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Abstract— A Direct Adaptive Control Scheme to stabilize strict
feedback plants with a time-varying structure is presented.
Semi-global asymptotic stability is achieved with limited knowl-
edge of the plant dynamics. Simulation of the scheme using a
slender delta wing rock phenomenon model as practical ex-
ample, confirming the results of the mathematical formulation
of the control scheme. Various initial conditions are simulated
showing the ability of the scheme to stabilize the plant over a
wide range of operation.

I. INTRODUCTION

The development of adaptive controllers for linear plants has
been studied over a number of years [1]. A further challenge
is posed when attempting to design the same controllers
for nonlinear plants. Nonlinear plants often have complex
dynamic structures that often render the control problem
intractable. Early efforts to control nonlinear systems were
on plants with analyzable nonlinearities for which control
laws can be devised and stability analysis of the closed
loop system can be performed [2], [3], [4]. Many advances
in nonlinear control have been obtained by adapting ideas
from linear control theory, such as dead zone, leakage,
parameter projection, and dynamic normalization [5], provid-
ing important foundations for the development of nonlinear
control methods. Adaptive control aims at stabilizing plants
with dynamics that change through time. This change may
depend on variables that may be exogenous to the plant
itself. The control adapts itself to the plant changes, in order
to obtain a stable response of the closed-loop system. To
enable adaptation, some amount of knowledge of the plant
characteristics is needed. This knowledge may range from
a complete mathematical description of the plant dynamics
including limits of operation, to a general mathematical
description of the plant and some limits of operation. In this
work, a scheme to control nonlinear plants with a particular
time-varying structure [6] is presented. This scheme has the
particularity that it does not require exact knowledge of the
time-varying structure of the system in order to generate
a stabilizing control law. This fact allows obtaining local
asymptotic stability for strict feedback systems [7], with
time-varying structure. This work assumes no knowledge of
the exogenous variable dependence model and its limits of
operation, obtaining asymptotic stability of the closed loop
system. Simulation of this control scheme is presented using
the slender delta wing rock phenomenon model developed
by by Nayfeh, Elzbeda, and Mook [8], as practical exam-
ple. Asymptotic stability is achieved using different initial
conditions for the wing roll angle and rate.

II. THEORETICAL BACKGROUND

This work continues the works developed by Ordóñez and
Passino [12], [13], [6] which presented an extension of the
class of strict feedback systems considered by Polycarpou
and Mears [10] and Zhang [11] with the additional concept of
a dynamic structure that depends on time through a schedul-
ing variable. In these works, Ordóñez and Passino developed
both indirect and direct adaptive control approaches for a
nonlinear systems with a time-varying structure. This class
of systems is a generalization of the class of strict feedback
systems traditionally considered in the literature and can be
expressed as

ẋi =
R∑

j=1

ρj(v) (φi,j(Xi) + ψi,j(Xi)xi+1) ,

i = 1, .., n − 1

ẋn =
R∑

j=1

ρj(v) (φn,j(Xn) + ψn,j(Xn)u) , (1)

where Xi = [x1, x2, . . . , xi]�, i = 1, . . . , n, Xn ∈ R
n is

the state vector, assumed available for measurement, and
u ∈ R is the control input. The variable v ∈ R

q may be an
additional input or an exogenous scheduling variable with
(n − 1) bounded and measurable derivatives. The functions
ρj(v), j = 1, . . . , R, may be considered as interpolating
functions that describe the time-varying structure of the
system, since they combine the system (1) in strict feedback
form, the combination depending on the variable v. In [12],
[13], the dynamics of the system (φi,j , ψi,j) are estimated
on-line while the interpolation function ρj(v) is assumed to
be known (e.g., computed using previously recorded data). In
the present work, that assumption of knowledge of ρj(v) is
relaxed, assuming only to know the bounds of the scheduling
variable, and using such scheduling variable as an input of
the on-line approximator. In order to do this, the system is
conveniently expressed in the form

φc
i (Xi, v) =

R∑
j=1

ρj(v)φi,j(Xi)

ψc
i (Xi, v) =

R∑
j=1

ρj(v)ψi,j(Xi). (2)

Transforming the plant expression into

ẋi = φc
i (Xi, v) + ψc

i (Xi, v)xi+1, i = 1, .., n − 1
ẋn = φc

n(Xn, v) + ψc
n(Xn, v)u. (3)
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This last equation includes the time-varying structure of
the system in its dynamics, to facilitate the mathematical
derivations.

