
Applying SOM as a Search Mechanism for Dynamic System

Yi-Yuan Chen and Kuu-Young Young
Department of Electrical and Control Engineering
National Chiao-Tung University, Hsinchu, Taiwan

National Chiao-Tung University Vision Research Center

Abstract— The self-organizing map (SOM), as a kind of
unsupervised neural network, has been applied for both static
data management and dynamic data analysis. To further exploit
its ability in search, in this paper, we employ the SOM as a
searching mechanism for dynamic system. A learning scheme,
consisting mainly of the SOM and the target dynamic system,
is then proposed. The performance of this SOM-based learning
scheme is especially compared with that of the genetic algorithm
(GA) due to their resemblance in learning and searching. And, a
new SOM weight updating rule is proposed to enhance learning
efficiency, which may dynamically adjust the neighborhood
function for the SOM in learning system parameters. For
demonstration, the proposed learning scheme is applied for
trajectory prediction, and its effectiveness evaluated via the
simulations based on using the SOM, GA, and also Kalman
filtering.
Key words: Self-Organizing Map, Dynamic System, Genetic
Algorithm, Trajectory Prediction.

I. INTRODUCTION

The self-organizing map (SOM), as a kind of unsupervised
neural network, is performed in a self-organized manner in
that no external teacher or critic is required to guide synaptic
changes in the network [3], [9]. By contrast, for the other two
basic learning paradigms in neural network, the supervised
learning is performed under the supervision of an external
teacher [7], and reinforcement learning involves the use of
a critic that evolves through a trial-and-error process [2];
both of them demand the input-output pairs as the training
data. The appealing features in learning without the input-
output pairs makes the SOM very attractive in dealing with
varying and uncertain data. In its many applications, the
SOM has been used for static data management, such as data
mining, knowledge discovering, clustering, visualization, and
robot control [7], [8], [9], [10], [15], and also dynamic data
analysis, such as local dynamic modeling and moving object
tracking [1], [12], [14]. However, from our survey, its ability
in search has not been well exploited yet [6], [11]. It thus
motivates us to propose an SOM-based learning scheme for
search of dynamic system, a novel employment of the SOM.

For this SOM application on search of dynamic system,
the goal may be to look for a set of optimal parameters that
lead to the desired performance of the dynamic system from
some measured data. For instance, in a missile interception
application, the task may be to predict the most probable
launching position and velocity of an incoming missile from
the measured radar data. Thus, the proposed SOM-based
learning system should be able to evaluate system perfor-
mance and execute the subsequent search. In developing

Evaluation
mechanism

Search
mechanism

Dynamic model

Optimal
solution

Possible
solutions

Computed
dynamic data

Measured
dynamic data

SOM

Fig. 1. Proposed SOM-based learning scheme.

the system, we will first examine the SOM in its learning
strategy and effectiveness. The genetic algorithm (GA) is
especially taken for comparison, since these two learning
schemes exhibit some resemblance in searching. Both the
search domains in the SOM and GA are evolving, leading
to more concentrated searches, until a satisfactory solution
is found. The major difference lies in the mechanism that
makes the search domain evolve. Meanwhile, as a search
mechanism for dynamic system, the SOM learning may
involve both the system parameters and their derivatives,
which operate in quite different ranges. To achieve high
learning efficiency under such a wide parameter variation, we
propose a new weight updating rule, which may dynamically
adjust the shape of the neighborhood function for the SOM,
in an individual basis, in learning the system parameters.
The rest of this paper is organized as follows. The proposed
SOM-based learning scheme and its comparison with the
GA are discussed in Sec. 2. Its system implementation and
application on trajectory prediction are described in Sec.
3. In Sec. 4, simulations are conducted to compare the
performance of the SOM with those of the GA and Kalman
filtering. Finally, conclusions are given in Sec. 5.

