply A0 and A1 to this polytope and take the convex
hull of the images A0T0, A1T0. We obtain the polytope ĀT0.
If the number of its vertices does not exceed q(ε) = Cd ε

1−d
2

(Cd is an effective constant depending only on d), then we
set T1 = ĀT0. If it does, then find a polytope T such that it
has at most q(ε) vertices and

(1 − ε)ĀT0 ⊂ T ⊂ ĀT0,

and put T1 = T .
mth step. We have a polytope Tm with at most q(ε) =

Cd ε
1−d
2 vertices. Consider the polytope ĀTm. If the number

of its vertices does not exceed q(ε), then Tm+1 = ĀTm,
otherwise construct a polytope Tm+1 that has at most q(ε)
vertices and

(1 − ε)ĀTm ⊂ Tm+1 ⊂ ĀTm. (5)

After N =
[

3
√

d ln H
ε

]
steps the algorithm terminates. The

value ρ̂∗ =
(
vN+1

)1/(N+1)
gives the desirable approxima-

tion of JSR, where vk is the biggest distance from the origin
to the vertices of the polytope Tk.

Each step requires us taking of a convex hull of two
polytopes having at most q(ε) vertices and the approximation
of one polytope with 2q(ε) vertices by a different one with
q(ε) vertices with accuracy ε in the sense of relation (5).
Both operations are known to be polynomial w.r.t. 1

ε (the
dimension d is fixed).

The case d = 2 is easily implemented. In this case
Cd ≤ 11 and so q(ε) = 11/

√
ε. The algorithm of computing

ρ̂∗ takes at most C0 ε−3/2 arithmetic operations, where C0

is an effective constant depending on operators A0, A1. The-
oretical explanations and the estimations of the complexity
can be found in [2], some examples of implementation – in
[4].

VIII. p-RADIUS

Geometric approach using invariant bodies is also appli-
cable in exploring the following natural generalization of the
joint spectral radius:

Definition 2: For a given p ∈ [1,+∞) the Lp-spectral
radius (p-radius) of linear operators A0, A1 is the value

ρp(A0, A1) = lim
m→∞

(
2−m

∑
d1,...,dm

∥∥∥Ad1 · · ·Adm

∥∥∥p)1/pm

.

The p-radius was first introduced for p = 1 and then
generalized for all p ≥ 1. It is applied in wavelets theory
and approximation theory to characterize the regularity of
wavelets and scaling functions in the space Lp (see [12], [13]
for details and further references). Actually, the joint spectral
radius ρ̂ can be considered as the p-radius for p = ∞, in
particular lim

p→∞ ρp = ρ̂. Besides, for any p we obviously

have
ρp ≤ ρ̂ ≤ 21/pρp, (6)

Let us remark that the p-radius is not expressed by a limit
passage from the regular spectral radius as we have for
the JSR (relation (4)). That is why there was actually no
algorithms for computing of p-radius except for by definition.

In [13] and [14] the geometric approach and the con-
ception of invariant bodies was extended to the p-radius
for all p ≥ 1. Instead of the operation Conv the so-called

Firey addition
p⊕ (sometimes it is called Lp-summation) was

used. If M1, M2, M3 ⊂ R
d are convex bodies (symmetric

w.r.t. the origin), then by definition M3 = M1

p⊕ M2 iff
ϕM3 =

∥∥(
ϕM1 , ϕM2

)∥∥
p

, where ϕM (x) = sup
y∈M

〈x, y〉 is

the function of support of a convex body M and ‖ · ‖p is the
Lp-norm. Clearly, for p = ∞ the Firey addition coincides
with the taking of convex hull, for p = 1 that coincides with
the Minkowski summation. In some sense, the Firey addition
is the only reasonable generalization of the taking of convex
hull and of the Minkowski summation [12].
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Theorem 4: For an irreducible pair of operators A0, A1

acting in R
d and for any p ≥ 1 there exists a convex body

Mp and λ > 0 such that

A0Mp

p⊕ A1Mp = λMp.

Moreover, for every such convex body we have λ = 21/pρp.

Thus, an irreducible pair of linear operators for any p
possesses an invariant body (not necessarily unique) cor-
responding to their p-radius. As a corollary we get the
following generalization of Proposition 1:

Theorem 5: Suppose A0, A1 by an irreducible pair of
operators and p ≥ 1; then there are positive constants C1, C2

depending only on A0, A1 and on p such that for any point
x ∈ Sd−1 and for all m we have

C1 (ρp)mp ≤ 2−m
∑

d1,...,dm

‖Ad1 · · ·Adm
x‖p ≤ C2 (ρp)mp .

Theorems 4 and 5 were proved in [13], also some es-
timations for the constants C1, C2 were established. Based
on these theorems a geometric algorithm for computing the
p-radius was derived. The algorithm consists of iterative
approximation of the invariant body by p-zonotopes (Firey
sums of finitely many segments). This is also polynomial
w.r.t. the 1/ε, the number of operations does not exceed
C(d)ε2−2d.
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