III. DIRECT ADAPTIVE CONTROL THEOREM

This section presents the stability analysis of the direct adap-
tive control (DAC) scheme for plants with a time-varying
structure dependent on a scheduling variable. Theorem 1:

Consider the system (1), and for convenience, define

φc
i (Xi, v) =

R∑
j=1

ρj(v)φi,j(Xi, v)

ψc
i (Xi, v) =

R∑
j=1

ρj(v)ψi,j(Xi, v). (4)

With these definitions, system (1) becomes

ẋi = φc
i (Xi, v) + ψc

i (Xi, v)xi+1, i = 1, .., n − 1
ẋn = φc

n(Xn, v) + ψc
n(Xn, v)u, (5)

with state vector Xn and scheduling vector v, both available
for measurement and v bounded, and satisfying the assump-
tions

0 ≤ ρj(v) ≤ 1
R∑

j=1

ρj(v) < ∞, (6)

for all v ∈ R
q, and

φc
i (0, v) = 0

ψc
i (Xi, v) �= 0, (7)

(8)

together with

0 < ψc

i
≤ ψc

i (Xi, v) ≤ ψ̄c
i < ∞

∣∣∣ψ̇c
i

∣∣∣ =

∣∣∣∣∣∣
R∑

j=1

(
∂ρj(v)

∂v
v̇ψj

i (Xi) + ρj(v)
∂ψj

i (Xi)
∂Xi

Ẋi

)∣∣∣∣∣∣ ≤ ψc
id

.

(9)

For all Xi ∈ R
i, v ∈ R

q. Assume also that v(0) ∈ Sv ⊂
R

q, Xi(0) ∈ SXi
⊂ R

i, i = 1, . . . , n, where Sv and SXi
are

compact sets of arbitrary size specified a priori. Consider
the diffeomorphism

z1 = x1

zi = xi − α̂i−1 − αs
i−1, i = 2, . . . , n, (10)

with i = 1, . . . , n,

α̂i =
R∑

j=1

θ̂�i,jζi,j(Xi, v)

αs
i = −kizi − zi−1, with ki > 0 and z0 = 0.

(11)

Assume the functions ζi,j(Xi, v) to be at least n − i times
continuously differentiable, with those n−i derivatives finite.

Consider the adaptation laws for the parameter vectors
θ̂i,j ∈ R

Ni,j , Ni,j ∈ N,

˙̂
θi,j = −γi,jζi,jzi − σi,j θ̂i,j (12)

with γαi,j > 0, σαi,j > 0, i = 1, . . . , n, j = 1, . . . , R. Then,
the control law

u = α̂n + αs
n (13)

guarantees boundedness of all signals and convergence of
the states to the residual set

Dd =

{
Xn ∈ �n :

n∑
i=1

z2
i ≤ 2ψ

m
Wd

βd

}
. (14)

where ψ
m

= min1≤i≤n ψ̄c
i , βd is a constant, and Wd

measures approximation errors and ideal parameter sizes,
and its magnitude can be reduced through the choice of the
design constants ki, γi,j and σi,j .

Proof: The proof is performed inductively and requires

n steps. In the first step let z1 = x1 and z2 = x2 − α̂1 − αs
1

where α̂1 is the approximation to an ideal signal α∗
1 that

produces global asymptotic stability without the need of the
stabilizing term αs

1, defined below. Let c1 > 0 be a constant

such that c1 >
ψc

1d

2ψc
1

, and define

α∗
1(x1, v) =

1
ψc

1

(−φc
1 − c1z1) . (15)

It is assumed that the ideal control α∗
1 is smooth and,

hence, it can be approximated with arbitrary accuracy for
v and x1 within the compact sets Sv ⊂ R

q and Sx1 ⊂ R,
respectively, as long as the size of the approximator can be
made arbitrarily large. For an approximator of finite size, let