II. PROPOSED SOM-BASED LEARNING SCHEME

Figure 1 shows the conceptual diagram of the proposed
SOM-based learning scheme. In Figure 1, the SOM consists
of mainly the evaluation and search mechanisms, and the
dynamic model stands for the target system. Initially, the
function for performance evaluation will be installed in the
evaluation mechanism, and possible solutions (e.g., vectors
of system parameters), selected from an estimated range,
distributed among the neurons of the SOM. During each time
interval of the learning process, all the possible solutions in

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuIC20.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 4111

the neurons will be sent to the dynamic model to derive the
dynamic data that illustrate their performance. The evaluation
mechanism will then compute the difference between the
derived dynamic data and the incoming measured dynamic
data. From the results, the search mechanism chooses the
solution leading to the most accurate derived dynamic data
as the winner, and updates the weights of this winner and
its neighboring neurons. The learning process then continues,
and the network will eventually converge to the optimal solu-
tion. To note that, even the optimal solution is not within the
estimated range for some cases, the search mechanism is still
expected to move the possible candidates out of their initial
locations and guide them to converge to the optimal solution.
From the process described above, the SOM employed in
this way is very similar to the GA in searching; meanwhile,
they adopt different search mechanism and paradigm. It is
of interest how their choices influence their performance.

For comparison, we start with the examination of the SOM
and GA in their structures and operations. The SOM, first in-
troduced by Kohonen, transforms input vectors into a discrete
map (e.g., a 2-D grid of neurons) in a topological ordered
fashion adaptively [9], [14]. The SOM is with a structure
very suitable for parallel processing. We further exploit this
parallelism and design an organized search accordingly. In
other words, we take advantage of the SOM in its distribution
of the neurons in a grid pattern and the presence of local
interaction in between the grid. Take the missile interception
application as an example again. When the estimated ranges
of the possible launching position and velocity of the missile
are available, we may distribute the possible positions and
velocities into the network in an organized fashion. Under
this arrangement, the searches among the neurons are closely
related through the grid, leading to a more rapid convergence.
On the other hand, when the estimation is inaccurate, the
search, still organized, may take longer time to converge
to the optimal solution. For illustration, Figure 2 shows the
conceptual diagram of the organized search in a 2-D SOM.
Figure 2(a) shows a case that the solution is within the
estimated range. In this case, the weights of the neurons
are updated so as to make the weight vectors converge to
a compact cluster centering at the optimal solution. And,
Figure 2(b) shows the case that the solution is outside of
the estimated range, in which the weights are updated in a
manner that moves these weight vectors toward the optimal
solution located outside of the estimated range.

The GA, first introduced by Holland, has many successful
applications in various areas [4], [6]. Basically, the GA
is a search algorithm based on the mechanics of natural
selection and natural genetics. It employs multiple concurrent
search points called chromosomes and evaluates the fitness of
each chromosome. The search procedure uses random choice
as a tool to guide a highly exploitative search through a
coding of a parameter space. The GA in general consists
of three operators: reproduction, crossover, and mutation.
To achieve effective search, the GA uses the crossover
operator to unite an individual which is doing well in one
dimension with some other individual that is doing well in

(a) Within the estimated range

(b) Outside of the estimated range

Fig. 2. Conceptual diagram of the organized search in a 2-D SOM: the
solution is (a) within the estimated range and (b) outside of the estimated
range.

another dimension. The effect of reproduction and crossover
operators are like casting nets from locations in the search
space, which are occupied by individuals that have good
fitness. While reproduction and crossover can cover much of
the search space, occasionally they may lose some potentially
useful genetic material. The mutation operator provides a
new location where the net has never been and protects
against such an irrecoverable loss. By itself, mutation is a
random walk through the search space. When used sparingly
with reproduction and crossover, it is an insurance policy
against premature loss of important material.

Based on the discussions above, both the SOM and GA
have the merit of parallel processing. And, both of their
searches are through the guidance of the evaluation function,
while the SOM in our design adopts a somewhat organized
search and the GA in some sense a random approach. It im-
plicates that the SOM may be more suitable for applications
with certain knowledge, especially when the distribution of
the possible solutions is not utterly random. On the contrary,
for applications with no a priori knowledge available, the GA
may yield better performance. Later in Sec. 4, an application
on trajectory prediction is used to evaluate their effectiveness.

III. SYSTEM IMPLEMENTATION

Figure 3 shows the structure and operation of the SOM
in the proposed scheme. This proposed SOM performs two
operations: evaluation and search. In Figure 3, each neuron

4112

d jP

mP

Dynamic model

Search

Evaluation

*jW

jW

Fig. 3. The structure and operation of the SOM in the proposed scheme.

j in the SOM contains a vector of a possible solution set
W j (the weight vector). Each time new measured dynamic
data Pm are sent into the scheme, the SOM is triggered
to operate. All of the possible solution sets in the neurons
will then be sent to the dynamic model to derive their
corresponding dynamic data Pdj

. The SOM evaluates the
difference between Pm and each Pdj

. Of all the neurons,
it chooses the neuron j∗, which corresponds to the smallest
difference, as the winner. When the weight vector W j∗ of
this winning neuron j∗ differs from W ĵ∗ of the previous
winner ĵ∗, the weight vectors of ĵ∗ and its neighbors will be
updated in a manner that moves these weight vectors toward
neuron j∗. When j∗ is the same as ĵ∗, the weight vectors will
be updated so as to make them form more and more compact
clusters centering at neuron j∗. Under successful learning,
the SOM will finally converge to an optimal solution set.

Several parameters need to be determined for weight
updating in the SOM, including the topological neighbor-
hood function and learning rate. Their determination may
depend on the properties of the system parameters to learn.
As mentioned above, system parameters (including their
derivatives) may operate in quite different working ranges.
To achieve high learning efficiency, the weight updating
should be executed in an individual basis, instead of using
a same neighborhood function for all the parameters. We
thus propose a new SOM weight updating rule, which can
dynamically adjust the center and width of their respective
neighborhood function for the SOM in learning each of the
system parameters. The proposed weight updating rule is
designed to make the distance between neuron j and j∗

correspond to that of their weight vectors, W j and W j∗ .
From an individual basis, we first define two Gaussian
neighborhood functions D(j(k)) and F (wj,i(k)) for the
parameter wj,i(k) (the ith element in W j(k)) in the kth stage
of learning as

D(j(k)) = exp(−d2
j,j∗(k)
2σ2

d

) (1)

F (wj,i(k)) = exp(− (wj,i(k) − wj∗,i(k))2

2σ2
wi

) (2)

where dj,j∗(k) stands for the lateral connection distance be-
tween neuron j and j∗, wj∗,i(k) the ith element in W j∗(k),
and σd and σwi

the standard deviation of the neighborhood
function D(j(k)) and F (wj,i(k)), respectively. An error
function E1(k) is then defined as

E1(k) =
1
2
(D(j(k)) − F (wj,i(k)))2 (3)

To speed up the learning, we propose varying the mean
and variance of the neighborhood function F (wj,i(k)) by
moving its center to where wj∗,i(k) is located and enlarging
(reducing) the variance σ2

wi
to be σn

wi

2 = |wj∗,i(k)−w̃i(k)|2,
where w̃i(k) stands for the average of all wj,i(k) in the
neurons and | · | the difference. The new neighborhood
function Fn(wj,i(k)) is then formulated as

F n(wj,i(k))=exp(−
(wn

j,i
(k)−wj∗,i(k))2

2σn
wi

2)=exp(− (wj,i(k)−w̃i(k))2

2σ2
wi

)

(4)
where wn

j,i(k) is the new weight value for wj,i(k) after
the variation. Under this design, during each iteration of
learning, Fn(wj,i(k)) is dynamically centered at the winning
neuron j∗, with a larger (smaller) width when w̃i(k) is more
(less) different from wj∗,i(k), thus covering a more fitting
neighborhood region. Higher learning efficiency can then
be expected. With Fn(wj,i(k)), the new weight wn

j,i(k) is
derived as

wn
j,i(k) =

|wj∗,i(k) − w̃i(k)|
σwi

· (wj,i(k)− w̃i(k)) + wj∗,i(k)