α∗
1(x1, v) =

R∑
j=1

θ∗
�

1,jζ1,j(x1, v) + δα1(x1, v), (16)

where the parameter vector θ∗1,j ∈ R
N1,j , N1,j ∈ N, is

optimum in the sense that it minimizes the representation
error δα1 over the set Sv ×Sx1 and a suitable set parameter
space Ω1,j , and ζ1,j(x1, v) is defined via the choice of
the approximator (e.g., the elements of ζ1,j(x1, v) may be
polynomials, or the output of a hidden layer of neurons in
a feedforward neural network). As a result of the stability
proof, the approximator parameters are bounded by the adap-
tation laws, so Ω1,j does not have to be explicitly defined,
and no means to keep the parameters bounded is needed. δα1

arises because N1,j is finite, but may be arbitrarily small by
increasing the size of the estimator. This means there exists
a constant bound dα1 > 0, such that |δα1 | ≤ dα1 < ∞.
Let Φ1,j = θ̂1,j − θ∗1,j denote the parameter error, and
approximate (16) with

α̂1(x1, v, θ̂1,j) =
R∑

j=1

θ̂�1,jζ1,j(x1, v). (17)

Note that the time varying structure of the system is not
explicitly reflected in the approximator (ρj(v) is not included
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in the approximator definition), but it is included in the
controller via the definition of ζ1,j(x1, v). Hence, ζ1,j(x1, v)
must contain means to estimate the plant dynamics including
their dependencies on the exogenous or scheduling variable
v. That is, ζ1,j(x1, v) uses the variable v as one of its inputs
to approximate the dynamics of the system directly. Consider
the dynamics of the transformed state,

ż1 = φc
1 + ψc

1(z2 + α̂1 + αs
1) + ψc

1(α
∗
1 − α∗

1)

= −c1z1 + ψc
1z2 + ψc

1

⎛
⎝ R∑

j=1

Φ1,jζ1,j − δα1

⎞
⎠ + ψc

1α
s
1.

(18)

Let V1 = 1
2ψc

1
z2
1 + 1

2

∑R
j=1

Φ�
1,jΦ1,j

γ1,j
and examine the deriva-

tive,

V̇1 =
2ψc

1 (2z1ż1) − 2z2
1ψ̇c

1

4ψc
1
2 +

R∑
j=1

Φ�
1,jΦ̇1,j

γ1,j
. (19)

Using (18),

V̇1 = −c1z
2
1

ψc
1

+ z1z2 + z1

R∑
j=1

Φ1,jζ1,j − z1δα1

+ z1α
s
1 −

1
2
z2
1

ψ̇c
1

ψc
1

+
R∑

j=1

Φ�
1,jΦ̇1,j

γ1,j
. (20)

Noting that Φ̇1,j = ˙̂
θ1,j , choose the adaptation law,

˙̂
θ1,j = −γ1,jζ1,jz1 − σ1,j θ̂1,j , (21)

with the design constants γ1,j > 0, σ1,j > 0, j = 1, . . . , R.
Notice that for any constant k1 > 0

−z1δα1 ≤ |z1| dα1 ≤ k1z
2
1 +

d2
α1

4k1
. (22)

Choose
αs

1 = −k1z1. (23)

Notice that completing squares,

−Φ�
1,j θ̂1,j ≤ −Φ�

1,j

(
Φ1,j + θ∗1,j

) ≤ −|Φ1,j |2
2

+

∣∣θ∗1,j

∣∣2
2

.

(24)
And finally, observe that,

− z2
1

ψc
1

(
c1 +

ψ̇c
1

2ψc
1

)
≤ − z2

1

ψc
1

(
c1 −

ψc
1d

2ψc

1

)
≤ − c̄1z

2
1

ψ̄c
1

, (25)

with c̄1 = c1 − ψc
1d

2ψc
1

. Then,

V̇1 ≤− c̄1z
2
1

ψ̄c
1

− 1
2

R∑
j=1

σ1,j
|Φ1,j |2
γ1,j

+ z1z2

+
d2
1,j

4k1
+

1
2

R∑
j=1

σ1,j

θ∗1,j

γ1,j
. (26)

completing the first step of the proof.

Continuing in the same manner up to the nth step, we let
zn = xn − α̂n−1 − αs

n−1, with α̂n−1 and αs
n−1 defined as

in (11). Let

α∗
n(Xn, v) =

1
ψc

2

(
−φc

n − cnzn + ˙̂αn−1 + α̇s
n−1

)
, (27)

with cn >
ψc

nd

2ψc
n

, and its representation

α∗
n(Xn, vn) =

R∑
j=1

θ∗
�

n,jζn,j(Xn, vn) + δαn(Xn, vn), (28)

for Xn ∈ R
n, v ∈ Sq

v , and the parameter vector θ∗n,j ∈
R

Nn,j , Nn,j ∈ N which minimizes the representation error
δαn over Sv ×SXn and a compact parameter set Ωn,j under
some optimization criterion. Hence, there exists a constant
dαn