(5)
With a desired new weight wn

j,i(k), in addition to minimizing
the error function E1(k) in Eq.(3), the learning should also
make wj,i(k) approach wn

j,i(k). A new error function E(k)
is thus defined as

E(k) =
1
2
[(D(j(k))− F (wj,i(k)))2 + (wj,i(k)−wn

j,i(k))2]
(6)

Based on the gradient-descent approach, the weight-updating
rule is derived as

wj,i(k+1) = wj,i(k)−η(k)
∂E(k)

∂wj,i(k)

= wj,i(k)−η(k)[
∂E1(k)

∂F (wj,i(k)) ·
∂F (wj,i(k))

∂wj,i(k) +

(wj,i(k)−wn
j,i(k))]

= wj,i(k)−η(k)[
(wj,i(k)−wj∗,i(k))

σ2
wi

·F (wj,i(k))·(D(j(k))

−F (wj,i(k)))+(wj,i(k)−wn
j,i(k))] (7)

where η(k) stands for the learning rate in the kth stage of
learning. The selection of η(k) should depend on the close-
ness between wj,i(k) and w∗

j,i(k). When they are different

4113

from each other, the learning process can be speeded up with
a larger η(k). And when they almost coincide, the learning
rate may be decreased gradually. A function for η(k) that
satisfies the demand is formulated as

η(k) = η1 · e−k/τ + η0 (8)

where η0 and η1 are constants smaller than 1, and τ time
constant. Of course, other types of functions can also be used.
Together, the weight updating rule described in Eq.(7) and
the learning rate in Eq.(8) will force the minimization of the
difference between the weight vector of the winning neuron
and those corresponding to every neuron in each learning
cycle. The learning will converge eventually.

A. Trajectory prediction application

To evaluate its effectiveness, we apply the proposed SOM-
based learning scheme for a trajectory prediction task. As
a trajectory predictor, the scheme is used to estimate the
launching position and velocity of a moving object using the
measured data. Through a learning process, the predictor may
determine a most probable initial state through repeatedly
comparing the measured data with the predicted trajectories
derived from the possible initial states stored in the neurons
of the SOM. We consider the proposed scheme suitable for
this application, because the relationship between the initial
state and its resultant trajectory is not utterly random. We can
thus distribute the initial states into the SOM in an organized
fashion, and make it a guided search.

In this application, the nonlinear dynamic equation de-
scribing the trajectory of the moving object and the mea-
surement equation are first formulated as

x(k + 1) = fk(x(k)) + ξ
k

(9)

p(k) = gk(x(k)) + ζ
k

(10)

where fk and gk are the vector-value function defined in
Rl and Rq (l and q the dimension), respectively, and their
first-order partial derivatives with respect to all the elements
of x(k) continuous. ξ

k
and ζ

k
are the zero-mean Gaussian

white noise sequence in Rl and Rq, respectively, with

E[ξ
k
] = 0 (11)

E[ξ
j
ξT

k
] = Qδjk (12)

E[ζ
k
] = 0 (13)

E[ζ
j
ζT

k
] = Rδjk (14)

E[ξ
j
ζT

k
] = 0 (15)

where E[·] stands for the expectation function, Q and R
the covariance matrix of the input noise and output noise,
respectively, and δjk the Dirac delta function. Q and R
are expected to be uncertain and varying in noisy, unknown
environments, and their estimated values possibly imprecise,
even incorrect. Being unaware of the statistical properties
of the dynamic model, the proposed scheme is utilized to

find the optimal initial state via learning. According to the
description of the proposed scheme in Sec. 3.1 and the
dynamic model and measurement equation in Eqs.(9)-(10),
the SOM-based learning algorithm for trajectory prediction
is organized as follows:
SOM-based Learning Algorithm for Trajectory Predic-
tion: Predict an optimal initial state for the trajectory of a
moving object using the measured position data.
Step 1: Set the stage of learning k = 0. Estimate the ranges
of the possible launching position and velocity of the moving
object, and randomly store the possible initial states W j(0)
into the neurons, where j = 1, . . . , m × n, m × n the total
number of neurons in the 2D (m × n) space.
Step 2: Send W j(k) into the dynamic model, described in
Eq.(9), to compute Pdj

(k).
Step 3: For each neuron j, compute its output Oj(k) as
the Euclidean distance between the measured position data
Pm(k) and Pdj

(k):

Oj(k) = ‖Pm(k) − Pdj
(k)‖ (16)

Find the winning neuron j∗ with the minimum Oj∗(k):

Oj∗(k) = ‖Pm(k) − Pdj∗(k)‖ = min
j

‖Pm(k) − Pdj
(k)‖

(17)
Step 4: Update the weight vectors of the winning neuron j∗

and its neighbors using Eq.(7).
Step 5: Check whether all the differences between each
wj∗,i(k) of the winning neuron j∗ and those wj,i(k) corre-
sponding to every neuron j are smaller than a pre-specified
value ε:

max
j,i

|wj,i(k) − wj∗,i(k)| < ε (18)

If Eq.(18) does not hold, let k = k + 1 and go to Step 2;
otherwise, the prediction process is completed and output the
predicted optimal initial state to the dynamic model to derive
the object trajectory. Note that the value of ε is empirical
according to the demanded resolution in learning, and we
chose it very close to zero. In addition, during each stage of
learning, we perform a number of learning to increase the
SOM learning speed. This number of learning is set to be
a large number in the initial stage of the learning process,
such that the SOM may converge faster at the price of
more oscillations, and decreased gradually to achieve smooth
learning in the later stages of learning.

IV. SIMULATION

For demonstration, we performed a series of simulations
for trajectory prediction based on using the SOM, GA,
and Kalman filter. Kalman filtering is a famous approach
for trajectory prediction, which has been widely used in
predicting the movements of the satellites, airplanes, ships,
etc. [5], [13]. In the simulations, the trajectory to predict was
for a moving object that emulated a missile. Its governing
equations of motion in the 3D Cartesian coordinate system
are described as

4114

ẍ =
−gmx

(x2 + y2 + z2)3/2
+ 2ωẏ + ω2x + ξx (19)

ÿ =
−gmy

(x2 + y2 + z2)3/2
+ 2ωẋ + ω2y + ξy (20)

z̈ =
−gmz

(x2 + y2 + z2)3/2
+ ξz (21)

where gm and ω stand for the gravitational constant and
the rotative velocity of the earth, respectively, and set
to be gm = 3.986 × 105km3/s2 and ω = 7.2722 ×
10−5rad/s. (ξx, ξy, ξz) are assumed to be continuous-time
uncorrelated zero-mean Gaussian white noise processes.
Referring to Eq.(9) and letting X = (x, y, z, ẋ, ẏ, ż)T =
(x1, x2, x3, x4, x5, x6)T , we can obtain the discretized dy-
namic equation as

X(k + 1) = f(X(k)) + ξ
k

(22)

where

f(X(k))=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k)+tx4(k)

x2(k)+tx5(k)

x3(k)+tx6(k)

x4(k)−tgmx1(k)/(x1(k)2+x2(k)2+x3(k)2)3/2+

2tωx5(k)+tω2x1(k)

x5(k)−tgmx2(k)/(x1(k)2+x2(k)2+x3(k)2)3/2+

2tωx4(k)+tω2x2(k)

x6(k)−tgmx3(k)/(x1(k)2+x2(k)2+x3(k)2)3/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)
and

ξ
k

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

ξx4

ξx5

ξx6

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

with t the sampling time. (ξx4 , ξx5 , ξx6) are assumed to be
uncorrelated zero-mean Gaussian white noise sequences with
a constant variance σ2

f = (0.1m/s2)2. And, referring to
Eq.(10), the measurement equation is formulated as