> 0, such that |δαn
| ≤ dαn

< ∞. Let Φn,j = θ̂n,j−θ∗n,j ,
and consider

u = α̂n + αs
n. (29)

Then,

żn =φc
n + ψc

n(α̂n + αs
n) − ˙̂αn−1 − α̇s

n−1 (30)

+ ψc
n(α∗

n − α∗
n)

= −cnzn + ψc
n

⎛
⎝ R∑

j=1

Φn,jζn,j − δαn

⎞
⎠ + ψc

nαs
n.

(31)

Choose the Lyapunov candidate

V = Vn−1 +
1

2ψc
n

z2
n +

1
2

R∑
j=1

Φ�
n,jΦn,j

γn,j
(32)

and examine its derivative

V̇n =V̇n−1 − cnz2
n

ψc
n

+ zn

R∑
j=1

Φn,jζn,j − znδαn

+ znαs
n − 1

2
z2
n

ψ̇c
n

ψc
n

+
R∑

j=1

Φ�
n,jΦ̇n,j

γn,j
. (33)

It may be shown inductively that

V̇n−1 ≤−
n−1∑
i=1

c̄iz
2
i

ψ̄c
i

− 1
2

n−1∑
i=1

R∑
j=1

σi,j
|Φi,j |2
γi,j

+ zn−1zn

+
n−1∑
i=1

d2
αi

4ki
+

1
2

n−1∑
i=1

R∑
j=1

σi,j

|θ∗i,j |2
γi,j

. (34)

with c̄i = ci − ψc
id

2ψc
i

> 0, i = 1, . . . , n. Choosing the

adaptation laws for θn,j in (12) and of αs
n in (11), together

with the observations that

−Φ�
n,j θ̂n,j ≤ −|Φn,j |2

2
+

∣∣θ∗n,j

∣∣2
2

, (35)

−znδαn
≤ |zn| dαn

≤ knz2
n +

d2
αn

4kn
, with kn > 0, (36)
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− z2
n

ψc
n

(
cn +

ψ̇c
n

2ψc
n

)
≤ − c̄nz2

n

ψ̄c
n

, (37)

we obtain that

V̇ ≤ −
n∑
i

c̄iz
2
i

ψ̄c
i

− 1
2

n∑
i=1

R∑
j=1

σi,j
|Φi,j |2
γi,j

+ Wd, (38)

with

Wd =
n∑

i=1

d2
αi

4ki
+

1
2

n∑
i=1

R∑
j=1

σi,j

|θ∗i,j |2
γi,j

. (39)

Then, if
c̄iz

2
i

ψ̄c
i

≥ Wd

or
1
2

n∑
i=1

R∑
j=1

σi,j
|Φi,j |2
γi,j

≥ Wd, (40)

it follows that V̇ ≤ 0. Furthermore, by letting ψ
m

=
min1≤i≤n(ψc

i
), ψ̄m = max1≤i≤n(ψ̄c

i ), and defining

c̄0 = min
1≤i≤n

(c̄i)

ψm =
ψ

m

ψ̄m

σ0 = min
1≤i≤n

(σi,j), (41)

we have

− c̄iz
2
i

ψ̄c
i

≤ −c̄0
z2
i

ψ̄c
i

≤ −c̄0
z2
i ψc

i

ψc
i ψ̄

c
i

≤ −c̄0ψm
z2
i

ψc
i

−1
2

n∑
i=1

R∑
j=1

σi,j
|Φi,j |2
γi,j

≤ −σ0
1
2

n∑
i=1

R∑
j=1

|Φi,j |2
γi,j

. (42)

Then, letting βd = min(2c̄0ψm, σ0), we have that if

V =
1
2

n∑
i=1

z2
i

ψc
i

+
1
2

n∑
i=1

R∑
j=1

|Φi,j |2
γi,j

≥ V0, with V0 =
Wd

βd
,

(43)
then V̇ ≤ 0 and all signals in the closed loop are bounded.
Further

V̇ ≤ −βdV + Wd (44)

implying that

0 ≤ V (t) ≤ Wd

βd
+

(
V (0) − Wd

βd

)
e−βdt (45)

so the transformed states and the parameter error vector
converge both to a bounded set. Finally, from (45), we
conclude that the vector Xn converges to a residual set

Dd =

{
Xn ∈ �n :

n∑
i=1

z2
i ≤ 2ψ

m
Wd

βd

}
. (46)

Remark 1. From 45 it is possible to obtain an estimate of
the region of convergence of the adaptive controller, which
can be used to a priori design the approximator’s compact

set of operation to ensure stability in the sense that the state
does not exit this compact set during transient.
Remark 2. Notice that the assumption of ψc

i > 0, i =
1, . . . , n is only to simplify the analysis and implies no loss
of generality, given that the fundamental requirement is that
ψc

i be bounded away from zero by a constant. The stability
proof can accommodate negative cases.
Remark 3. Notice that explicit knowledge of the bounds es-
tablished in assumption (9) is not needed but only knowledge
of their existence is required.
Remark 4. Notice that the direct adaptive approach pre-
sented here relies on linearly parameterized function approx-
imators. Nevertheless, nonlinearly parameterized approxima-
tors can be integrated into the analysis by following the usual
approach of linearizing the approximators, and then lumping
the higher order terms of the Taylor series expansions into
the errors δαi

[14], [15], or by using the mean value theorem,
as in [10].
Remark 5. This scheme relaxes the need of knowledge about
the system dynamics and the exogenous variable v. Only the
bounds of the exogenous variable are needed in order to have
an adequate approximation of the stabilizing functions α̂. The
inclusion of the estimation of the time-varying structure of
the plant also potentially reduces the amount of calculations
needed in the physical implementation of the controller,
depending on the number of centers selected for the approx-
imation structure. It also adds an amount of complexity to
the approximator structure, dependent on the order of the
scheduling vector. That is, the size of the approximation
structure is dependent on the number of variables used by it,
and the addition of new variables to the structure increases
the size of the vectors involved in an exponential fashion.
Remark 6. The representation error bounds and the size of
the ideal parameter vector must be known to compute the size
of the residual set to which the states converge. The size of
this residual set can be reduced by manipulating the design
constants γi,j , σi,j , and ki,j , but meeting some particular
performance specification can only be done a posteriori if
knowledge of the errors and parameters is lacking.

IV. SIMULATION

The adaptive control scheme formulated in section III is
simulated using a model of the slender delta wing rock
phenomenon as practical example. Wing rock is a highly
nonlinear phenomenon in which the aircraft experiences limit
cycle roll oscillations at high angles of attack. The magnitude
and frequency of the oscillations are generally strongly
dependent on aircraft configuration and angle of attack, as
well as other flow conditions. Figure 1 shows a schematic
representation of the wing roll angle oscillations. The wing
rock phenomenon has been extensively studied and various
models have been developed to describe it. For the purpose of
the simulations in this work, the wing rock phenomenon was
modelled using the equations developed by Nayfeh, Elzbeda,
and Mook [8]. This model is a nonlinear dynamic description
for slender delta wing roll angle, obtained from a wind tunnel
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Fig. 1. Wing Rock Phenomenon

experiment, and is given by

φ̇ = ω2φ + µ1φ̇
3 + b1φ̇

2 + µ2φ
2φ̇ + b2φφ̇2 + gδa, (47)

where φ is the wing roll angle, while the coefficients ω2,
µ1, b1, µ2, and b2 are dependent on the angle of attack
and the characteristics of the wing, g is a gain and δa is
the control signal. In wind tunnel experiments using 80◦

sweep delta wings [16], oscillations were recorded for angle
of attack values of up to 60◦, the maximum amplitude of
the oscillation being about 44◦ (0.7679 rad) for an angle of
attack of about 33◦. The maximum value of the roll rate
for a wing similar to the one used for this work is about
19.23 rad/s or 1101.8◦/s for an angle of attack of about
30◦. This particular value is the oscillation frequency once
the phenomenon is steadily established. In this work a more
conservative value of the roll rate (45

◦
s , on the assumption

that the controller is in operation before the phenomenon
starts.
Equation (47) can be expressed in state variable form by
letting x1 = φ, x2 = φ̇, as

ẋ1 = x2

ẋ2 =
R∑

j=1

ρj(v)(ω2
j x1 + µ1,jx

3
2 + b1,jx

2
2

+ µ2,jx
2
1x2 + b2,jx1x

2
2) + gx3

ẋ3 = −1
τ

x3 +
1
τ

u, (48)

where x3 is the output of a linear actuator with constant
τ . The dependence of the coefficients in the second state
equation on angle of attack v (used instead of the standard
α of the aircraft literature to avoid confusion) are taken into
account using the model developed by Ordóñez and Passino
[13], [12], by inserting the interpolating functions ρj(v).