P (k) =

⎡
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦X(k) + ζ

k
(25)

where ζ
k

= (ζx1 , ζx2 , ζx3)
T are the measurement noise

sequences with a zero mean and constant variance σ2
m =

(15m)2. The ranges of the possible initial states W j(0) were
estimated to be

68.6 × 105m ≤ x1(0) ≤ 68.8 × 105m
2.7 × 105m ≤ x2(0) ≤ 2.8 × 105m
4.8 × 105m ≤ x3(0) ≤ 4.9 × 105m
110m/s ≤ x4(0) ≤ 150m/s
810m/s ≤ x5(0) ≤ 850m/s
1360m/s ≤ x6(0) ≤ 1380m/s.

(26)

Within the ranges described in Eq.(26), the possible launch-
ing positions and velocities of the missile were selected and
stored into the 729 (27×27) neurons of the 2D SOM. The
learning rates for each parameter were determined according
to Eq.(8), with the time constant τ set to be 100 and η0 and
η1 between 0 and 0.8. The sampling time t was 0.5s. For the
GA, the population size was selected to be 729 to match with
the SOM, and the crossover and mutation probability 0.6 and
0.0333, respectively. As for the Kalman filter, we randomly
chose 500 possible initial states within the ranges to estimate
an initial state X0 = E[X(0)] and an error covariance matrix
as E[(X(0) − X0)(X(0) − X0)T].

We applied the SOM, GA, and Kalman filter for trajectory
prediction under the following four situations: (1) good
estimates of both the initial state and noise distribution, (2)
good estimate of the initial state, but bad estimate of the
noise distribution, (3) bad estimate of the initial state, but
good estimate of the noise distribution, and (4) bad estimates
of both the initial state and noise distribution. From the
simulation results for Case 1, all the SOM, GA, and Kalman
filter predicted the initial state quite well and thus resulted in
very small estimated errors, except in the initial stage of the
prediction. For Cases 2-4, the performance of the Kalman
filter degraded with bad estimate in either noise distribution
or initial state. The influence of bad estimate on the SOM
was mostly at the initial stage of the prediction. After the
transient, the SOM still managed to find the optimal initial
state. As for the GA, it converged very slowly when the
optimal initial state did not fall within the estimated range.
And, it was not that straightforward to determine a proper
population size and crossover and mutation probabilities to
speed up its convergence rate. We thus conclude that the
proposed SOM-based learning scheme performed better than
the GA and Kalman filter in robustness and efficiency for this
trajectory prediction application.

The simulation results for Case 4 are shown in Fig-
ure 4 for illustration. In this simulation, the ideal initial
state was assumed to be (64 × 105m, 4.8 × 105m, 2.4 ×
105m, 215m/s, 2130m/s, 1030m/s), which was outside the
estimated range. And, the variance of the measurement noise
was enlarged to be (30m)2. Figure 4(a) shows the ideal
and measured trajectories, Figure 4(b) the estimated position
error, and Figure 4(c) the variation of the neighborhood
function F (wj,1(k)) during the SOM learning process. In
Figure 4(c), the center of F (wj,1(k)) leaned toward the right
side of the figure, because the optimal solution was located
outside of the estimated range.

V. CONCLUSION

In this paper, we have proposed an SOM-based learning
scheme, in which the SOM is used as a search mechanism
for dynamic system. Via the examination of the SOM and
GA in their structures and learning strategies, we consider
that the SOM is more suitable than the GA for applications
with certain knowledge of the possible solutions. To achieve
high efficiency in learning a number of dynamic parameters,
we have also proposed a new SOM weight updating rule.

4115

(a) Ideal and measured trajectories

(b) Estimated position error in the X-direction

Position
error
(m)

measured

ideal

SOM
GA
KF

Learning stage (k)

0k

25k

50k

(c) Variation of the neighborhood function ,1(())jF w k

F

F

F

Fig. 4. Simulation results for trajectory prediction using the SOM,
GA, and Kalman filter with bad estimates of both the initial state and
noise distribution: (a) the ideal and measured trajectories, (b) the estimated
position error in the X-direction, and (c) the variation of the neighborhood
function F (wj,1(k)) during the SOM learning process.