A. Simulation Conditions

The basic simulation conditions are φ(0) = −4◦, angle of
attack varying between 15◦ and 25◦, according to the affine
system[

v̇1

v̇2

]
=

[
0 25

−25 10

] [
v1

v2

]
+

[
0

500

]
+

[
0

62.5

]
r,

(49)
where v1 is the angle of attack, v2 is its derivative, and

Fig. 2. Angle of attack variation

Fig. 3. Phase plane without control applied.

r is a command signal taking values between minus one
and one. System (49) has poles −5± j24.5 and equilibrium
at v1 = 20, v2 = 0. Notice that this system is used to
generate an angle of attack signal simulating very rough
control conditions. The plot of such a signal vs. time may
be seen in Figure 2. According to [8] the angle of attack has
a stable focus at the origin for angles about 19.5◦ or less.
For higher angles, the origin becomes unstable and a limit
cycle appears around it. However, in both cases the system is
unstable and may diverge to infinity (the wing rotating faster
and faster). By setting r to a square function of frequency 1
Hz in system (49) the angle of attack becomes smaller and
larger than 19.5◦ once a second. For convenience we will
refer to the roll angle, the roll rate, and the actuator output as
x1, x2, x3 respectively, or as X = [x1, x2, x3]� collectively.
In Figure 3 the behavior of the roll angle and the roll rate
for initial conditions X(0) = [−4, 0, 0]�, v(0) = [20, 0]�

is shown. A second set of values for the initial conditions
of the states is used in order to test the operation of the
control scheme at high initial conditions. For this particular
simulation, X(0) = [45, 45, 0]�, according to the maximum
value of the roll angle observed in similar wind tunnel
experiments, and a reasonably high roll rate, to ensure the
controller is able to achieve stability even when the wing is
already rocking.

B. Simulation Results

The control scheme presented in the adaptive control The-
orem 1 is used to stabilize the wing rock problem using
the model described in 48, with the first initial conditions
set. The design constant settings for this initial simulation
are γ = [1, 1, 1]�, σ = [1, 1, 1]�, k = [1, 1, 1]�. Figure
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Fig. 4. Phase Plane at X(0) = [−4, 0, 0]�.

Fig. 5. Phase Plane for X(0) = [45, 45, 0]�.

4 shows the phase plane for that simulation, showing the
convergence of the roll angle and the roll rate to zero.
No intent to improve the performance of the controller is
made in this simulation by setting the constants γ and σ to
one. The second simulation is performed using the initial
conditions X(0) = [45, 45, 0]�, v = [20, 0]�, as mentioned.
Convergence is obtained for such initial conditions using
σ = [.5, .5, .5]�, k = [10, 10, 10]�, and γ = [0.5, 0.5, 0.5]�.
Figure 5 and 6 show the phase plane and the states vs
time respectively for this simulation. Notice that the value
of the roll rate reaches a maximum absolute value of
193.89255.31◦/s (4.456 rad/s) for these particular initial
conditions. Also the actuator output reaches values in the
order of the thousands which is unreal for a physical actuator.

V. CONCLUSIONS

A Direct Adaptive Control Scheme was mathematically
formulated showing that it is feasible to control a strict-
feedback system with time-varying structure with a very lim-
ited knowledge of that structure. The simulations performed
using the slender delta wing rock phenomenon example show
that this scheme is able to stabilize this class of systems,
with only information about the bounds of the scheduling or
exogenous variable. The proof of the DAC theorem shows
that it is possible to determine the size of a residual set where
all the states will converge to, given that enough information
about the system is provided. The assumptions made for the
development of the DAC theorem that ψc

i be bounded away
from zero by a constant, that the states are bounded and
available for measurement, and that the exogenous variable
is also bounded and available for measurement are not always
easy to comply with when designing a real system, because

Fig. 6. States vs. time for X(0) = [45, 45, 0]�.

the states are not always available. However, in most cases
it is possible to obtain reasonable estimation of the value of
the states using standard techniques.
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[7] M. Krstić, I. Kanellakopoulos, and P. Kokotović, Nonlinear and
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