The performance of the proposed scheme has been compared
with those of the GA and Kalman filter via the simulations
for a trajectory prediction task. To further exploit its search
ability, in future work, we will apply the SOM for dynamic
optimization problem, with the issue on persistent excitation
investigated [16]. As the SOM also possesses an appealing
feature in responding to distinct properties exhibited by input
data through forming several corresponding clusters, another
worthwhile future work will be to extend the proposed
scheme for systems involving multiple targets.

VI. ACKNOWLEDGMENT

This work was supported in part by the National Science
Council under grant NSC 93-2218-E-009-061, and also De-
partment of Industrial Technology under grant 93-EC-17-A-
02-S1-032.

REFERENCES

[1] G. A. Barreto and A. F. R. Araujo, “Identification and Control of
Dynamical Systems Using the Self-Organizing Map,” IEEE Trans. on
Neural Networks, Vol. 15(5), pp. 1244-1259, 2004.

[2] A. G. Barto, “Reinforcement Learning and Adaptive Critic Methods,”
Handbook of Intelligent Control, White and Sofge, eds., Van Nostrand-
Reinhold, New York, pp. 469-491, 1992.

[3] G. A. Carpenter and S. Grossberg, “The ART of Adaptive Pattern
Recognition by a Self-Organizing Neural Network,” IEEE Computer,
Vol. 21(3), pp. 77-88, 1988.

[4] Y. Davidor, Genetic Algorithms and Robotics: A Heuristic Strategy for
Optimization, World Scientific, New Jersey, 1991.

[5] M. Efe and D. P. Atherton, “Maneuvering Target Tracking with an
Adaptive Kalman Filter,” IEEE Conference on Decision and Control,
pp. 737-742, 1998.

[6] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison Wesley, New York, 1989.

[7] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmil-
lan, New York, 1994.

[8] H.-D. Jin, K.-S. Leung, M.-L. Wong, and Z.-B. Xu,“An Efficient Self-
Organization Map Designed by Genetic Algorithms for the Traveling
Salesman Problem,” IEEE Trans. on Systems, Man, and Cybernetics,
Part B: Cybernetics, Vol. 33(6), pp. 877-888, 2003.

[9] T. Kohonen, Self-Organizing Map, Springer, Berlin, Germany, 1997.
[10] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-Dimensional

Neural Net for Learning Visuomotor Coordination of a Robot Arm,”
IEEE Trans. on Neural Networks, Vol. 1(1), pp. 131-136, 1990.

[11] K. Obermayer and T. J. Sejnowski, ed., Self-Organizing Map Forma-
tion: Foundation of Neural Computation, MIT Press, Cambridge, 2001.

[12] J. C. Principe, L. Wang, and M. A. Motter, “Local Dynamic Modeling
with Self-Organizing Maps and Applications to Nonlinear System
Identification and Control,” Proceedings of the IEEE, Vol. 86(11), pp.
2240-2258, 1998.

[13] K. V. Ramachandra, “A Kalman Tracking Filter for Estimating Posi-
tion, Velocity and Acceleration from Noisy Measurements of a 3-D
Radar,” Electro Technology, Vol. 33, pp. 66-76, 1989.

[14] H. Shah-Hosseini and R. safabakhsh, “TASOM: a New Adaptive Self-
Organization Map,” IEEE Trans. on Systems, Man, and Cybernetics,
Part B: Cybernetics, Vol. 33(2), pp. 271-282, 2003.

[15] M. C. Su and H. T. Chang, “Fast Self-Organizing Feature Map
Algorithm,” IEEE Trans. on Nueral Networks, Vol. 11(3), pp. 721-733,
2000.

[16] M. C. Su, Y. X. Zhao, and J. Lee, “Som-based Optimization,” IEEE
Int. Conference on Neural Networks, pp. 781-786, 2004.

4116

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

